Welcome to mirror list, hosted at ThFree Co, Russian Federation.

liquid_script.h « strings « intern « mantaflow « intern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: e9777eb9cda3e2d85e5dc49c6662e911717d791b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
/*
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 *
 * The Original Code is Copyright (C) 2016 Blender Foundation.
 * All rights reserved.
 */

/** \file
 * \ingroup mantaflow
 */

#include <string>

//////////////////////////////////////////////////////////////////////
// VARIABLES
//////////////////////////////////////////////////////////////////////

const std::string liquid_variables =
    "\n\
mantaMsg('Liquid variables')\n\
narrowBandWidth_s$ID$         = 3\n\
combineBandWidth_s$ID$        = narrowBandWidth_s$ID$ - 1\n\
adjustedNarrowBandWidth_s$ID$ = $PARTICLE_BAND_WIDTH$ # only used in adjustNumber to control band width\n\
particleNumber_s$ID$   = $PARTICLE_NUMBER$\n\
minParticles_s$ID$     = $PARTICLE_MINIMUM$\n\
maxParticles_s$ID$     = $PARTICLE_MAXIMUM$\n\
radiusFactor_s$ID$     = $PARTICLE_RADIUS$\n\
using_mesh_s$ID$       = $USING_MESH$\n\
using_final_mesh_s$ID$ = $USING_IMPROVED_MESH$\n\
using_fractions_s$ID$  = $USING_FRACTIONS$\n\
fracThreshold_s$ID$    = $FRACTIONS_THRESHOLD$\n\
flipRatio_s$ID$        = $FLIP_RATIO$\n\
concaveUpper_s$ID$     = $MESH_CONCAVE_UPPER$\n\
concaveLower_s$ID$     = $MESH_CONCAVE_LOWER$\n\
meshRadiusFactor_s$ID$ = $MESH_PARTICLE_RADIUS$\n\
smoothenPos_s$ID$      = $MESH_SMOOTHEN_POS$\n\
smoothenNeg_s$ID$      = $MESH_SMOOTHEN_NEG$\n\
randomness_s$ID$       = $PARTICLE_RANDOMNESS$\n\
surfaceTension_s$ID$   = $LIQUID_SURFACE_TENSION$\n";

const std::string liquid_variables_particles =
    "\n\
tauMin_wc_sp$ID$ = $SNDPARTICLE_TAU_MIN_WC$\n\
tauMax_wc_sp$ID$ = $SNDPARTICLE_TAU_MAX_WC$\n\
tauMin_ta_sp$ID$ = $SNDPARTICLE_TAU_MIN_TA$\n\
tauMax_ta_sp$ID$ = $SNDPARTICLE_TAU_MAX_TA$\n\
tauMin_k_sp$ID$ = $SNDPARTICLE_TAU_MIN_K$\n\
tauMax_k_sp$ID$ = $SNDPARTICLE_TAU_MAX_K$\n\
k_wc_sp$ID$ = $SNDPARTICLE_K_WC$\n\
k_ta_sp$ID$ = $SNDPARTICLE_K_TA$\n\
k_b_sp$ID$ = $SNDPARTICLE_K_B$\n\
k_d_sp$ID$ = $SNDPARTICLE_K_D$\n\
lMin_sp$ID$ = $SNDPARTICLE_L_MIN$\n\
lMax_sp$ID$ = $SNDPARTICLE_L_MAX$\n\
c_s_sp$ID$ = 0.4   # classification constant for snd parts\n\
c_b_sp$ID$ = 0.77  # classification constant for snd parts\n\
pot_radius_sp$ID$ = $SNDPARTICLE_POTENTIAL_RADIUS$\n\
update_radius_sp$ID$ = $SNDPARTICLE_UPDATE_RADIUS$\n\
using_snd_pushout_sp$ID$ = $SNDPARTICLE_BOUNDARY_PUSHOUT$\n";

//////////////////////////////////////////////////////////////////////
// GRIDS & MESH & PARTICLESYSTEM
//////////////////////////////////////////////////////////////////////

const std::string liquid_alloc =
    "\n\
mantaMsg('Liquid alloc')\n\
phiParts_s$ID$   = s$ID$.create(LevelsetGrid)\n\
phi_s$ID$        = s$ID$.create(LevelsetGrid)\n\
phiTmp_s$ID$     = s$ID$.create(LevelsetGrid)\n\
velOld_s$ID$     = s$ID$.create(MACGrid)\n\
velParts_s$ID$   = s$ID$.create(MACGrid)\n\
mapWeights_s$ID$ = s$ID$.create(MACGrid)\n\
fractions_s$ID$  = None # allocated dynamically\n\
curvature_s$ID$  = None\n\
\n\
pp_s$ID$         = s$ID$.create(BasicParticleSystem)\n\
pVel_pp$ID$      = pp_s$ID$.create(PdataVec3)\n\
\n\
# Acceleration data for particle nbs\n\
pindex_s$ID$     = s$ID$.create(ParticleIndexSystem)\n\
gpi_s$ID$        = s$ID$.create(IntGrid)\n\
\n\
# Keep track of important objects in dict to load them later on\n\
liquid_data_dict_final_s$ID$ = dict(pp=pp_s$ID$, pVel=pVel_pp$ID$)\n\
liquid_data_dict_resume_s$ID$ = dict(phiParts=phiParts_s$ID$, phi=phi_s$ID$, phiTmp=phiTmp_s$ID$)\n";

const std::string liquid_alloc_mesh =
    "\n\
mantaMsg('Liquid alloc mesh')\n\
phiParts_sm$ID$ = sm$ID$.create(LevelsetGrid)\n\
phi_sm$ID$      = sm$ID$.create(LevelsetGrid)\n\
pp_sm$ID$       = sm$ID$.create(BasicParticleSystem)\n\
flags_sm$ID$    = sm$ID$.create(FlagGrid)\n\
mesh_sm$ID$     = sm$ID$.create(Mesh)\n\
\n\
if using_speedvectors_s$ID$:\n\
    mVel_mesh$ID$ = mesh_sm$ID$.create(MdataVec3)\n\
    vel_sm$ID$    = sm$ID$.create(MACGrid)\n\
\n\
# Acceleration data for particle nbs\n\
pindex_sm$ID$  = sm$ID$.create(ParticleIndexSystem)\n\
gpi_sm$ID$     = sm$ID$.create(IntGrid)\n\
\n\
# Set some initial values\n\
phiParts_sm$ID$.setConst(9999)\n\
phi_sm$ID$.setConst(9999)\n\
\n\
# Keep track of important objects in dict to load them later on\n\
liquid_mesh_dict_s$ID$ = dict(lMesh=mesh_sm$ID$)\n\
\n\
if using_speedvectors_s$ID$:\n\
    liquid_meshvel_dict_s$ID$ = dict(lVelMesh=mVel_mesh$ID$)\n";

const std::string liquid_alloc_curvature =
    "\n\
mantaMsg('Liquid alloc curvature')\n\
curvature_s$ID$  = s$ID$.create(RealGrid)\n";

const std::string liquid_alloc_particles =
    "\n\
ppSnd_sp$ID$         = sp$ID$.create(BasicParticleSystem)\n\
pVelSnd_pp$ID$       = ppSnd_sp$ID$.create(PdataVec3)\n\
pForceSnd_pp$ID$     = ppSnd_sp$ID$.create(PdataVec3)\n\
pLifeSnd_pp$ID$      = ppSnd_sp$ID$.create(PdataReal)\n\
vel_sp$ID$           = sp$ID$.create(MACGrid)\n\
flags_sp$ID$         = sp$ID$.create(FlagGrid)\n\
phi_sp$ID$           = sp$ID$.create(LevelsetGrid)\n\
phiObs_sp$ID$        = sp$ID$.create(LevelsetGrid)\n\
phiOut_sp$ID$        = sp$ID$.create(LevelsetGrid)\n\
normal_sp$ID$        = sp$ID$.create(VecGrid)\n\
neighborRatio_sp$ID$ = sp$ID$.create(RealGrid)\n\
trappedAir_sp$ID$    = sp$ID$.create(RealGrid)\n\
waveCrest_sp$ID$     = sp$ID$.create(RealGrid)\n\
kineticEnergy_sp$ID$ = sp$ID$.create(RealGrid)\n\
\n\
# Set some initial values\n\
phi_sp$ID$.setConst(9999)\n\
phiObs_sp$ID$.setConst(9999)\n\
phiOut_sp$ID$.setConst(9999)\n\
\n\
# Keep track of important objects in dict to load them later on\n\
liquid_particles_dict_final_s$ID$  = dict(ppSnd=ppSnd_sp$ID$, pVelSnd=pVelSnd_pp$ID$, pLifeSnd=pLifeSnd_pp$ID$)\n\
liquid_particles_dict_resume_s$ID$ = dict(trappedAir=trappedAir_sp$ID$, waveCrest=waveCrest_sp$ID$, kineticEnergy=kineticEnergy_sp$ID$)\n";

const std::string liquid_init_phi =
    "\n\
# Prepare domain\n\
phi_s$ID$.initFromFlags(flags_s$ID$)\n\
phiIn_s$ID$.initFromFlags(flags_s$ID$)\n";

//////////////////////////////////////////////////////////////////////
// STEP FUNCTIONS
//////////////////////////////////////////////////////////////////////

const std::string liquid_adaptive_step =
    "\n\
def liquid_adaptive_step_$ID$(framenr):\n\
    mantaMsg('Manta step, frame ' + str(framenr))\n\
    s$ID$.frame = framenr\n\
    \n\
    fluid_pre_step_$ID$()\n\
    \n\
    flags_s$ID$.initDomain(boundaryWidth=1 if using_fractions_s$ID$ else 0, phiWalls=phiObs_s$ID$, outflow=boundConditions_s$ID$)\n\
    \n\
    if using_obstacle_s$ID$:\n\
        mantaMsg('Initializing obstacle levelset')\n\
        phiObsIn_s$ID$.join(phiObsSIn_s$ID$) # Join static obstacle map\n\
        phiObsIn_s$ID$.fillHoles(maxDepth=int(res_s$ID$), boundaryWidth=1)\n\
        extrapolateLsSimple(phi=phiObsIn_s$ID$, distance=6, inside=True)\n\
        extrapolateLsSimple(phi=phiObsIn_s$ID$, distance=3, inside=False)\n\
        phiObs_s$ID$.join(phiObsIn_s$ID$)\n\
        \n\
        # Using boundaryWidth=2 to not search beginning from walls (just a performance optimization)\n\
        # Additional sanity check: fill holes in phiObs which can result after joining with phiObsIn\n\
        phiObs_s$ID$.fillHoles(maxDepth=int(res_s$ID$), boundaryWidth=2 if using_fractions_s$ID$ else 1)\n\
        extrapolateLsSimple(phi=phiObs_s$ID$, distance=6, inside=True)\n\
        extrapolateLsSimple(phi=phiObs_s$ID$, distance=3)\n\
    \n\
    mantaMsg('Initializing fluid levelset')\n\
    phiIn_s$ID$.join(phiSIn_s$ID$) # Join static flow map\n\
    extrapolateLsSimple(phi=phiIn_s$ID$, distance=6, inside=True)\n\
    extrapolateLsSimple(phi=phiIn_s$ID$, distance=3)\n\
    phi_s$ID$.join(phiIn_s$ID$)\n\
    \n\
    if using_outflow_s$ID$:\n\
        phiOutIn_s$ID$.join(phiOutSIn_s$ID$) # Join static outflow map\n\
        phiOut_s$ID$.join(phiOutIn_s$ID$)\n\
    \n\
    if using_fractions_s$ID$:\n\
        updateFractions(flags=flags_s$ID$, phiObs=phiObs_s$ID$, fractions=fractions_s$ID$, boundaryWidth=boundaryWidth_s$ID$, fracThreshold=fracThreshold_s$ID$)\n\
    setObstacleFlags(flags=flags_s$ID$, phiObs=phiObs_s$ID$, phiOut=phiOut_s$ID$, fractions=fractions_s$ID$, phiIn=phiIn_s$ID$)\n\
    \n\
    if using_obstacle_s$ID$:\n\
        # TODO (sebbas): Enable flags check again, currently produces unstable particle behavior\n\
        phi_s$ID$.subtract(o=phiObsIn_s$ID$) #, flags=flags_s$ID$, subtractType=FlagObstacle)\n\
    \n\
    # add initial velocity: set invel as source grid to ensure const vels in inflow region, sampling makes use of this\n\
    if using_invel_s$ID$:\n\
        extrapolateVec3Simple(vel=invelC_s$ID$, phi=phiIn_s$ID$, distance=6, inside=True)\n\
        resampleVec3ToMac(source=invelC_s$ID$, target=invel_s$ID$)\n\
        pVel_pp$ID$.setSource(invel_s$ID$, isMAC=True)\n\
    # ensure that pvel has vel as source (important when resuming bake jobs)\n\
    else:\n\
        pVel_pp$ID$.setSource(vel_s$ID$, isMAC=True)\n\
    \n\
    sampleLevelsetWithParticles(phi=phiIn_s$ID$, flags=flags_s$ID$, parts=pp_s$ID$, discretization=particleNumber_s$ID$, randomness=randomness_s$ID$)\n\
    flags_s$ID$.updateFromLevelset(phi_s$ID$)\n\
    \n\
    mantaMsg('Liquid step / s$ID$.frame: ' + str(s$ID$.frame))\n\
    liquid_step_$ID$()\n\
    \n\
    s$ID$.step()\n\
    \n\
    fluid_post_step_$ID$()\n";

const std::string liquid_step =
    "\n\
def liquid_step_$ID$():\n\
    mantaMsg('Liquid step')\n\
    \n\
    mantaMsg('Advecting particles')\n\
    pp_s$ID$.advectInGrid(flags=flags_s$ID$, vel=vel_s$ID$, integrationMode=IntRK4, deleteInObstacle=deleteInObstacle_s$ID$, stopInObstacle=False, skipNew=True)\n\
    \n\
    mantaMsg('Pushing particles out of obstacles')\n\
    pushOutofObs(parts=pp_s$ID$, flags=flags_s$ID$, phiObs=phiObs_s$ID$)\n\
    \n\
    # save original states for later (used during mesh / secondary particle creation)\n\
    phiTmp_s$ID$.copyFrom(phi_s$ID$)\n\
    velTmp_s$ID$.copyFrom(vel_s$ID$)\n\
    \n\
    mantaMsg('Advecting phi')\n\
    advectSemiLagrange(flags=flags_s$ID$, vel=vel_s$ID$, grid=phi_s$ID$, order=1) # first order is usually enough\n\
    mantaMsg('Advecting velocity')\n\
    advectSemiLagrange(flags=flags_s$ID$, vel=vel_s$ID$, grid=vel_s$ID$, order=2)\n\
    \n\
    # create level set of particles\n\
    gridParticleIndex(parts=pp_s$ID$, flags=flags_s$ID$, indexSys=pindex_s$ID$, index=gpi_s$ID$)\n\
    unionParticleLevelset(parts=pp_s$ID$, indexSys=pindex_s$ID$, flags=flags_s$ID$, index=gpi_s$ID$, phi=phiParts_s$ID$, radiusFactor=radiusFactor_s$ID$)\n\
    \n\
    # combine level set of particles with grid level set\n\
    phi_s$ID$.addConst(1.) # shrink slightly\n\
    phi_s$ID$.join(phiParts_s$ID$)\n\
    extrapolateLsSimple(phi=phi_s$ID$, distance=narrowBandWidth_s$ID$+2, inside=True)\n\
    extrapolateLsSimple(phi=phi_s$ID$, distance=3)\n\
    phi_s$ID$.setBoundNeumann(0) # make sure no particles are placed at outer boundary\n\
    \n\
    if doOpen_s$ID$ or using_outflow_s$ID$:\n\
        resetOutflow(flags=flags_s$ID$, phi=phi_s$ID$, parts=pp_s$ID$, index=gpi_s$ID$, indexSys=pindex_s$ID$)\n\
    flags_s$ID$.updateFromLevelset(phi_s$ID$)\n\
    \n\
    # combine particles velocities with advected grid velocities\n\
    mapPartsToMAC(vel=velParts_s$ID$, flags=flags_s$ID$, velOld=velOld_s$ID$, parts=pp_s$ID$, partVel=pVel_pp$ID$, weight=mapWeights_s$ID$)\n\
    extrapolateMACFromWeight(vel=velParts_s$ID$, distance=2, weight=mapWeights_s$ID$)\n\
    combineGridVel(vel=velParts_s$ID$, weight=mapWeights_s$ID$, combineVel=vel_s$ID$, phi=phi_s$ID$, narrowBand=combineBandWidth_s$ID$, thresh=0)\n\
    velOld_s$ID$.copyFrom(vel_s$ID$)\n\
    \n\
    # forces & pressure solve\n\
    addGravity(flags=flags_s$ID$, vel=vel_s$ID$, gravity=gravity_s$ID$, scale=False)\n\
    \n\
    mantaMsg('Adding external forces')\n\
    addForceField(flags=flags_s$ID$, vel=vel_s$ID$, force=forces_s$ID$)\n\
    \n\
    if using_obstacle_s$ID$:\n\
        mantaMsg('Extrapolating object velocity')\n\
        # ensure velocities inside of obs object, slightly add obvels outside of obs object\n\
        extrapolateVec3Simple(vel=obvelC_s$ID$, phi=phiObsIn_s$ID$, distance=6, inside=True)\n\
        extrapolateVec3Simple(vel=obvelC_s$ID$, phi=phiObsIn_s$ID$, distance=3, inside=False)\n\
        resampleVec3ToMac(source=obvelC_s$ID$, target=obvel_s$ID$)\n\
    \n\
    extrapolateMACSimple(flags=flags_s$ID$, vel=vel_s$ID$, distance=2, intoObs=True if using_fractions_s$ID$ else False)\n\
    \n\
    # vel diffusion / viscosity!\n\
    if using_diffusion_s$ID$:\n\
        mantaMsg('Viscosity')\n\
        # diffusion param for solve = const * dt / dx^2\n\
        alphaV = viscosity_s$ID$ * s$ID$.timestep * float(res_s$ID$*res_s$ID$)\n\
        setWallBcs(flags=flags_s$ID$, vel=vel_s$ID$, obvel=None if using_fractions_s$ID$ else obvel_s$ID$, phiObs=phiObs_s$ID$, fractions=fractions_s$ID$)\n\
        cgSolveDiffusion(flags_s$ID$, vel_s$ID$, alphaV)\n\
        \n\
        mantaMsg('Curvature')\n\
        getLaplacian(laplacian=curvature_s$ID$, grid=phi_s$ID$)\n\
        curvature_s$ID$.clamp(-1.0, 1.0)\n\
    \n\
    setWallBcs(flags=flags_s$ID$, vel=vel_s$ID$, obvel=None if using_fractions_s$ID$ else obvel_s$ID$, phiObs=phiObs_s$ID$, fractions=fractions_s$ID$)\n\
    \n\
    if using_guiding_s$ID$:\n\
        mantaMsg('Guiding and pressure')\n\
        PD_fluid_guiding(vel=vel_s$ID$, velT=velT_s$ID$, flags=flags_s$ID$, phi=phi_s$ID$, curv=curvature_s$ID$, surfTens=surfaceTension_s$ID$, fractions=fractions_s$ID$, weight=weightGuide_s$ID$, blurRadius=beta_sg$ID$, pressure=pressure_s$ID$, tau=tau_sg$ID$, sigma=sigma_sg$ID$, theta=theta_sg$ID$, zeroPressureFixing=not doOpen_s$ID$)\n\
    else:\n\
        mantaMsg('Pressure')\n\
        solvePressure(flags=flags_s$ID$, vel=vel_s$ID$, pressure=pressure_s$ID$, phi=phi_s$ID$, curv=curvature_s$ID$, surfTens=surfaceTension_s$ID$, fractions=fractions_s$ID$, obvel=obvel_s$ID$ if using_fractions_s$ID$ else None)\n\
    \n\
    extrapolateMACSimple(flags=flags_s$ID$, vel=vel_s$ID$, distance=4, intoObs=True if using_fractions_s$ID$ else False)\n\
    setWallBcs(flags=flags_s$ID$, vel=vel_s$ID$, obvel=None if using_fractions_s$ID$ else obvel_s$ID$, phiObs=phiObs_s$ID$, fractions=fractions_s$ID$)\n\
    \n\
    if not using_fractions_s$ID$:\n\
        extrapolateMACSimple(flags=flags_s$ID$, vel=vel_s$ID$)\n\
    \n\
    # set source grids for resampling, used in adjustNumber!\n\
    pVel_pp$ID$.setSource(vel_s$ID$, isMAC=True)\n\
    adjustNumber(parts=pp_s$ID$, vel=vel_s$ID$, flags=flags_s$ID$, minParticles=minParticles_s$ID$, maxParticles=maxParticles_s$ID$, phi=phi_s$ID$, exclude=phiObs_s$ID$, radiusFactor=radiusFactor_s$ID$, narrowBand=adjustedNarrowBandWidth_s$ID$)\n\
    flipVelocityUpdate(vel=vel_s$ID$, velOld=velOld_s$ID$, flags=flags_s$ID$, parts=pp_s$ID$, partVel=pVel_pp$ID$, flipRatio=flipRatio_s$ID$)\n";

const std::string liquid_step_mesh =
    "\n\
def liquid_step_mesh_$ID$():\n\
    mantaMsg('Liquid step mesh')\n\
    \n\
    # no upres: just use the loaded grids\n\
    if upres_sm$ID$ <= 1:\n\
        phi_sm$ID$.copyFrom(phi_s$ID$)\n\
    \n\
    # with upres: recreate grids\n\
    else:\n\
        interpolateGrid(target=phi_sm$ID$, source=phi_s$ID$)\n\
    \n\
    # create surface\n\
    pp_sm$ID$.readParticles(pp_s$ID$)\n\
    gridParticleIndex(parts=pp_sm$ID$, flags=flags_sm$ID$, indexSys=pindex_sm$ID$, index=gpi_sm$ID$)\n\
    \n\
    if using_final_mesh_s$ID$:\n\
        mantaMsg('Liquid using improved particle levelset')\n\
        improvedParticleLevelset(pp_sm$ID$, pindex_sm$ID$, flags_sm$ID$, gpi_sm$ID$, phiParts_sm$ID$, meshRadiusFactor_s$ID$, smoothenPos_s$ID$, smoothenNeg_s$ID$, concaveLower_s$ID$, concaveUpper_s$ID$)\n\
    else:\n\
        mantaMsg('Liquid using union particle levelset')\n\
        unionParticleLevelset(pp_sm$ID$, pindex_sm$ID$, flags_sm$ID$, gpi_sm$ID$, phiParts_sm$ID$, meshRadiusFactor_s$ID$)\n\
    \n\
    phi_sm$ID$.addConst(1.) # shrink slightly\n\
    phi_sm$ID$.join(phiParts_sm$ID$)\n\
    extrapolateLsSimple(phi=phi_sm$ID$, distance=narrowBandWidth_s$ID$+2, inside=True)\n\
    extrapolateLsSimple(phi=phi_sm$ID$, distance=3)\n\
    phi_sm$ID$.setBoundNeumann(0) # make sure no particles are placed at outer boundary\n\
    \n\
    # Vert vel vector needs to pull data from vel grid with correct dim\n\
    if using_speedvectors_s$ID$:\n\
        interpolateMACGrid(target=vel_sm$ID$, source=vel_s$ID$)\n\
        mVel_mesh$ID$.setSource(vel_sm$ID$, isMAC=True)\n\
    \n\
    # Set 0.5 boundary at walls + account for extra wall thickness in fractions mode + account for grid scaling:\n\
    # E.g. at upres=1 we expect 1 cell border (or 2 with fractions), at upres=2 we expect 2 cell border (or 4 with fractions), etc.\n\
    # Use -1 since setBound() starts counting at 0 (and additional -1 for fractions to account for solid/fluid interface cells)\n\
    phi_sm$ID$.setBound(value=0.5, boundaryWidth=(upres_sm$ID$*2)-2 if using_fractions_s$ID$ else upres_sm$ID$-1)\n\
    phi_sm$ID$.createMesh(mesh_sm$ID$)\n";

const std::string liquid_step_particles =
    "\n\
def liquid_step_particles_$ID$():\n\
    mantaMsg('Secondary particles step')\n\
    \n\
    # no upres: just use the loaded grids\n\
    if upres_sp$ID$ <= 1:\n\
        vel_sp$ID$.copyFrom(velTmp_s$ID$)\n\
        phiObs_sp$ID$.copyFrom(phiObs_s$ID$)\n\
        phi_sp$ID$.copyFrom(phiTmp_s$ID$)\n\
        phiOut_sp$ID$.copyFrom(phiOut_s$ID$)\n\
    \n\
    # with upres: recreate grids\n\
    else:\n\
        # create highres grids by interpolation\n\
        interpolateMACGrid(target=vel_sp$ID$, source=velTmp_s$ID$)\n\
        interpolateGrid(target=phiObs_sp$ID$, source=phiObs_s$ID$)\n\
        interpolateGrid(target=phi_sp$ID$, source=phiTmp_s$ID$)\n\
        interpolateGrid(target=phiOut_sp$ID$, source=phiOut_s$ID$)\n\
    \n\
    # phiIn not needed, bwidth to 0 because we are omitting flags.initDomain()\n\
    setObstacleFlags(flags=flags_sp$ID$, phiObs=phiObs_sp$ID$, phiOut=phiOut_sp$ID$, phiIn=None, boundaryWidth=0)\n\
    flags_sp$ID$.updateFromLevelset(levelset=phi_sp$ID$)\n\
    \n\
    # Actual secondary particle simulation\n\
    flipComputeSecondaryParticlePotentials(potTA=trappedAir_sp$ID$, potWC=waveCrest_sp$ID$, potKE=kineticEnergy_sp$ID$, neighborRatio=neighborRatio_sp$ID$, flags=flags_sp$ID$, v=vel_sp$ID$, normal=normal_sp$ID$, phi=phi_sp$ID$, radius=pot_radius_sp$ID$, tauMinTA=tauMin_ta_sp$ID$, tauMaxTA=tauMax_ta_sp$ID$, tauMinWC=tauMin_wc_sp$ID$, tauMaxWC=tauMax_wc_sp$ID$, tauMinKE=tauMin_k_sp$ID$, tauMaxKE=tauMax_k_sp$ID$, scaleFromManta=ratioMetersToRes_s$ID$)\n\
    flipSampleSecondaryParticles(mode='single', flags=flags_sp$ID$, v=vel_sp$ID$, pts_sec=ppSnd_sp$ID$, v_sec=pVelSnd_pp$ID$, l_sec=pLifeSnd_pp$ID$, lMin=lMin_sp$ID$, lMax=lMax_sp$ID$, potTA=trappedAir_sp$ID$, potWC=waveCrest_sp$ID$, potKE=kineticEnergy_sp$ID$, neighborRatio=neighborRatio_sp$ID$, c_s=c_s_sp$ID$, c_b=c_b_sp$ID$, k_ta=k_ta_sp$ID$, k_wc=k_wc_sp$ID$)\n\
    flipUpdateSecondaryParticles(mode='linear', pts_sec=ppSnd_sp$ID$, v_sec=pVelSnd_pp$ID$, l_sec=pLifeSnd_pp$ID$, f_sec=pForceSnd_pp$ID$, flags=flags_sp$ID$, v=vel_sp$ID$, neighborRatio=neighborRatio_sp$ID$, radius=update_radius_sp$ID$, gravity=gravity_s$ID$, scale=False, k_b=k_b_sp$ID$, k_d=k_d_sp$ID$, c_s=c_s_sp$ID$, c_b=c_b_sp$ID$)\n\
    if using_snd_pushout_sp$ID$:\n\
        pushOutofObs(parts=ppSnd_sp$ID$, flags=flags_sp$ID$, phiObs=phiObs_sp$ID$, shift=1.0)\n\
    flipDeleteParticlesInObstacle(pts=ppSnd_sp$ID$, flags=flags_sp$ID$) # delete particles inside obstacle and outflow cells\n\
    \n\
    # Print debug information in the console\n\
    if 0:\n\
        debugGridInfo(flags=flags_sp$ID$, grid=trappedAir_sp$ID$, name='Trapped Air')\n\
        debugGridInfo(flags=flags_sp$ID$, grid=waveCrest_sp$ID$, name='Wave Crest')\n\
        debugGridInfo(flags=flags_sp$ID$, grid=kineticEnergy_sp$ID$, name='Kinetic Energy')\n";

//////////////////////////////////////////////////////////////////////
// IMPORT
//////////////////////////////////////////////////////////////////////

const std::string liquid_load_data =
    "\n\
def liquid_load_data_$ID$(path, framenr, file_format, resumable):\n\
    mantaMsg('Liquid load data')\n\
    fluid_file_import_s$ID$(dict=liquid_data_dict_final_s$ID$, path=path, framenr=framenr, file_format=file_format)\n\
    if resumable:\n\
        fluid_file_import_s$ID$(dict=liquid_data_dict_resume_s$ID$, path=path, framenr=framenr, file_format=file_format)\n";

const std::string liquid_load_mesh =
    "\n\
def liquid_load_mesh_$ID$(path, framenr, file_format):\n\
    mantaMsg('Liquid load mesh')\n\
    fluid_file_import_s$ID$(dict=liquid_mesh_dict_s$ID$, path=path, framenr=framenr, file_format=file_format)\n\
\n\
def liquid_load_meshvel_$ID$(path, framenr, file_format):\n\
    mantaMsg('Liquid load meshvel')\n\
    fluid_file_import_s$ID$(dict=liquid_meshvel_dict_s$ID$, path=path, framenr=framenr, file_format=file_format)\n";

const std::string liquid_load_particles =
    "\n\
def liquid_load_particles_$ID$(path, framenr, file_format, resumable):\n\
    mantaMsg('Liquid load particles')\n\
    fluid_file_import_s$ID$(dict=liquid_particles_dict_final_s$ID$, path=path, framenr=framenr, file_format=file_format)\n\
    if resumable:\n\
        fluid_file_import_s$ID$(dict=liquid_particles_dict_resume_s$ID$, path=path, framenr=framenr, file_format=file_format)\n";

//////////////////////////////////////////////////////////////////////
// EXPORT
//////////////////////////////////////////////////////////////////////

const std::string liquid_save_data =
    "\n\
def liquid_save_data_$ID$(path, framenr, file_format, resumable):\n\
    mantaMsg('Liquid save data')\n\
    if not withMPSave or isWindows:\n\
        fluid_file_export_s$ID$(dict=liquid_data_dict_final_s$ID$, path=path, framenr=framenr, file_format=file_format)\n\
        if resumable:\n\
            fluid_file_export_s$ID$(dict=liquid_data_dict_resume_s$ID$, path=path, framenr=framenr, file_format=file_format)\n\
    else:\n\
        fluid_cache_multiprocessing_start_$ID$(function=fluid_file_export_s$ID$, framenr=framenr, format_data=file_format, path_data=path, dict=liquid_data_dict_final_s$ID$, do_join=False)\n\
        if resumable:\n\
            fluid_cache_multiprocessing_start_$ID$(function=fluid_file_export_s$ID$, framenr=framenr, format_data=file_format, path_data=path, dict=liquid_data_dict_resume_s$ID$, do_join=False)\n";

const std::string liquid_save_mesh =
    "\n\
def liquid_save_mesh_$ID$(path, framenr, file_format):\n\
    mantaMsg('Liquid save mesh')\n\
    if not withMPSave or isWindows:\n\
         fluid_file_export_s$ID$(dict=liquid_mesh_dict_s$ID$, path=path, framenr=framenr, file_format=file_format)\n\
    else:\n\
         fluid_cache_multiprocessing_start_$ID$(function=fluid_file_export_s$ID$, framenr=framenr, format_data=file_format, path_data=path, dict=liquid_mesh_dict_s$ID$, do_join=False)\n\
\n\
def liquid_save_meshvel_$ID$(path, framenr, file_format):\n\
    mantaMsg('Liquid save mesh vel')\n\
    if not withMPSave or isWindows:\n\
        fluid_file_export_s$ID$(dict=liquid_meshvel_dict_s$ID$, path=path, framenr=framenr, file_format=file_format)\n\
    else:\n\
        fluid_cache_multiprocessing_start_$ID$(function=fluid_file_export_s$ID$, framenr=framenr, format_data=file_format, path_data=path, dict=liquid_meshvel_dict_s$ID$, do_join=False)\n";

const std::string liquid_save_particles =
    "\n\
def liquid_save_particles_$ID$(path, framenr, file_format, resumable):\n\
    mantaMsg('Liquid save particles')\n\
    if not withMPSave or isWindows:\n\
        fluid_file_export_s$ID$(dict=liquid_particles_dict_final_s$ID$, path=path, framenr=framenr, file_format=file_format)\n\
        if resumable:\n\
            fluid_file_export_s$ID$(dict=liquid_particles_dict_resume_s$ID$, path=path, framenr=framenr, file_format=file_format)\n\
    else:\n\
        fluid_cache_multiprocessing_start_$ID$(function=fluid_file_export_s$ID$, framenr=framenr, format_data=file_format, path_data=path, dict=liquid_particles_dict_final_s$ID$, do_join=False)\n\
        if resumable:\n\
            fluid_cache_multiprocessing_start_$ID$(function=fluid_file_export_s$ID$, framenr=framenr, format_data=file_format, path_data=path, dict=liquid_particles_dict_resume_s$ID$, do_join=False)\n";

//////////////////////////////////////////////////////////////////////
// STANDALONE MODE
//////////////////////////////////////////////////////////////////////

const std::string liquid_standalone =
    "\n\
# Helper function to call cache load functions\n\
def load(frame, cache_resumable):\n\
    fluid_load_data_$ID$(os.path.join(cache_dir, 'data'), frame, file_format_data, cache_resumable)\n\
    liquid_load_data_$ID$(os.path.join(cache_dir, 'data'), frame, file_format_data, cache_resumable)\n\
    if using_sndparts_s$ID$:\n\
        liquid_load_particles_$ID$(os.path.join(cache_dir, 'particles'), frame, file_format_particles, cache_resumable)\n\
    if using_mesh_s$ID$:\n\
        liquid_load_mesh_$ID$(os.path.join(cache_dir, 'mesh'), frame, file_format_mesh)\n\
    if using_guiding_s$ID$:\n\
        fluid_load_guiding_$ID$(os.path.join(cache_dir, 'guiding'), frame, file_format_data)\n\
\n\
# Helper function to call step functions\n\
def step(frame):\n\
    liquid_adaptive_step_$ID$(frame)\n\
    if using_mesh_s$ID$:\n\
        liquid_step_mesh_$ID$()\n\
    if using_sndparts_s$ID$:\n\
        liquid_step_particles_$ID$()\n";