Welcome to mirror list, hosted at ThFree Co, Russian Federation.

svd.h « TNT « intern « iksolver « intern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: cfff73caa3f8231a8cfbcfafe7a16e5aeac3c001 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
/**
 */

#ifndef SVD_H

#define SVD_H

// Compute the Single Value Decomposition of an arbitrary matrix A
// That is compute the 3 matrices U,W,V with U column orthogonal (m,n) 
// ,W a diagonal matrix and V an orthogonal square matrix s.t. 
// A = U.W.Vt. From this decomposition it is trivial to compute the 
// inverse of A as Ainv = V.Winv.tranpose(U).
//
// s = diagonal elements of W
// work1 = workspace, length must be A.num_rows
// work2 = workspace, length must be A.num_cols

#include "tntmath.h"

#define SVD_MAX_ITER 200

namespace TNT
{

template <class MaTRiX, class VecToR >
void SVD(MaTRiX &A, MaTRiX &U, VecToR &s, MaTRiX &V, VecToR &work1, VecToR &work2, int maxiter=SVD_MAX_ITER) {

	int m = A.num_rows();
	int n = A.num_cols();
	int nu = min(m,n);

	VecToR& work = work1;
	VecToR& e = work2;

	U = 0;
	s = 0;

	int i=0, j=0, k=0;

	// Reduce A to bidiagonal form, storing the diagonal elements
	// in s and the super-diagonal elements in e.

	int nct = min(m-1,n);
	int nrt = max(0,min(n-2,m));
	for (k = 0; k < max(nct,nrt); k++) {
		if (k < nct) {

			// Compute the transformation for the k-th column and
			// place the k-th diagonal in s[k].
			// Compute 2-norm of k-th column without under/overflow.
			s[k] = 0;
			for (i = k; i < m; i++) {
				s[k] = hypot(s[k],A[i][k]);
			}
			if (s[k] != 0.0) {
				if (A[k][k] < 0.0) {
					s[k] = -s[k];
				}
				for (i = k; i < m; i++) {
					A[i][k] /= s[k];
				}
				A[k][k] += 1.0;
			}
			s[k] = -s[k];
		}
		for (j = k+1; j < n; j++) {
			if ((k < nct) && (s[k] != 0.0))  {

			// Apply the transformation.

				typename MaTRiX::value_type t = 0;
				for (i = k; i < m; i++) {
					t += A[i][k]*A[i][j];
				}
				t = -t/A[k][k];
				for (i = k; i < m; i++) {
					A[i][j] += t*A[i][k];
				}
			}

			// Place the k-th row of A into e for the
			// subsequent calculation of the row transformation.

			e[j] = A[k][j];
		}
		if (k < nct) {

			// Place the transformation in U for subsequent back
			// multiplication.

			for (i = k; i < m; i++)
				U[i][k] = A[i][k];
		}
		if (k < nrt) {

			// Compute the k-th row transformation and place the
			// k-th super-diagonal in e[k].
			// Compute 2-norm without under/overflow.
			e[k] = 0;
			for (i = k+1; i < n; i++) {
				e[k] = hypot(e[k],e[i]);
			}
			if (e[k] != 0.0) {
				if (e[k+1] < 0.0) {
					e[k] = -e[k];
				}
				for (i = k+1; i < n; i++) {
					e[i] /= e[k];
				}
				e[k+1] += 1.0;
			}
			e[k] = -e[k];
			if ((k+1 < m) & (e[k] != 0.0)) {

			// Apply the transformation.

				for (i = k+1; i < m; i++) {
					work[i] = 0.0;
				}
				for (j = k+1; j < n; j++) {
					for (i = k+1; i < m; i++) {
						work[i] += e[j]*A[i][j];
					}
				}
				for (j = k+1; j < n; j++) {
					typename MaTRiX::value_type t = -e[j]/e[k+1];
					for (i = k+1; i < m; i++) {
						A[i][j] += t*work[i];
					}
				}
			}

			// Place the transformation in V for subsequent
			// back multiplication.

			for (i = k+1; i < n; i++)
				V[i][k] = e[i];
		}
	}

	// Set up the final bidiagonal matrix or order p.

	int p = min(n,m+1);
	if (nct < n) {
		s[nct] = A[nct][nct];
	}
	if (m < p) {
		s[p-1] = 0.0;
	}
	if (nrt+1 < p) {
		e[nrt] = A[nrt][p-1];
	}
	e[p-1] = 0.0;

	// If required, generate U.

	for (j = nct; j < nu; j++) {
		for (i = 0; i < m; i++) {
			U[i][j] = 0.0;
		}
		U[j][j] = 1.0;
	}
	for (k = nct-1; k >= 0; k--) {
		if (s[k] != 0.0) {
			for (j = k+1; j < nu; j++) {
				typename MaTRiX::value_type t = 0;
				for (i = k; i < m; i++) {
					t += U[i][k]*U[i][j];
				}
				t = -t/U[k][k];
				for (i = k; i < m; i++) {
					U[i][j] += t*U[i][k];
				}
			}
			for (i = k; i < m; i++ ) {
				U[i][k] = -U[i][k];
			}
			U[k][k] = 1.0 + U[k][k];
			for (i = 0; i < k-1; i++) {
				U[i][k] = 0.0;
			}
		} else {
			for (i = 0; i < m; i++) {
				U[i][k] = 0.0;
			}
			U[k][k] = 1.0;
		}
	}

	// If required, generate V.

	for (k = n-1; k >= 0; k--) {
		if ((k < nrt) & (e[k] != 0.0)) {
			for (j = k+1; j < nu; j++) {
				typename MaTRiX::value_type t = 0;
				for (i = k+1; i < n; i++) {
					t += V[i][k]*V[i][j];
				}
				t = -t/V[k+1][k];
				for (i = k+1; i < n; i++) {
					V[i][j] += t*V[i][k];
				}
			}
		}
		for (i = 0; i < n; i++) {
			V[i][k] = 0.0;
		}
		V[k][k] = 1.0;
	}

	// Main iteration loop for the singular values.

	int pp = p-1;
	int iter = 0;
	typename MaTRiX::value_type eps = pow(2.0,-52.0);
	while (p > 0) {
		int kase=0;
		k=0;

		// Test for maximum iterations to avoid infinite loop
		if(maxiter == 0)
			break;
		maxiter--;

		// This section of the program inspects for
		// negligible elements in the s and e arrays.  On
		// completion the variables kase and k are set as follows.

		// kase = 1	  if s(p) and e[k-1] are negligible and k<p
		// kase = 2	  if s(k) is negligible and k<p
		// kase = 3	  if e[k-1] is negligible, k<p, and
		//				  s(k), ..., s(p) are not negligible (qr step).
		// kase = 4	  if e(p-1) is negligible (convergence).

		for (k = p-2; k >= -1; k--) {
			if (k == -1) {
				break;
			}
			if (TNT::abs(e[k]) <= eps*(TNT::abs(s[k]) + TNT::abs(s[k+1]))) {
				e[k] = 0.0;
				break;
			}
		}
		if (k == p-2) {
			kase = 4;
		} else {
			int ks;
			for (ks = p-1; ks >= k; ks--) {
				if (ks == k) {
					break;
				}
				typename MaTRiX::value_type t = (ks != p ? TNT::abs(e[ks]) : 0.) + 
							  (ks != k+1 ? TNT::abs(e[ks-1]) : 0.);
				if (TNT::abs(s[ks]) <= eps*t)  {
					s[ks] = 0.0;
					break;
				}
			}
			if (ks == k) {
				kase = 3;
			} else if (ks == p-1) {
				kase = 1;
			} else {
				kase = 2;
				k = ks;
			}
		}
		k++;

		// Perform the task indicated by kase.

		switch (kase) {

			// Deflate negligible s(p).

			case 1: {
				typename MaTRiX::value_type f = e[p-2];
				e[p-2] = 0.0;
				for (j = p-2; j >= k; j--) {
					typename MaTRiX::value_type t = hypot(s[j],f);
					typename MaTRiX::value_type cs = s[j]/t;
					typename MaTRiX::value_type sn = f/t;
					s[j] = t;
					if (j != k) {
						f = -sn*e[j-1];
						e[j-1] = cs*e[j-1];
					}

					for (i = 0; i < n; i++) {
						t = cs*V[i][j] + sn*V[i][p-1];
						V[i][p-1] = -sn*V[i][j] + cs*V[i][p-1];
						V[i][j] = t;
					}
				}
			}
			break;

			// Split at negligible s(k).

			case 2: {
				typename MaTRiX::value_type f = e[k-1];
				e[k-1] = 0.0;
				for (j = k; j < p; j++) {
					typename MaTRiX::value_type t = hypot(s[j],f);
					typename MaTRiX::value_type cs = s[j]/t;
					typename MaTRiX::value_type sn = f/t;
					s[j] = t;
					f = -sn*e[j];
					e[j] = cs*e[j];

					for (i = 0; i < m; i++) {
						t = cs*U[i][j] + sn*U[i][k-1];
						U[i][k-1] = -sn*U[i][j] + cs*U[i][k-1];
						U[i][j] = t;
					}
				}
			}
			break;

			// Perform one qr step.

			case 3: {

				// Calculate the shift.

				typename MaTRiX::value_type scale = max(max(max(max(
						  TNT::abs(s[p-1]),TNT::abs(s[p-2])),TNT::abs(e[p-2])), 
						  TNT::abs(s[k])),TNT::abs(e[k]));
				typename MaTRiX::value_type sp = s[p-1]/scale;
				typename MaTRiX::value_type spm1 = s[p-2]/scale;
				typename MaTRiX::value_type epm1 = e[p-2]/scale;
				typename MaTRiX::value_type sk = s[k]/scale;
				typename MaTRiX::value_type ek = e[k]/scale;
				typename MaTRiX::value_type b = ((spm1 + sp)*(spm1 - sp) + epm1*epm1)/2.0;
				typename MaTRiX::value_type c = (sp*epm1)*(sp*epm1);
				typename MaTRiX::value_type shift = 0.0;
				if ((b != 0.0) || (c != 0.0)) {
					shift = sqrt(b*b + c);
					if (b < 0.0) {
						shift = -shift;
					}
					shift = c/(b + shift);
				}
				typename MaTRiX::value_type f = (sk + sp)*(sk - sp) + shift;
				typename MaTRiX::value_type g = sk*ek;

				// Chase zeros.

				for (j = k; j < p-1; j++) {
					typename MaTRiX::value_type t = hypot(f,g);
					/* division by zero checks added to avoid NaN (brecht) */
					typename MaTRiX::value_type cs = (t == 0.0f)? 0.0f: f/t;
					typename MaTRiX::value_type sn = (t == 0.0f)? 0.0f: g/t;
					if (j != k) {
						e[j-1] = t;
					}
					f = cs*s[j] + sn*e[j];
					e[j] = cs*e[j] - sn*s[j];
					g = sn*s[j+1];
					s[j+1] = cs*s[j+1];

					for (i = 0; i < n; i++) {
						t = cs*V[i][j] + sn*V[i][j+1];
						V[i][j+1] = -sn*V[i][j] + cs*V[i][j+1];
						V[i][j] = t;
					}

					t = hypot(f,g);
					/* division by zero checks added to avoid NaN (brecht) */
					cs = (t == 0.0f)? 0.0f: f/t;
					sn = (t == 0.0f)? 0.0f: g/t;
					s[j] = t;
					f = cs*e[j] + sn*s[j+1];
					s[j+1] = -sn*e[j] + cs*s[j+1];
					g = sn*e[j+1];
					e[j+1] = cs*e[j+1];
					if (j < m-1) {
						for (i = 0; i < m; i++) {
							t = cs*U[i][j] + sn*U[i][j+1];
							U[i][j+1] = -sn*U[i][j] + cs*U[i][j+1];
							U[i][j] = t;
						}
					}
				}
				e[p-2] = f;
				iter = iter + 1;
			}
			break;

			// Convergence.

			case 4: {

				// Make the singular values positive.

				if (s[k] <= 0.0) {
					s[k] = (s[k] < 0.0 ? -s[k] : 0.0);

					for (i = 0; i <= pp; i++)
						V[i][k] = -V[i][k];
				}

				// Order the singular values.

				while (k < pp) {
					if (s[k] >= s[k+1]) {
						break;
					}
					typename MaTRiX::value_type t = s[k];
					s[k] = s[k+1];
					s[k+1] = t;
					if (k < n-1) {
						for (i = 0; i < n; i++) {
							t = V[i][k+1]; V[i][k+1] = V[i][k]; V[i][k] = t;
						}
					}
					if (k < m-1) {
						for (i = 0; i < m; i++) {
							t = U[i][k+1]; U[i][k+1] = U[i][k]; U[i][k] = t;
						}
					}
					k++;
				}
				iter = 0;
				p--;
			}
			break;
		}
	}
}

}

#endif