Welcome to mirror list, hosted at ThFree Co, Russian Federation.

fundamental.cc « multiview « libmv « libmv « intern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: c8c94ecd7bb2491448b922b493dbe0efb86435ab (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
// Copyright (c) 2007, 2008 libmv authors.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.

#include "libmv/multiview/fundamental.h"

#include "ceres/ceres.h"
#include "libmv/logging/logging.h"
#include "libmv/multiview/conditioning.h"
#include "libmv/multiview/projection.h"
#include "libmv/multiview/triangulation.h"
#include "libmv/numeric/numeric.h"
#include "libmv/numeric/poly.h"

namespace libmv {

static void EliminateRow(const Mat34& P, int row, Mat* X) {
  X->resize(2, 4);

  int first_row = (row + 1) % 3;
  int second_row = (row + 2) % 3;

  for (int i = 0; i < 4; ++i) {
    (*X)(0, i) = P(first_row, i);
    (*X)(1, i) = P(second_row, i);
  }
}

void ProjectionsFromFundamental(const Mat3& F, Mat34* P1, Mat34* P2) {
  *P1 << Mat3::Identity(), Vec3::Zero();
  Vec3 e2;
  Mat3 Ft = F.transpose();
  Nullspace(&Ft, &e2);
  *P2 << CrossProductMatrix(e2) * F, e2;
}

// Addapted from vgg_F_from_P.
void FundamentalFromProjections(const Mat34& P1, const Mat34& P2, Mat3* F) {
  Mat X[3];
  Mat Y[3];
  Mat XY;

  for (int i = 0; i < 3; ++i) {
    EliminateRow(P1, i, X + i);
    EliminateRow(P2, i, Y + i);
  }

  for (int i = 0; i < 3; ++i) {
    for (int j = 0; j < 3; ++j) {
      VerticalStack(X[j], Y[i], &XY);
      (*F)(i, j) = XY.determinant();
    }
  }
}

// HZ 11.1 pag.279 (x1 = x, x2 = x')
// http://www.cs.unc.edu/~marc/tutorial/node54.html
static double EightPointSolver(const Mat& x1, const Mat& x2, Mat3* F) {
  DCHECK_EQ(x1.rows(), 2);
  DCHECK_GE(x1.cols(), 8);
  DCHECK_EQ(x1.rows(), x2.rows());
  DCHECK_EQ(x1.cols(), x2.cols());

  int n = x1.cols();
  Mat A(n, 9);
  for (int i = 0; i < n; ++i) {
    A(i, 0) = x2(0, i) * x1(0, i);
    A(i, 1) = x2(0, i) * x1(1, i);
    A(i, 2) = x2(0, i);
    A(i, 3) = x2(1, i) * x1(0, i);
    A(i, 4) = x2(1, i) * x1(1, i);
    A(i, 5) = x2(1, i);
    A(i, 6) = x1(0, i);
    A(i, 7) = x1(1, i);
    A(i, 8) = 1;
  }

  Vec9 f;
  double smaller_singular_value = Nullspace(&A, &f);
  *F = Map<RMat3>(f.data());
  return smaller_singular_value;
}

// HZ 11.1.1 pag.280
void EnforceFundamentalRank2Constraint(Mat3* F) {
  Eigen::JacobiSVD<Mat3> USV(*F, Eigen::ComputeFullU | Eigen::ComputeFullV);
  Vec3 d = USV.singularValues();
  d(2) = 0.0;
  *F = USV.matrixU() * d.asDiagonal() * USV.matrixV().transpose();
}

// HZ 11.2 pag.281 (x1 = x, x2 = x')
double NormalizedEightPointSolver(const Mat& x1, const Mat& x2, Mat3* F) {
  DCHECK_EQ(x1.rows(), 2);
  DCHECK_GE(x1.cols(), 8);
  DCHECK_EQ(x1.rows(), x2.rows());
  DCHECK_EQ(x1.cols(), x2.cols());

  // Normalize the data.
  Mat3 T1, T2;
  PreconditionerFromPoints(x1, &T1);
  PreconditionerFromPoints(x2, &T2);
  Mat x1_normalized, x2_normalized;
  ApplyTransformationToPoints(x1, T1, &x1_normalized);
  ApplyTransformationToPoints(x2, T2, &x2_normalized);

  // Estimate the fundamental matrix.
  double smaller_singular_value =
      EightPointSolver(x1_normalized, x2_normalized, F);
  EnforceFundamentalRank2Constraint(F);

  // Denormalize the fundamental matrix.
  *F = T2.transpose() * (*F) * T1;

  return smaller_singular_value;
}

// Seven-point algorithm.
// http://www.cs.unc.edu/~marc/tutorial/node55.html
double FundamentalFrom7CorrespondencesLinear(const Mat& x1,
                                             const Mat& x2,
                                             std::vector<Mat3>* F) {
  DCHECK_EQ(x1.rows(), 2);
  DCHECK_EQ(x1.cols(), 7);
  DCHECK_EQ(x1.rows(), x2.rows());
  DCHECK_EQ(x2.cols(), x2.cols());

  // Build a 9 x n matrix from point matches, where each row is equivalent to
  // the equation x'T*F*x = 0 for a single correspondence pair (x', x). The
  // domain of the matrix is a 9 element vector corresponding to F. The
  // nullspace should be rank two; the two dimensions correspond to the set of
  // F matrices satisfying the epipolar geometry.
  Matrix<double, 7, 9> A;
  for (int ii = 0; ii < 7; ++ii) {
    A(ii, 0) = x1(0, ii) * x2(0, ii);  // 0 represents x coords,
    A(ii, 1) = x1(1, ii) * x2(0, ii);  // 1 represents y coords.
    A(ii, 2) = x2(0, ii);
    A(ii, 3) = x1(0, ii) * x2(1, ii);
    A(ii, 4) = x1(1, ii) * x2(1, ii);
    A(ii, 5) = x2(1, ii);
    A(ii, 6) = x1(0, ii);
    A(ii, 7) = x1(1, ii);
    A(ii, 8) = 1.0;
  }

  // Find the two F matrices in the nullspace of A.
  Vec9 f1, f2;
  double s = Nullspace2(&A, &f1, &f2);
  Mat3 F1 = Map<RMat3>(f1.data());
  Mat3 F2 = Map<RMat3>(f2.data());

  // Then, use the condition det(F) = 0 to determine F. In other words, solve
  // det(F1 + a*F2) = 0 for a.
  double a = F1(0, 0), j = F2(0, 0);
  double b = F1(0, 1), k = F2(0, 1);
  double c = F1(0, 2), l = F2(0, 2);
  double d = F1(1, 0), m = F2(1, 0);
  double e = F1(1, 1), n = F2(1, 1);
  double f = F1(1, 2), o = F2(1, 2);
  double g = F1(2, 0), p = F2(2, 0);
  double h = F1(2, 1), q = F2(2, 1);
  double i = F1(2, 2), r = F2(2, 2);

  // Run fundamental_7point_coeffs.py to get the below coefficients.
  // The coefficients are in ascending powers of alpha, i.e. P[N]*x^N.
  double P[4] = {
      a * e * i + b * f * g + c * d * h - a * f * h - b * d * i - c * e * g,
      a * e * r + a * i * n + b * f * p + b * g * o + c * d * q + c * h * m +
          d * h * l + e * i * j + f * g * k - a * f * q - a * h * o -
          b * d * r - b * i * m - c * e * p - c * g * n - d * i * k -
          e * g * l - f * h * j,
      a * n * r + b * o * p + c * m * q + d * l * q + e * j * r + f * k * p +
          g * k * o + h * l * m + i * j * n - a * o * q - b * m * r -
          c * n * p - d * k * r - e * l * p - f * j * q - g * l * n -
          h * j * o - i * k * m,
      j * n * r + k * o * p + l * m * q - j * o * q - k * m * r - l * n * p,
  };

  // Solve for the roots of P[3]*x^3 + P[2]*x^2 + P[1]*x + P[0] = 0.
  double roots[3];
  int num_roots = SolveCubicPolynomial(P, roots);

  // Build the fundamental matrix for each solution.
  for (int kk = 0; kk < num_roots; ++kk) {
    F->push_back(F1 + roots[kk] * F2);
  }
  return s;
}

double FundamentalFromCorrespondences7Point(const Mat& x1,
                                            const Mat& x2,
                                            std::vector<Mat3>* F) {
  DCHECK_EQ(x1.rows(), 2);
  DCHECK_GE(x1.cols(), 7);
  DCHECK_EQ(x1.rows(), x2.rows());
  DCHECK_EQ(x1.cols(), x2.cols());

  // Normalize the data.
  Mat3 T1, T2;
  PreconditionerFromPoints(x1, &T1);
  PreconditionerFromPoints(x2, &T2);
  Mat x1_normalized, x2_normalized;
  ApplyTransformationToPoints(x1, T1, &x1_normalized);
  ApplyTransformationToPoints(x2, T2, &x2_normalized);

  // Estimate the fundamental matrix.
  double smaller_singular_value = FundamentalFrom7CorrespondencesLinear(
      x1_normalized, x2_normalized, &(*F));

  for (int k = 0; k < F->size(); ++k) {
    Mat3& Fmat = (*F)[k];
    // Denormalize the fundamental matrix.
    Fmat = T2.transpose() * Fmat * T1;
  }
  return smaller_singular_value;
}

void NormalizeFundamental(const Mat3& F, Mat3* F_normalized) {
  *F_normalized = F / FrobeniusNorm(F);
  if ((*F_normalized)(2, 2) < 0) {
    *F_normalized *= -1;
  }
}

double SampsonDistance(const Mat& F, const Vec2& x1, const Vec2& x2) {
  Vec3 x(x1(0), x1(1), 1.0);
  Vec3 y(x2(0), x2(1), 1.0);

  Vec3 F_x = F * x;
  Vec3 Ft_y = F.transpose() * y;
  double y_F_x = y.dot(F_x);

  return Square(y_F_x) /
         (F_x.head<2>().squaredNorm() + Ft_y.head<2>().squaredNorm());
}

double SymmetricEpipolarDistance(const Mat& F, const Vec2& x1, const Vec2& x2) {
  Vec3 x(x1(0), x1(1), 1.0);
  Vec3 y(x2(0), x2(1), 1.0);

  Vec3 F_x = F * x;
  Vec3 Ft_y = F.transpose() * y;
  double y_F_x = y.dot(F_x);

  return Square(y_F_x) *
         (1 / F_x.head<2>().squaredNorm() + 1 / Ft_y.head<2>().squaredNorm());
}

// HZ 9.6 pag 257 (formula 9.12)
void EssentialFromFundamental(const Mat3& F,
                              const Mat3& K1,
                              const Mat3& K2,
                              Mat3* E) {
  *E = K2.transpose() * F * K1;
}

// HZ 9.6 pag 257 (formula 9.12)
// Or http://ai.stanford.edu/~birch/projective/node20.html
void FundamentalFromEssential(const Mat3& E,
                              const Mat3& K1,
                              const Mat3& K2,
                              Mat3* F) {
  *F = K2.inverse().transpose() * E * K1.inverse();
}

void RelativeCameraMotion(const Mat3& R1,
                          const Vec3& t1,
                          const Mat3& R2,
                          const Vec3& t2,
                          Mat3* R,
                          Vec3* t) {
  *R = R2 * R1.transpose();
  *t = t2 - (*R) * t1;
}

// HZ 9.6 pag 257
void EssentialFromRt(
    const Mat3& R1, const Vec3& t1, const Mat3& R2, const Vec3& t2, Mat3* E) {
  Mat3 R;
  Vec3 t;
  RelativeCameraMotion(R1, t1, R2, t2, &R, &t);
  Mat3 Tx = CrossProductMatrix(t);
  *E = Tx * R;
}

// HZ 9.6 pag 259 (Result 9.19)
void MotionFromEssential(const Mat3& E,
                         std::vector<Mat3>* Rs,
                         std::vector<Vec3>* ts) {
  Eigen::JacobiSVD<Mat3> USV(E, Eigen::ComputeFullU | Eigen::ComputeFullV);
  Mat3 U = USV.matrixU();
  Mat3 Vt = USV.matrixV().transpose();

  // Last column of U is undetermined since d = (a a 0).
  if (U.determinant() < 0) {
    U.col(2) *= -1;
  }
  // Last row of Vt is undetermined since d = (a a 0).
  if (Vt.determinant() < 0) {
    Vt.row(2) *= -1;
  }

  Mat3 W;
  // clang-format off
  W << 0, -1,  0,
       1,  0,  0,
       0,  0,  1;
  // clang-format on

  Mat3 U_W_Vt = U * W * Vt;
  Mat3 U_Wt_Vt = U * W.transpose() * Vt;

  Rs->resize(4);
  (*Rs)[0] = U_W_Vt;
  (*Rs)[1] = U_W_Vt;
  (*Rs)[2] = U_Wt_Vt;
  (*Rs)[3] = U_Wt_Vt;

  ts->resize(4);
  (*ts)[0] = U.col(2);
  (*ts)[1] = -U.col(2);
  (*ts)[2] = U.col(2);
  (*ts)[3] = -U.col(2);
}

int MotionFromEssentialChooseSolution(const std::vector<Mat3>& Rs,
                                      const std::vector<Vec3>& ts,
                                      const Mat3& K1,
                                      const Vec2& x1,
                                      const Mat3& K2,
                                      const Vec2& x2) {
  DCHECK_EQ(4, Rs.size());
  DCHECK_EQ(4, ts.size());

  Mat34 P1, P2;
  Mat3 R1;
  Vec3 t1;
  R1.setIdentity();
  t1.setZero();
  P_From_KRt(K1, R1, t1, &P1);
  for (int i = 0; i < 4; ++i) {
    const Mat3& R2 = Rs[i];
    const Vec3& t2 = ts[i];
    P_From_KRt(K2, R2, t2, &P2);
    Vec3 X;
    TriangulateDLT(P1, x1, P2, x2, &X);
    double d1 = Depth(R1, t1, X);
    double d2 = Depth(R2, t2, X);
    // Test if point is front to the two cameras.
    if (d1 > 0 && d2 > 0) {
      return i;
    }
  }
  return -1;
}

bool MotionFromEssentialAndCorrespondence(const Mat3& E,
                                          const Mat3& K1,
                                          const Vec2& x1,
                                          const Mat3& K2,
                                          const Vec2& x2,
                                          Mat3* R,
                                          Vec3* t) {
  std::vector<Mat3> Rs;
  std::vector<Vec3> ts;
  MotionFromEssential(E, &Rs, &ts);
  int solution = MotionFromEssentialChooseSolution(Rs, ts, K1, x1, K2, x2);
  if (solution >= 0) {
    *R = Rs[solution];
    *t = ts[solution];
    return true;
  } else {
    return false;
  }
}

void FundamentalToEssential(const Mat3& F, Mat3* E) {
  Eigen::JacobiSVD<Mat3> svd(F, Eigen::ComputeFullU | Eigen::ComputeFullV);

  // See Hartley & Zisserman page 294, result 11.1, which shows how to get the
  // closest essential matrix to a matrix that is "almost" an essential matrix.
  double a = svd.singularValues()(0);
  double b = svd.singularValues()(1);
  double s = (a + b) / 2.0;

  LG << "Initial reconstruction's rotation is non-euclidean by "
     << (((a - b) / std::max(a, b)) * 100)
     << "%; singular values:" << svd.singularValues().transpose();

  Vec3 diag;
  diag << s, s, 0;

  *E = svd.matrixU() * diag.asDiagonal() * svd.matrixV().transpose();
}

// Default settings for fundamental estimation which should be suitable
// for a wide range of use cases.
EstimateFundamentalOptions::EstimateFundamentalOptions(void)
    : max_num_iterations(50), expected_average_symmetric_distance(1e-16) {
}

namespace {
// Cost functor which computes symmetric epipolar distance
// used for fundamental matrix refinement.
class FundamentalSymmetricEpipolarCostFunctor {
 public:
  FundamentalSymmetricEpipolarCostFunctor(const Vec2& x, const Vec2& y)
      : x_(x), y_(y) {}

  template <typename T>
  bool operator()(const T* fundamental_parameters, T* residuals) const {
    typedef Eigen::Matrix<T, 3, 3> Mat3;
    typedef Eigen::Matrix<T, 3, 1> Vec3;

    Mat3 F(fundamental_parameters);

    Vec3 x(T(x_(0)), T(x_(1)), T(1.0));
    Vec3 y(T(y_(0)), T(y_(1)), T(1.0));

    Vec3 F_x = F * x;
    Vec3 Ft_y = F.transpose() * y;
    T y_F_x = y.dot(F_x);

    residuals[0] = y_F_x * T(1) / F_x.head(2).norm();
    residuals[1] = y_F_x * T(1) / Ft_y.head(2).norm();

    return true;
  }

  const Mat x_;
  const Mat y_;
};

// Termination checking callback used for fundamental estimation.
// It finished the minimization as soon as actual average of
// symmetric epipolar distance is less or equal to the expected
// average value.
class TerminationCheckingCallback : public ceres::IterationCallback {
 public:
  TerminationCheckingCallback(const Mat& x1,
                              const Mat& x2,
                              const EstimateFundamentalOptions& options,
                              Mat3* F)
      : options_(options), x1_(x1), x2_(x2), F_(F) {}

  virtual ceres::CallbackReturnType operator()(
      const ceres::IterationSummary& summary) {
    // If the step wasn't successful, there's nothing to do.
    if (!summary.step_is_successful) {
      return ceres::SOLVER_CONTINUE;
    }

    // Calculate average of symmetric epipolar distance.
    double average_distance = 0.0;
    for (int i = 0; i < x1_.cols(); i++) {
      average_distance = SymmetricEpipolarDistance(*F_, x1_.col(i), x2_.col(i));
    }
    average_distance /= x1_.cols();

    if (average_distance <= options_.expected_average_symmetric_distance) {
      return ceres::SOLVER_TERMINATE_SUCCESSFULLY;
    }

    return ceres::SOLVER_CONTINUE;
  }

 private:
  const EstimateFundamentalOptions& options_;
  const Mat& x1_;
  const Mat& x2_;
  Mat3* F_;
};
}  // namespace

/* Fundamental transformation estimation. */
bool EstimateFundamentalFromCorrespondences(
    const Mat& x1,
    const Mat& x2,
    const EstimateFundamentalOptions& options,
    Mat3* F) {
  // Step 1: Algebraic fundamental estimation.

  // Assume algebraic estiation always succeeds,
  NormalizedEightPointSolver(x1, x2, F);

  LG << "Estimated matrix after algebraic estimation:\n" << *F;

  // Step 2: Refine matrix using Ceres minimizer.
  ceres::Problem problem;
  for (int i = 0; i < x1.cols(); i++) {
    FundamentalSymmetricEpipolarCostFunctor*
        fundamental_symmetric_epipolar_cost_function =
            new FundamentalSymmetricEpipolarCostFunctor(x1.col(i), x2.col(i));

    problem.AddResidualBlock(
        new ceres::AutoDiffCostFunction<FundamentalSymmetricEpipolarCostFunctor,
                                        2,  // num_residuals
                                        9>(
            fundamental_symmetric_epipolar_cost_function),
        NULL,
        F->data());
  }

  // Configure the solve.
  ceres::Solver::Options solver_options;
  solver_options.linear_solver_type = ceres::DENSE_QR;
  solver_options.max_num_iterations = options.max_num_iterations;
  solver_options.update_state_every_iteration = true;

  // Terminate if the average symmetric distance is good enough.
  TerminationCheckingCallback callback(x1, x2, options, F);
  solver_options.callbacks.push_back(&callback);

  // Run the solve.
  ceres::Solver::Summary summary;
  ceres::Solve(solver_options, &problem, &summary);

  VLOG(1) << "Summary:\n" << summary.FullReport();

  LG << "Final refined matrix:\n" << *F;

  return summary.IsSolutionUsable();
}

}  // namespace libmv