Welcome to mirror list, hosted at ThFree Co, Russian Federation.

numeric.h « numeric « libmv « libmv « intern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 1a23d653676de66f518dfe945c116ae2b5f60de8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
// Copyright (c) 2007, 2008_WIN32 libmv authors.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
//
// Matrix and vector classes, based on Eigen2.
//
// Avoid using Eigen2 classes directly; instead typedef them here.

#ifndef LIBMV_NUMERIC_NUMERIC_H
#define LIBMV_NUMERIC_NUMERIC_H

#include <Eigen/Cholesky>
#include <Eigen/Core>
#include <Eigen/Eigenvalues>
#include <Eigen/Geometry>
#include <Eigen/LU>
#include <Eigen/QR>
#include <Eigen/SVD>

#if !defined(__MINGW64__)
#  if defined(_WIN32) || defined(__APPLE__) || \
      defined(__FreeBSD__) || defined(__NetBSD__)
inline void sincos(double x, double *sinx, double *cosx) {
  *sinx = sin(x);
  *cosx = cos(x);
}
#  endif
#endif  // !__MINGW64__

#if (defined(WIN32) || defined(WIN64)) && !defined(__MINGW32__)
inline long lround(double d) {
  return (long)(d>0 ? d+0.5 : ceil(d-0.5));
}
#  if _MSC_VER < 1800
inline int round(double d) {
  return (d>0) ? int(d+0.5) : int(d-0.5);
}
#  endif  // _MSC_VER < 1800
typedef unsigned int uint;
#endif  // _WIN32

namespace libmv {

typedef Eigen::MatrixXd Mat;
typedef Eigen::VectorXd Vec;

typedef Eigen::MatrixXf Matf;
typedef Eigen::VectorXf Vecf;

typedef Eigen::Matrix<unsigned int, Eigen::Dynamic, Eigen::Dynamic> Matu;
typedef Eigen::Matrix<unsigned int, Eigen::Dynamic, 1> Vecu;
typedef Eigen::Matrix<unsigned int, 2, 1> Vec2u;

typedef Eigen::Matrix<double, 2, 2> Mat2;
typedef Eigen::Matrix<double, 2, 3> Mat23;
typedef Eigen::Matrix<double, 3, 3> Mat3;
typedef Eigen::Matrix<double, 3, 4> Mat34;
typedef Eigen::Matrix<double, 3, 5> Mat35;
typedef Eigen::Matrix<double, 4, 1> Mat41;
typedef Eigen::Matrix<double, 4, 3> Mat43;
typedef Eigen::Matrix<double, 4, 4> Mat4;
typedef Eigen::Matrix<double, 4, 6> Mat46;
typedef Eigen::Matrix<float, 2, 2> Mat2f;
typedef Eigen::Matrix<float, 2, 3> Mat23f;
typedef Eigen::Matrix<float, 3, 3> Mat3f;
typedef Eigen::Matrix<float, 3, 4> Mat34f;
typedef Eigen::Matrix<float, 3, 5> Mat35f;
typedef Eigen::Matrix<float, 4, 3> Mat43f;
typedef Eigen::Matrix<float, 4, 4> Mat4f;
typedef Eigen::Matrix<float, 4, 6> Mat46f;

typedef Eigen::Matrix<double, 3, 3, Eigen::RowMajor> RMat3;
typedef Eigen::Matrix<double, 4, 4, Eigen::RowMajor> RMat4;

typedef Eigen::Matrix<double, 2, Eigen::Dynamic> Mat2X;
typedef Eigen::Matrix<double, 3, Eigen::Dynamic> Mat3X;
typedef Eigen::Matrix<double, 4, Eigen::Dynamic> Mat4X;
typedef Eigen::Matrix<double, Eigen::Dynamic,  2> MatX2;
typedef Eigen::Matrix<double, Eigen::Dynamic,  3> MatX3;
typedef Eigen::Matrix<double, Eigen::Dynamic,  4> MatX4;
typedef Eigen::Matrix<double, Eigen::Dynamic,  5> MatX5;
typedef Eigen::Matrix<double, Eigen::Dynamic,  6> MatX6;
typedef Eigen::Matrix<double, Eigen::Dynamic,  7> MatX7;
typedef Eigen::Matrix<double, Eigen::Dynamic,  8> MatX8;
typedef Eigen::Matrix<double, Eigen::Dynamic,  9> MatX9;
typedef Eigen::Matrix<double, Eigen::Dynamic, 15> MatX15;
typedef Eigen::Matrix<double, Eigen::Dynamic, 16> MatX16;

typedef Eigen::Vector2d Vec2;
typedef Eigen::Vector3d Vec3;
typedef Eigen::Vector4d Vec4;
typedef Eigen::Matrix<double, 5, 1>  Vec5;
typedef Eigen::Matrix<double, 6, 1>  Vec6;
typedef Eigen::Matrix<double, 7, 1>  Vec7;
typedef Eigen::Matrix<double, 8, 1>  Vec8;
typedef Eigen::Matrix<double, 9, 1>  Vec9;
typedef Eigen::Matrix<double, 10, 1> Vec10;
typedef Eigen::Matrix<double, 11, 1> Vec11;
typedef Eigen::Matrix<double, 12, 1> Vec12;
typedef Eigen::Matrix<double, 13, 1> Vec13;
typedef Eigen::Matrix<double, 14, 1> Vec14;
typedef Eigen::Matrix<double, 15, 1> Vec15;
typedef Eigen::Matrix<double, 16, 1> Vec16;
typedef Eigen::Matrix<double, 17, 1> Vec17;
typedef Eigen::Matrix<double, 18, 1> Vec18;
typedef Eigen::Matrix<double, 19, 1> Vec19;
typedef Eigen::Matrix<double, 20, 1> Vec20;

typedef Eigen::Vector2f Vec2f;
typedef Eigen::Vector3f Vec3f;
typedef Eigen::Vector4f Vec4f;

typedef Eigen::VectorXi VecXi;

typedef Eigen::Vector2i Vec2i;
typedef Eigen::Vector3i Vec3i;
typedef Eigen::Vector4i Vec4i;

typedef Eigen::Matrix<float,
                      Eigen::Dynamic,
                      Eigen::Dynamic,
                      Eigen::RowMajor> RMatf;

typedef Eigen::NumTraits<double> EigenDouble;

using Eigen::Map;
using Eigen::Dynamic;
using Eigen::Matrix;

// Find U, s, and VT such that
//
//   A = U * diag(s) * VT
//
template <typename TMat, typename TVec>
inline void SVD(TMat * /*A*/, Vec * /*s*/, Mat * /*U*/, Mat * /*VT*/) {
  assert(0);
}

// Solve the linear system Ax = 0 via SVD. Store the solution in x, such that
// ||x|| = 1.0. Return the singluar value corresponding to the solution.
// Destroys A and resizes x if necessary.
// TODO(maclean): Take the SVD of the transpose instead of this zero padding.
template <typename TMat, typename TVec>
double Nullspace(TMat *A, TVec *nullspace) {
  Eigen::JacobiSVD<TMat> svd(*A, Eigen::ComputeFullV);
  (*nullspace) = svd.matrixV().col(A->cols()-1);
  if (A->rows() >= A->cols())
    return svd.singularValues()(A->cols()-1);
  else
    return 0.0;
}

// Solve the linear system Ax = 0 via SVD. Finds two solutions, x1 and x2, such
// that x1 is the best solution and x2 is the next best solution (in the L2
// norm sense). Store the solution in x1 and x2, such that ||x|| = 1.0. Return
// the singluar value corresponding to the solution x1.  Destroys A and resizes
// x if necessary.
template <typename TMat, typename TVec1, typename TVec2>
double Nullspace2(TMat *A, TVec1 *x1, TVec2 *x2) {
  Eigen::JacobiSVD<TMat> svd(*A, Eigen::ComputeFullV);
  *x1 = svd.matrixV().col(A->cols() - 1);
  *x2 = svd.matrixV().col(A->cols() - 2);
  if (A->rows() >= A->cols())
    return svd.singularValues()(A->cols()-1);
  else
    return 0.0;
}

// In place transpose for square matrices.
template<class TA>
inline void TransposeInPlace(TA *A) {
  *A = A->transpose().eval();
}

template<typename TVec>
inline double NormL1(const TVec &x) {
  return x.array().abs().sum();
}

template<typename TVec>
inline double NormL2(const TVec &x) {
  return x.norm();
}

template<typename TVec>
inline double NormLInfinity(const TVec &x) {
  return x.array().abs().maxCoeff();
}

template<typename TVec>
inline double DistanceL1(const TVec &x, const TVec &y) {
  return (x - y).array().abs().sum();
}

template<typename TVec>
inline double DistanceL2(const TVec &x, const TVec &y) {
  return (x - y).norm();
}
template<typename TVec>
inline double DistanceLInfinity(const TVec &x, const TVec &y) {
  return (x - y).array().abs().maxCoeff();
}

// Normalize a vector with the L1 norm, and return the norm before it was
// normalized.
template<typename TVec>
inline double NormalizeL1(TVec *x) {
  double norm = NormL1(*x);
  *x /= norm;
  return norm;
}

// Normalize a vector with the L2 norm, and return the norm before it was
// normalized.
template<typename TVec>
inline double NormalizeL2(TVec *x) {
  double norm = NormL2(*x);
  *x /= norm;
  return norm;
}

// Normalize a vector with the L^Infinity norm, and return the norm before it
// was normalized.
template<typename TVec>
inline double NormalizeLInfinity(TVec *x) {
  double norm = NormLInfinity(*x);
  *x /= norm;
  return norm;
}

// Return the square of a number.
template<typename T>
inline T Square(T x) {
  return x * x;
}

Mat3 RotationAroundX(double angle);
Mat3 RotationAroundY(double angle);
Mat3 RotationAroundZ(double angle);

// Returns the rotation matrix of a rotation of angle |axis| around axis.
// This is computed using the Rodrigues formula, see:
//  http://mathworld.wolfram.com/RodriguesRotationFormula.html
Mat3 RotationRodrigues(const Vec3 &axis);

// Make a rotation matrix such that center becomes the direction of the
// positive z-axis, and y is oriented close to up.
Mat3 LookAt(Vec3 center);

// Return a diagonal matrix from a vector containg the diagonal values.
template <typename TVec>
inline Mat Diag(const TVec &x) {
  return x.asDiagonal();
}

template<typename TMat>
inline double FrobeniusNorm(const TMat &A) {
  return sqrt(A.array().abs2().sum());
}

template<typename TMat>
inline double FrobeniusDistance(const TMat &A, const TMat &B) {
  return FrobeniusNorm(A - B);
}

inline Vec3 CrossProduct(const Vec3 &x, const Vec3 &y) {
  return x.cross(y);
}

Mat3 CrossProductMatrix(const Vec3 &x);

void MeanAndVarianceAlongRows(const Mat &A,
                              Vec *mean_pointer,
                              Vec *variance_pointer);

#if defined(_WIN32)
  // TODO(bomboze): un-#if this for both platforms once tested under Windows
  /* This solution was extensively discussed here
     http://forum.kde.org/viewtopic.php?f=74&t=61940 */
  #define SUM_OR_DYNAMIC(x, y) (x == Eigen::Dynamic || y == Eigen::Dynamic) ? Eigen::Dynamic : (x+y)

  template<typename Derived1, typename Derived2>
  struct hstack_return {
    typedef typename Derived1::Scalar Scalar;
    enum {
         RowsAtCompileTime = Derived1::RowsAtCompileTime,
         ColsAtCompileTime = SUM_OR_DYNAMIC(Derived1::ColsAtCompileTime,
                                            Derived2::ColsAtCompileTime),
         Options = Derived1::Flags&Eigen::RowMajorBit ? Eigen::RowMajor : 0,
         MaxRowsAtCompileTime = Derived1::MaxRowsAtCompileTime,
         MaxColsAtCompileTime = SUM_OR_DYNAMIC(Derived1::MaxColsAtCompileTime,
                                               Derived2::MaxColsAtCompileTime)
    };
    typedef Eigen::Matrix<Scalar,
                RowsAtCompileTime,
                ColsAtCompileTime,
                Options,
                MaxRowsAtCompileTime,
                MaxColsAtCompileTime> type;
  };

  template<typename Derived1, typename Derived2>
  typename hstack_return<Derived1, Derived2>::type
  HStack(const Eigen::MatrixBase<Derived1>& lhs,
         const Eigen::MatrixBase<Derived2>& rhs) {
    typename hstack_return<Derived1, Derived2>::type res;
    res.resize(lhs.rows(), lhs.cols()+rhs.cols());
    res << lhs, rhs;
    return res;
  };


  template<typename Derived1, typename Derived2>
  struct vstack_return {
    typedef typename Derived1::Scalar Scalar;
    enum {
         RowsAtCompileTime = SUM_OR_DYNAMIC(Derived1::RowsAtCompileTime,
                                            Derived2::RowsAtCompileTime),
         ColsAtCompileTime = Derived1::ColsAtCompileTime,
         Options = Derived1::Flags&Eigen::RowMajorBit ? Eigen::RowMajor : 0,
         MaxRowsAtCompileTime = SUM_OR_DYNAMIC(Derived1::MaxRowsAtCompileTime,
                                               Derived2::MaxRowsAtCompileTime),
         MaxColsAtCompileTime = Derived1::MaxColsAtCompileTime
    };
    typedef Eigen::Matrix<Scalar,
                RowsAtCompileTime,
                ColsAtCompileTime,
                Options,
                MaxRowsAtCompileTime,
                MaxColsAtCompileTime> type;
  };

  template<typename Derived1, typename Derived2>
  typename vstack_return<Derived1, Derived2>::type
  VStack(const Eigen::MatrixBase<Derived1>& lhs,
         const Eigen::MatrixBase<Derived2>& rhs) {
    typename vstack_return<Derived1, Derived2>::type res;
    res.resize(lhs.rows()+rhs.rows(), lhs.cols());
    res << lhs, rhs;
    return res;
  };


#else  // _WIN32

  // Since it is not possible to typedef privately here, use a macro.
  // Always take dynamic columns if either side is dynamic.
  #define COLS \
    ((ColsLeft == Eigen::Dynamic || ColsRight == Eigen::Dynamic) \
     ? Eigen::Dynamic : (ColsLeft + ColsRight))

  // Same as above, except that prefer fixed size if either is fixed.
  #define ROWS \
    ((RowsLeft == Eigen::Dynamic && RowsRight == Eigen::Dynamic) \
     ? Eigen::Dynamic \
     : ((RowsLeft == Eigen::Dynamic) \
        ? RowsRight \
        : RowsLeft \
       ) \
    )

  // TODO(keir): Add a static assert if both rows are at compiletime.
  template<typename T, int RowsLeft, int RowsRight, int ColsLeft, int ColsRight>
  Eigen::Matrix<T, ROWS, COLS>
  HStack(const Eigen::Matrix<T, RowsLeft,  ColsLeft>  &left,
         const Eigen::Matrix<T, RowsRight, ColsRight> &right) {
    assert(left.rows() == right.rows());
    int n = left.rows();
    int m1 = left.cols();
    int m2 = right.cols();

    Eigen::Matrix<T, ROWS, COLS> stacked(n, m1 + m2);
    stacked.block(0, 0,  n, m1) = left;
    stacked.block(0, m1, n, m2) = right;
    return stacked;
  }

  // Reuse the above macros by swapping the order of Rows and Cols. Nasty, but
  // the duplication is worse.
  // TODO(keir): Add a static assert if both rows are at compiletime.
  // TODO(keir): Mail eigen list about making this work for general expressions
  // rather than only matrix types.
  template<typename T, int RowsLeft, int RowsRight, int ColsLeft, int ColsRight>
  Eigen::Matrix<T, COLS, ROWS>
  VStack(const Eigen::Matrix<T, ColsLeft,  RowsLeft>  &top,
         const Eigen::Matrix<T, ColsRight, RowsRight> &bottom) {
    assert(top.cols() == bottom.cols());
     int n1 = top.rows();
    int n2 = bottom.rows();
    int m = top.cols();

    Eigen::Matrix<T, COLS, ROWS> stacked(n1 + n2, m);
    stacked.block(0,  0, n1, m) = top;
    stacked.block(n1, 0, n2, m) = bottom;
    return stacked;
  }
  #undef COLS
  #undef ROWS
#endif  // _WIN32



void HorizontalStack(const Mat &left, const Mat &right, Mat *stacked);

template<typename TTop, typename TBot, typename TStacked>
void VerticalStack(const TTop &top, const TBot &bottom, TStacked *stacked) {
  assert(top.cols() == bottom.cols());
  int n1 = top.rows();
  int n2 = bottom.rows();
  int m = top.cols();

  stacked->resize(n1 + n2, m);
  stacked->block(0,  0, n1, m) = top;
  stacked->block(n1, 0, n2, m) = bottom;
}

void MatrixColumn(const Mat &A, int i, Vec2 *v);
void MatrixColumn(const Mat &A, int i, Vec3 *v);
void MatrixColumn(const Mat &A, int i, Vec4 *v);

template <typename TMat, typename TCols>
TMat ExtractColumns(const TMat &A, const TCols &columns) {
  TMat compressed(A.rows(), columns.size());
  for (int i = 0; i < columns.size(); ++i) {
    compressed.col(i) = A.col(columns[i]);
  }
  return compressed;
}

template <typename TMat, typename TDest>
void reshape(const TMat &a, int rows, int cols, TDest *b) {
  assert(a.rows()*a.cols() == rows*cols);
  b->resize(rows, cols);
  for (int i = 0; i < rows; i++) {
    for (int j = 0; j < cols; j++) {
      (*b)(i, j) = a[cols*i + j];
    }
  }
}

inline bool isnan(double i) {
#ifdef WIN32
  return _isnan(i) > 0;
#else
  return std::isnan(i);
#endif
}

/// Ceil function that has the same behaviour for positive
/// and negative values
template <typename FloatType>
FloatType ceil0(const FloatType& value) {
    FloatType result = std::ceil(std::fabs(value));
    return (value < 0.0) ? -result : result;
}

/// Returns the skew anti-symmetric matrix of a vector
inline Mat3 SkewMat(const Vec3 &x) {
  Mat3 skew;
  skew <<   0 , -x(2),  x(1),
          x(2),    0 , -x(0),
         -x(1),  x(0),    0;
  return skew;
}
/// Returns the skew anti-symmetric matrix of a vector with only
/// the first two (independent) lines
inline Mat23 SkewMatMinimal(const Vec2 &x) {
  Mat23 skew;
  skew << 0, -1,  x(1),
          1,  0, -x(0);
  return skew;
}

/// Returns the rotaiton matrix built from given vector of euler angles
inline Mat3 RotationFromEulerVector(Vec3 euler_vector) {
  double theta = euler_vector.norm();
  if (theta == 0.0) {
    return Mat3::Identity();
  }
  Vec3 w = euler_vector / theta;
  Mat3 w_hat = CrossProductMatrix(w);
  return Mat3::Identity() + w_hat*sin(theta) + w_hat*w_hat*(1 - cos(theta));
}
}  // namespace libmv

#endif  // LIBMV_NUMERIC_NUMERIC_H