Welcome to mirror list, hosted at ThFree Co, Russian Federation.

bundle.cc « simple_pipeline « libmv « libmv « intern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 22ab0cdf864e7b23fc5a481fea519f2af6421867 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
// Copyright (c) 2011, 2012, 2013 libmv authors.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.

#include "libmv/simple_pipeline/bundle.h"

#include <map>
#include <thread>

#include "ceres/ceres.h"
#include "ceres/rotation.h"
#include "libmv/base/map.h"
#include "libmv/base/vector.h"
#include "libmv/logging/logging.h"
#include "libmv/multiview/fundamental.h"
#include "libmv/multiview/projection.h"
#include "libmv/numeric/numeric.h"
#include "libmv/simple_pipeline/camera_intrinsics.h"
#include "libmv/simple_pipeline/reconstruction.h"
#include "libmv/simple_pipeline/tracks.h"
#include "libmv/simple_pipeline/distortion_models.h"

namespace libmv {

// The intrinsics need to get combined into a single parameter block; use these
// enums to index instead of numeric constants.
enum {
  // Camera calibration values.
  OFFSET_FOCAL_LENGTH,
  OFFSET_PRINCIPAL_POINT_X,
  OFFSET_PRINCIPAL_POINT_Y,

  // Distortion model coefficients.
  OFFSET_K1,
  OFFSET_K2,
  OFFSET_K3,
  OFFSET_P1,
  OFFSET_P2,

  // Maximal possible offset.
  OFFSET_MAX,
};

#define FIRST_DISTORTION_COEFFICIENT OFFSET_K1
#define LAST_DISTORTION_COEFFICIENT OFFSET_P2
#define NUM_DISTORTION_COEFFICIENTS  \
  (LAST_DISTORTION_COEFFICIENT - FIRST_DISTORTION_COEFFICIENT + 1)

namespace {

bool NeedUseInvertIntrinsicsPipeline(const CameraIntrinsics *intrinsics) {
  const DistortionModelType distortion_model =
      intrinsics->GetDistortionModelType();
  return (distortion_model == DISTORTION_MODEL_NUKE);
}

// Apply distortion model (distort the input) on the input point in the
// normalized space to get distorted coordinate in the image space.
//
// Using intrinsics values from the parameter block, which makes this function
// suitable for use from a cost functor.
//
// Only use for distortion models which are analytically defined for their
// Apply() function.
//
// The invariant_intrinsics are used to access intrinsics which are never
// packed into parameter block: for example, distortion model type and image
// dimension.
template<typename T>
void ApplyDistortionModelUsingIntrinsicsBlock(
    const CameraIntrinsics *invariant_intrinsics,
    const T* const intrinsics_block,
    const T& normalized_x, const T& normalized_y,
    T* distorted_x, T* distorted_y) {
  // Unpack the intrinsics.
  const T& focal_length      = intrinsics_block[OFFSET_FOCAL_LENGTH];
  const T& principal_point_x = intrinsics_block[OFFSET_PRINCIPAL_POINT_X];
  const T& principal_point_y = intrinsics_block[OFFSET_PRINCIPAL_POINT_Y];

  // TODO(keir): Do early bailouts for zero distortion; these are expensive
  // jet operations.
  switch (invariant_intrinsics->GetDistortionModelType()) {
    case DISTORTION_MODEL_POLYNOMIAL:
      {
        const T& k1 = intrinsics_block[OFFSET_K1];
        const T& k2 = intrinsics_block[OFFSET_K2];
        const T& k3 = intrinsics_block[OFFSET_K3];
        const T& p1 = intrinsics_block[OFFSET_P1];
        const T& p2 = intrinsics_block[OFFSET_P2];

        ApplyPolynomialDistortionModel(focal_length,
                                       focal_length,
                                       principal_point_x,
                                       principal_point_y,
                                       k1, k2, k3,
                                       p1, p2,
                                       normalized_x, normalized_y,
                                       distorted_x, distorted_y);
        return;
      }

    case DISTORTION_MODEL_DIVISION:
      {
        const T& k1 = intrinsics_block[OFFSET_K1];
        const T& k2 = intrinsics_block[OFFSET_K2];

        ApplyDivisionDistortionModel(focal_length,
                                     focal_length,
                                     principal_point_x,
                                     principal_point_y,
                                     k1, k2,
                                     normalized_x, normalized_y,
                                     distorted_x, distorted_y);
        return;
      }

    case DISTORTION_MODEL_NUKE:
      {
        LOG(FATAL) << "Unsupported distortion model.";
        return;
      }
  }

  LOG(FATAL) << "Unknown distortion model.";
}

// Invert distortion model (undistort the input) on the input point in the
// image space to get undistorted coordinate in the normalized space.
//
// Using intrinsics values from the parameter block, which makes this function
// suitable for use from a cost functor.
//
// Only use for distortion models which are analytically defined for their
// Invert() function.
//
// The invariant_intrinsics are used to access intrinsics which are never
// packed into parameter block: for example, distortion model type and image
// dimension.
template<typename T>
void InvertDistortionModelUsingIntrinsicsBlock(
    const CameraIntrinsics *invariant_intrinsics,
    const T* const intrinsics_block,
    const T& image_x, const T& image_y,
    T* normalized_x, T* normalized_y) {
  // Unpack the intrinsics.
  const T& focal_length      = intrinsics_block[OFFSET_FOCAL_LENGTH];
  const T& principal_point_x = intrinsics_block[OFFSET_PRINCIPAL_POINT_X];
  const T& principal_point_y = intrinsics_block[OFFSET_PRINCIPAL_POINT_Y];

  // TODO(keir): Do early bailouts for zero distortion; these are expensive
  // jet operations.
  switch (invariant_intrinsics->GetDistortionModelType()) {
    case DISTORTION_MODEL_POLYNOMIAL:
    case DISTORTION_MODEL_DIVISION:
      LOG(FATAL) << "Unsupported distortion model.";
      return;

    case DISTORTION_MODEL_NUKE:
      {
        const T& k1 = intrinsics_block[OFFSET_K1];
        const T& k2 = intrinsics_block[OFFSET_K2];

        InvertNukeDistortionModel(focal_length,
                                  focal_length,
                                  principal_point_x,
                                  principal_point_y,
                                  invariant_intrinsics->image_width(),
                                  invariant_intrinsics->image_height(),
                                  k1, k2,
                                  image_x, image_y,
                                  normalized_x, normalized_y);
        return;
      }
  }

  LOG(FATAL) << "Unknown distortion model.";
}

template<typename T>
void NormalizedToImageSpace(const T* const intrinsics_block,
                            const T& normalized_x, const T& normalized_y,
                            T* image_x, T* image_y) {
  // Unpack the intrinsics.
  const T& focal_length      = intrinsics_block[OFFSET_FOCAL_LENGTH];
  const T& principal_point_x = intrinsics_block[OFFSET_PRINCIPAL_POINT_X];
  const T& principal_point_y = intrinsics_block[OFFSET_PRINCIPAL_POINT_Y];

  *image_x = normalized_x * focal_length + principal_point_x;
  *image_y = normalized_y * focal_length + principal_point_y;
}

// Cost functor which computes reprojection error of 3D point X on camera
// defined by angle-axis rotation and it's translation (which are in the same
// block due to optimization reasons).
//
// This functor can only be used for distortion models which have analytically
// defined Apply() function.
struct ReprojectionErrorApplyIntrinsics {
  ReprojectionErrorApplyIntrinsics(
      const CameraIntrinsics *invariant_intrinsics,
      const double observed_distorted_x,
      const double observed_distorted_y,
      const double weight)
      : invariant_intrinsics_(invariant_intrinsics),
        observed_distorted_x_(observed_distorted_x),
        observed_distorted_y_(observed_distorted_y),
        weight_(weight) {}

  template <typename T>
  bool operator()(const T* const intrinsics,
                  const T* const R_t,  // Rotation denoted by angle axis
                                       // followed with translation
                  const T* const X,    // Point coordinates 3x1.
                  T* residuals) const {
    // Compute projective coordinates: x = RX + t.
    T x[3];

    ceres::AngleAxisRotatePoint(R_t, X, x);
    x[0] += R_t[3];
    x[1] += R_t[4];
    x[2] += R_t[5];

    // Prevent points from going behind the camera.
    if (x[2] < T(0)) {
      return false;
    }

    // Compute normalized coordinates: x /= x[2].
    T xn = x[0] / x[2];
    T yn = x[1] / x[2];

    T predicted_distorted_x, predicted_distorted_y;
    ApplyDistortionModelUsingIntrinsicsBlock(
        invariant_intrinsics_,
        intrinsics,
        xn, yn,
        &predicted_distorted_x, &predicted_distorted_y);

    // The error is the difference between the predicted and observed position.
    residuals[0] = (predicted_distorted_x - T(observed_distorted_x_)) * weight_;
    residuals[1] = (predicted_distorted_y - T(observed_distorted_y_)) * weight_;
    return true;
  }

  const CameraIntrinsics *invariant_intrinsics_;
  const double observed_distorted_x_;
  const double observed_distorted_y_;
  const double weight_;
};

// Cost functor which computes reprojection error of 3D point X on camera
// defined by angle-axis rotation and it's translation (which are in the same
// block due to optimization reasons).
//
// This functor can only be used for distortion models which have analytically
// defined Invert() function.
struct ReprojectionErrorInvertIntrinsics {
  ReprojectionErrorInvertIntrinsics(
      const CameraIntrinsics *invariant_intrinsics,
      const double observed_distorted_x,
      const double observed_distorted_y,
      const double weight)
      : invariant_intrinsics_(invariant_intrinsics),
        observed_distorted_x_(observed_distorted_x),
        observed_distorted_y_(observed_distorted_y),
        weight_(weight) {}

  template <typename T>
  bool operator()(const T* const intrinsics,
                  const T* const R_t,  // Rotation denoted by angle axis
                                       // followed with translation
                  const T* const X,    // Point coordinates 3x1.
                  T* residuals) const {
    // Unpack the intrinsics.
    const T& focal_length      = intrinsics[OFFSET_FOCAL_LENGTH];
    const T& principal_point_x = intrinsics[OFFSET_PRINCIPAL_POINT_X];
    const T& principal_point_y = intrinsics[OFFSET_PRINCIPAL_POINT_Y];

    // Compute projective coordinates: x = RX + t.
    T x[3];

    ceres::AngleAxisRotatePoint(R_t, X, x);
    x[0] += R_t[3];
    x[1] += R_t[4];
    x[2] += R_t[5];

    // Prevent points from going behind the camera.
    if (x[2] < T(0)) {
      return false;
    }

    // Compute normalized coordinates: x /= x[2].
    T xn = x[0] / x[2];
    T yn = x[1] / x[2];

    // Compute image space coordinate from normalized.
    T predicted_x = focal_length * xn + principal_point_x;
    T predicted_y = focal_length * yn + principal_point_y;

    T observed_undistorted_normalized_x, observed_undistorted_normalized_y;
    InvertDistortionModelUsingIntrinsicsBlock(
        invariant_intrinsics_,
        intrinsics,
        T(observed_distorted_x_), T(observed_distorted_y_),
        &observed_undistorted_normalized_x, &observed_undistorted_normalized_y);

    T observed_undistorted_image_x, observed_undistorted_image_y;
    NormalizedToImageSpace(
        intrinsics,
        observed_undistorted_normalized_x, observed_undistorted_normalized_y,
        &observed_undistorted_image_x, &observed_undistorted_image_y);

    // The error is the difference between the predicted and observed position.
    residuals[0] = (predicted_x - observed_undistorted_image_x) * weight_;
    residuals[1] = (predicted_y - observed_undistorted_image_y) * weight_;

    return true;
  }

  const CameraIntrinsics *invariant_intrinsics_;
  const double observed_distorted_x_;
  const double observed_distorted_y_;
  const double weight_;
};

// Print a message to the log which camera intrinsics are gonna to be optimized.
void BundleIntrinsicsLogMessage(const int bundle_intrinsics) {
  if (bundle_intrinsics == BUNDLE_NO_INTRINSICS) {
    LOG(INFO) << "Bundling only camera positions.";
  } else {
    std::string bundling_message = "";

#define APPEND_BUNDLING_INTRINSICS(name, flag) \
    if (bundle_intrinsics & flag) { \
      if (!bundling_message.empty()) { \
        bundling_message += ", "; \
      } \
      bundling_message += name; \
    } (void)0

    APPEND_BUNDLING_INTRINSICS("f",      BUNDLE_FOCAL_LENGTH);
    APPEND_BUNDLING_INTRINSICS("px, py", BUNDLE_PRINCIPAL_POINT);
    APPEND_BUNDLING_INTRINSICS("k1",     BUNDLE_RADIAL_K1);
    APPEND_BUNDLING_INTRINSICS("k2",     BUNDLE_RADIAL_K2);
    APPEND_BUNDLING_INTRINSICS("p1",     BUNDLE_TANGENTIAL_P1);
    APPEND_BUNDLING_INTRINSICS("p2",     BUNDLE_TANGENTIAL_P2);

    LOG(INFO) << "Bundling " << bundling_message << ".";
  }
}

// Pack intrinsics from object to an array for easier
// and faster minimization.
void PackIntrinisicsIntoArray(const CameraIntrinsics &intrinsics,
                              double intrinsics_block[OFFSET_MAX]) {
  intrinsics_block[OFFSET_FOCAL_LENGTH]       = intrinsics.focal_length();
  intrinsics_block[OFFSET_PRINCIPAL_POINT_X]  = intrinsics.principal_point_x();
  intrinsics_block[OFFSET_PRINCIPAL_POINT_Y]  = intrinsics.principal_point_y();

  int num_distortion_parameters = intrinsics.num_distortion_parameters();
  assert(num_distortion_parameters <= NUM_DISTORTION_COEFFICIENTS);

  const double *distortion_parameters = intrinsics.distortion_parameters();
  for (int i = 0; i < num_distortion_parameters; ++i) {
    intrinsics_block[FIRST_DISTORTION_COEFFICIENT + i] =
        distortion_parameters[i];
  }
}

// Unpack intrinsics back from an array to an object.
void UnpackIntrinsicsFromArray(const double intrinsics_block[OFFSET_MAX],
                               CameraIntrinsics *intrinsics) {
  intrinsics->SetFocalLength(intrinsics_block[OFFSET_FOCAL_LENGTH],
                             intrinsics_block[OFFSET_FOCAL_LENGTH]);

  intrinsics->SetPrincipalPoint(intrinsics_block[OFFSET_PRINCIPAL_POINT_X],
                                intrinsics_block[OFFSET_PRINCIPAL_POINT_Y]);

  int num_distortion_parameters = intrinsics->num_distortion_parameters();
  assert(num_distortion_parameters <= NUM_DISTORTION_COEFFICIENTS);

  double *distortion_parameters = intrinsics->distortion_parameters();
  for (int i = 0; i < num_distortion_parameters; ++i) {
    distortion_parameters[i] =
        intrinsics_block[FIRST_DISTORTION_COEFFICIENT + i];
  }
}

// Get a vector of camera's rotations denoted by angle axis
// conjuncted with translations into single block
//
// Element with key i matches to a rotation+translation for
// camera at image i.
map<int, Vec6> PackCamerasRotationAndTranslation(
    const EuclideanReconstruction &reconstruction) {
  map<int, Vec6> all_cameras_R_t;

  vector<EuclideanCamera> all_cameras = reconstruction.AllCameras();
  for (const EuclideanCamera& camera : all_cameras) {
    Vec6 camera_R_t;
    ceres::RotationMatrixToAngleAxis(&camera.R(0, 0), &camera_R_t(0));
    camera_R_t.tail<3>() = camera.t;
    all_cameras_R_t.insert(make_pair(camera.image, camera_R_t));
  }

  return all_cameras_R_t;
}

// Convert cameras rotations fro mangle axis back to rotation matrix.
void UnpackCamerasRotationAndTranslation(
    const map<int, Vec6> &all_cameras_R_t,
    EuclideanReconstruction *reconstruction) {

  for (map<int, Vec6>::value_type image_and_camera_R_T : all_cameras_R_t) {
    const int image = image_and_camera_R_T.first;
    const Vec6& camera_R_t = image_and_camera_R_T.second;

    EuclideanCamera *camera = reconstruction->CameraForImage(image);
    if (!camera) {
      continue;
    }

    ceres::AngleAxisToRotationMatrix(&camera_R_t(0), &camera->R(0, 0));
    camera->t = camera_R_t.tail<3>();
  }
}

// Converts sparse CRSMatrix to Eigen matrix, so it could be used
// all over in the pipeline.
//
// TODO(sergey): currently uses dense Eigen matrices, best would
//               be to use sparse Eigen matrices
void CRSMatrixToEigenMatrix(const ceres::CRSMatrix &crs_matrix,
                            Mat *eigen_matrix) {
  eigen_matrix->resize(crs_matrix.num_rows, crs_matrix.num_cols);
  eigen_matrix->setZero();

  for (int row = 0; row < crs_matrix.num_rows; ++row) {
    int start = crs_matrix.rows[row];
    int end = crs_matrix.rows[row + 1] - 1;

    for (int i = start; i <= end; i++) {
      int col = crs_matrix.cols[i];
      double value = crs_matrix.values[i];

      (*eigen_matrix)(row, col) = value;
    }
  }
}

void EuclideanBundlerPerformEvaluation(const Tracks &tracks,
                                       EuclideanReconstruction *reconstruction,
                                       map<int, Vec6> *all_cameras_R_t,
                                       ceres::Problem *problem,
                                       BundleEvaluation *evaluation) {
  int max_track = tracks.MaxTrack();
  // Number of camera rotations equals to number of translation,
  int num_cameras = all_cameras_R_t->size();
  int num_points = 0;

  vector<EuclideanPoint*> minimized_points;
  for (int i = 0; i <= max_track; i++) {
    EuclideanPoint *point = reconstruction->PointForTrack(i);
    if (point) {
      // We need to know whether the track is a constant zero weight.
      // If it is so it wouldn't have a parameter block in the problem.
      //
      // Usually getting all markers of a track is considered slow, but this
      // code is only used by the keyframe selection code where there aren't
      // that many tracks in the storage and there are only 2 frames for each
      // of the tracks.
      vector<Marker> markera_of_track = tracks.MarkersForTrack(i);
      for (int j = 0; j < markera_of_track.size(); j++) {
        if (markera_of_track.at(j).weight != 0.0) {
          minimized_points.push_back(point);
          num_points++;
          break;
        }
      }
    }
  }

  LG << "Number of cameras " << num_cameras;
  LG << "Number of points " << num_points;

  evaluation->num_cameras = num_cameras;
  evaluation->num_points = num_points;

  if (evaluation->evaluate_jacobian) {      // Evaluate jacobian matrix.
    ceres::CRSMatrix evaluated_jacobian;
    ceres::Problem::EvaluateOptions eval_options;

    // Cameras goes first in the ordering.
    int max_image = tracks.MaxImage();
    for (int i = 0; i <= max_image; i++) {
      const EuclideanCamera *camera = reconstruction->CameraForImage(i);
      if (camera) {
        double *current_camera_R_t = &(*all_cameras_R_t)[i](0);

        // All cameras are variable now.
        problem->SetParameterBlockVariable(current_camera_R_t);

        eval_options.parameter_blocks.push_back(current_camera_R_t);
      }
    }

    // Points goes at the end of ordering,
    for (int i = 0; i < minimized_points.size(); i++) {
      EuclideanPoint *point = minimized_points.at(i);
      eval_options.parameter_blocks.push_back(&point->X(0));
    }

    problem->Evaluate(eval_options,
                      NULL, NULL, NULL,
                      &evaluated_jacobian);

    CRSMatrixToEigenMatrix(evaluated_jacobian, &evaluation->jacobian);
  }
}

template<typename CostFunction>
void AddResidualBlockToProblemImpl(const CameraIntrinsics *invariant_intrinsics,
                                   double observed_x, double observed_y,
                                   double weight,
                                   double intrinsics_block[OFFSET_MAX],
                                   double *camera_R_t,
                                   EuclideanPoint *point,
                                   ceres::Problem* problem) {
  problem->AddResidualBlock(new ceres::AutoDiffCostFunction<
      CostFunction, 2, OFFSET_MAX, 6, 3>(
          new CostFunction(
              invariant_intrinsics,
              observed_x, observed_y,
              weight)),
      NULL,
      intrinsics_block,
      camera_R_t,
      &point->X(0));
}

void AddResidualBlockToProblem(const CameraIntrinsics *invariant_intrinsics,
                               const Marker &marker,
                               double marker_weight,
                               double intrinsics_block[OFFSET_MAX],
                               double *camera_R_t,
                               EuclideanPoint *point,
                               ceres::Problem* problem) {
  if (NeedUseInvertIntrinsicsPipeline(invariant_intrinsics)) {
    AddResidualBlockToProblemImpl<ReprojectionErrorInvertIntrinsics>(
            invariant_intrinsics,
            marker.x, marker.y,
            marker_weight,
            intrinsics_block,
            camera_R_t,
            point,
            problem);
  } else {
    AddResidualBlockToProblemImpl<ReprojectionErrorApplyIntrinsics>(
            invariant_intrinsics,
            marker.x, marker.y,
            marker_weight,
            intrinsics_block,
            camera_R_t,
            point,
            problem);
  }
}

// This is an utility function to only bundle 3D position of
// given markers list.
//
// Main purpose of this function is to adjust positions of tracks
// which does have constant zero weight and so far only were using
// algebraic intersection to obtain their 3D positions.
//
// At this point we only need to bundle points positions, cameras
// are to be totally still here.
void EuclideanBundlePointsOnly(const CameraIntrinsics *invariant_intrinsics,
                               const vector<Marker> &markers,
                               map<int, Vec6> &all_cameras_R_t,
                               double intrinsics_block[OFFSET_MAX],
                               EuclideanReconstruction *reconstruction) {
  ceres::Problem::Options problem_options;
  ceres::Problem problem(problem_options);
  int num_residuals = 0;
  for (int i = 0; i < markers.size(); ++i) {
    const Marker &marker = markers[i];
    EuclideanCamera *camera = reconstruction->CameraForImage(marker.image);
    EuclideanPoint *point = reconstruction->PointForTrack(marker.track);
    if (camera == NULL || point == NULL) {
      continue;
    }

    // Rotation of camera denoted in angle axis followed with
    // camera translation.
    double *current_camera_R_t = &all_cameras_R_t[camera->image](0);

    AddResidualBlockToProblem(invariant_intrinsics,
                              marker,
                              1.0,
                              intrinsics_block,
                              current_camera_R_t,
                              point,
                              &problem);

    problem.SetParameterBlockConstant(current_camera_R_t);
    num_residuals++;
  }

  LG << "Number of residuals: " << num_residuals;
  if (!num_residuals) {
    LG << "Skipping running minimizer with zero residuals";
    return;
  }

  problem.SetParameterBlockConstant(intrinsics_block);

  // Configure the solver.
  ceres::Solver::Options options;
  options.use_nonmonotonic_steps = true;
  options.preconditioner_type = ceres::SCHUR_JACOBI;
  options.linear_solver_type = ceres::ITERATIVE_SCHUR;
  options.use_explicit_schur_complement = true;
  options.use_inner_iterations = true;
  options.max_num_iterations = 100;
  options.num_threads = std::thread::hardware_concurrency();

  // Solve!
  ceres::Solver::Summary summary;
  ceres::Solve(options, &problem, &summary);

  LG << "Final report:\n" << summary.FullReport();
}

}  // namespace

void EuclideanBundle(const Tracks &tracks,
                     EuclideanReconstruction *reconstruction) {
  PolynomialCameraIntrinsics empty_intrinsics;
  EuclideanBundleCommonIntrinsics(tracks,
                                  BUNDLE_NO_INTRINSICS,
                                  BUNDLE_NO_CONSTRAINTS,
                                  reconstruction,
                                  &empty_intrinsics,
                                  NULL);
}

void EuclideanBundleCommonIntrinsics(
    const Tracks &tracks,
    const int bundle_intrinsics,
    const int bundle_constraints,
    EuclideanReconstruction *reconstruction,
    CameraIntrinsics *intrinsics,
    BundleEvaluation *evaluation) {
  LG << "Original intrinsics: " << *intrinsics;
  vector<Marker> markers = tracks.AllMarkers();

  // N-th element denotes whether track N is a constant zero-weighted track.
  vector<bool> zero_weight_tracks_flags(tracks.MaxTrack() + 1, true);

  // Residual blocks with 10 parameters are unwieldly with Ceres, so pack the
  // intrinsics into a single block and rely on local parameterizations to
  // control which intrinsics are allowed to vary.
  double intrinsics_block[OFFSET_MAX];
  PackIntrinisicsIntoArray(*intrinsics, intrinsics_block);

  // Convert cameras rotations to angle axis and merge with translation
  // into single parameter block for maximal minimization speed.
  //
  // Block for minimization has got the following structure:
  //   <3 elements for angle-axis> <3 elements for translation>
  map<int, Vec6> all_cameras_R_t =
    PackCamerasRotationAndTranslation(*reconstruction);

  // Parameterization used to restrict camera motion for modal solvers.
  ceres::SubsetParameterization *constant_translation_parameterization = NULL;
  if (bundle_constraints & BUNDLE_NO_TRANSLATION) {
      std::vector<int> constant_translation;

      // First three elements are rotation, ast three are translation.
      constant_translation.push_back(3);
      constant_translation.push_back(4);
      constant_translation.push_back(5);

      constant_translation_parameterization =
        new ceres::SubsetParameterization(6, constant_translation);
  }

  // Add residual blocks to the problem.
  ceres::Problem::Options problem_options;
  ceres::Problem problem(problem_options);
  int num_residuals = 0;
  bool have_locked_camera = false;
  for (int i = 0; i < markers.size(); ++i) {
    const Marker &marker = markers[i];
    EuclideanCamera *camera = reconstruction->CameraForImage(marker.image);
    EuclideanPoint *point = reconstruction->PointForTrack(marker.track);
    if (camera == NULL || point == NULL) {
      continue;
    }

    // Rotation of camera denoted in angle axis followed with
    // camera translation.
    double *current_camera_R_t = &all_cameras_R_t[camera->image](0);

    // Skip residual block for markers which does have absolutely
    // no affect on the final solution.
    // This way ceres is not gonna to go crazy.
    if (marker.weight != 0.0) {
      AddResidualBlockToProblem(intrinsics,
                                marker,
                                marker.weight,
                                intrinsics_block,
                                current_camera_R_t,
                                point,
                                &problem);

      // We lock the first camera to better deal with scene orientation ambiguity.
      if (!have_locked_camera) {
        problem.SetParameterBlockConstant(current_camera_R_t);
        have_locked_camera = true;
      }

      if (bundle_constraints & BUNDLE_NO_TRANSLATION) {
        problem.SetParameterization(current_camera_R_t,
                                    constant_translation_parameterization);
      }

      zero_weight_tracks_flags[marker.track] = false;
      num_residuals++;
    }
  }
  LG << "Number of residuals: " << num_residuals;

  if (!num_residuals) {
    LG << "Skipping running minimizer with zero residuals";
    return;
  }

  if (intrinsics->GetDistortionModelType() == DISTORTION_MODEL_DIVISION &&
    (bundle_intrinsics & BUNDLE_TANGENTIAL) != 0) {
    LOG(FATAL) << "Division model doesn't support bundling "
                  "of tangential distortion";
  }

  BundleIntrinsicsLogMessage(bundle_intrinsics);

  if (bundle_intrinsics == BUNDLE_NO_INTRINSICS) {
    // No camera intrinsics are being refined,
    // set the whole parameter block as constant for best performance.
    problem.SetParameterBlockConstant(intrinsics_block);
  } else {
    // Set the camera intrinsics that are not to be bundled as
    // constant using some macro trickery.

    std::vector<int> constant_intrinsics;
#define MAYBE_SET_CONSTANT(bundle_enum, offset) \
    if (!(bundle_intrinsics & bundle_enum)) { \
      constant_intrinsics.push_back(offset); \
    }
    MAYBE_SET_CONSTANT(BUNDLE_FOCAL_LENGTH,    OFFSET_FOCAL_LENGTH);
    MAYBE_SET_CONSTANT(BUNDLE_PRINCIPAL_POINT, OFFSET_PRINCIPAL_POINT_X);
    MAYBE_SET_CONSTANT(BUNDLE_PRINCIPAL_POINT, OFFSET_PRINCIPAL_POINT_Y);
    MAYBE_SET_CONSTANT(BUNDLE_RADIAL_K1,       OFFSET_K1);
    MAYBE_SET_CONSTANT(BUNDLE_RADIAL_K2,       OFFSET_K2);
    MAYBE_SET_CONSTANT(BUNDLE_TANGENTIAL_P1,   OFFSET_P1);
    MAYBE_SET_CONSTANT(BUNDLE_TANGENTIAL_P2,   OFFSET_P2);
#undef MAYBE_SET_CONSTANT

    // Always set K3 constant, it's not used at the moment.
    constant_intrinsics.push_back(OFFSET_K3);

    ceres::SubsetParameterization *subset_parameterization =
      new ceres::SubsetParameterization(OFFSET_MAX, constant_intrinsics);

    problem.SetParameterization(intrinsics_block, subset_parameterization);
  }

  // Configure the solver.
  ceres::Solver::Options options;
  options.use_nonmonotonic_steps = true;
  options.preconditioner_type = ceres::SCHUR_JACOBI;
  options.linear_solver_type = ceres::ITERATIVE_SCHUR;
  options.use_explicit_schur_complement = true;
  options.use_inner_iterations = true;
  options.max_num_iterations = 100;
  options.num_threads = std::thread::hardware_concurrency();

  // Solve!
  ceres::Solver::Summary summary;
  ceres::Solve(options, &problem, &summary);

  LG << "Final report:\n" << summary.FullReport();

  // Copy rotations and translations back.
  UnpackCamerasRotationAndTranslation(all_cameras_R_t, reconstruction);

  // Copy intrinsics back.
  if (bundle_intrinsics != BUNDLE_NO_INTRINSICS)
    UnpackIntrinsicsFromArray(intrinsics_block, intrinsics);

  LG << "Final intrinsics: " << *intrinsics;

  if (evaluation) {
    EuclideanBundlerPerformEvaluation(tracks, reconstruction, &all_cameras_R_t,
                                      &problem, evaluation);
  }

  // Separate step to adjust positions of tracks which are
  // constant zero-weighted.
  vector<Marker> zero_weight_markers;
  for (int track = 0; track < tracks.MaxTrack(); ++track) {
    if (zero_weight_tracks_flags[track]) {
      vector<Marker> current_markers = tracks.MarkersForTrack(track);
      zero_weight_markers.reserve(zero_weight_markers.size() +
                                  current_markers.size());
      for (int i = 0; i < current_markers.size(); ++i) {
        zero_weight_markers.push_back(current_markers[i]);
      }
    }
  }

  if (zero_weight_markers.size()) {
    LG << "Refining position of constant zero-weighted tracks";
    EuclideanBundlePointsOnly(intrinsics,
                              zero_weight_markers,
                              all_cameras_R_t,
                              intrinsics_block,
                              reconstruction);
  }
}

void ProjectiveBundle(const Tracks & /*tracks*/,
                      ProjectiveReconstruction * /*reconstruction*/) {
  // TODO(keir): Implement this! This can't work until we have a better bundler
  // than SSBA, since SSBA has no support for projective bundling.
}

}  // namespace libmv