Welcome to mirror list, hosted at ThFree Co, Russian Federation.

sgstrf.c « superlu « opennl « intern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 335f21165ca22877284dbc6159a03d69ba6953c1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
/** \file opennl/superlu/sgstrf.c
 *  \ingroup opennl
 */

/*
 * -- SuperLU routine (version 3.0) --
 * Univ. of California Berkeley, Xerox Palo Alto Research Center,
 * and Lawrence Berkeley National Lab.
 * October 15, 2003
 *
 */
/*
  Copyright (c) 1994 by Xerox Corporation.  All rights reserved.
 
  THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
  EXPRESSED OR IMPLIED.  ANY USE IS AT YOUR OWN RISK.
 
  Permission is hereby granted to use or copy this program for any
  purpose, provided the above notices are retained on all copies.
  Permission to modify the code and to distribute modified code is
  granted, provided the above notices are retained, and a notice that
  the code was modified is included with the above copyright notice.
*/

#include "ssp_defs.h"

void
sgstrf (superlu_options_t *options, SuperMatrix *A,
        int relax, int panel_size, int *etree, void *work, int lwork,
        int *perm_c, int *perm_r, SuperMatrix *L, SuperMatrix *U,
        SuperLUStat_t *stat, int *info)
{
/*
 * Purpose
 * =======
 *
 * SGSTRF computes an LU factorization of a general sparse m-by-n
 * matrix A using partial pivoting with row interchanges.
 * The factorization has the form
 *     Pr * A = L * U
 * where Pr is a row permutation matrix, L is lower triangular with unit
 * diagonal elements (lower trapezoidal if A->nrow > A->ncol), and U is upper 
 * triangular (upper trapezoidal if A->nrow < A->ncol).
 *
 * See supermatrix.h for the definition of 'SuperMatrix' structure.
 *
 * Arguments
 * =========
 *
 * options (input) superlu_options_t*
 *         The structure defines the input parameters to control
 *         how the LU decomposition will be performed.
 *
 * A        (input) SuperMatrix*
 *	    Original matrix A, permuted by columns, of dimension
 *          (A->nrow, A->ncol). The type of A can be:
 *          Stype = SLU_NCP; Dtype = SLU_S; Mtype = SLU_GE.
 *
 * drop_tol (input) float (NOT IMPLEMENTED)
 *	    Drop tolerance parameter. At step j of the Gaussian elimination,
 *          if abs(A_ij)/(max_i abs(A_ij)) < drop_tol, drop entry A_ij.
 *          0 <= drop_tol <= 1. The default value of drop_tol is 0.
 *
 * relax    (input) int
 *          To control degree of relaxing supernodes. If the number
 *          of nodes (columns) in a subtree of the elimination tree is less
 *          than relax, this subtree is considered as one supernode,
 *          regardless of the row structures of those columns.
 *
 * panel_size (input) int
 *          A panel consists of at most panel_size consecutive columns.
 *
 * etree    (input) int*, dimension (A->ncol)
 *          Elimination tree of A'*A.
 *          Note: etree is a vector of parent pointers for a forest whose
 *          vertices are the integers 0 to A->ncol-1; etree[root]==A->ncol.
 *          On input, the columns of A should be permuted so that the
 *          etree is in a certain postorder.
 *
 * work     (input/output) void*, size (lwork) (in bytes)
 *          User-supplied work space and space for the output data structures.
 *          Not referenced if lwork = 0;
 *
 * lwork   (input) int
 *         Specifies the size of work array in bytes.
 *         = 0:  allocate space internally by system malloc;
 *         > 0:  use user-supplied work array of length lwork in bytes,
 *               returns error if space runs out.
 *         = -1: the routine guesses the amount of space needed without
 *               performing the factorization, and returns it in
 *               *info; no other side effects.
 *
 * perm_c   (input) int*, dimension (A->ncol)
 *	    Column permutation vector, which defines the 
 *          permutation matrix Pc; perm_c[i] = j means column i of A is 
 *          in position j in A*Pc.
 *          When searching for diagonal, perm_c[*] is applied to the
 *          row subscripts of A, so that diagonal threshold pivoting
 *          can find the diagonal of A, rather than that of A*Pc.
 *
 * perm_r   (input/output) int*, dimension (A->nrow)
 *          Row permutation vector which defines the permutation matrix Pr,
 *          perm_r[i] = j means row i of A is in position j in Pr*A.
 *          If options->Fact = SamePattern_SameRowPerm, the pivoting routine
 *             will try to use the input perm_r, unless a certain threshold
 *             criterion is violated. In that case, perm_r is overwritten by
 *             a new permutation determined by partial pivoting or diagonal
 *             threshold pivoting.
 *          Otherwise, perm_r is output argument;
 *
 * L        (output) SuperMatrix*
 *          The factor L from the factorization Pr*A=L*U; use compressed row 
 *          subscripts storage for supernodes, i.e., L has type: 
 *          Stype = SLU_SC, Dtype = SLU_S, Mtype = SLU_TRLU.
 *
 * U        (output) SuperMatrix*
 *	    The factor U from the factorization Pr*A*Pc=L*U. Use column-wise
 *          storage scheme, i.e., U has types: Stype = SLU_NC, 
 *          Dtype = SLU_S, Mtype = SLU_TRU.
 *
 * stat     (output) SuperLUStat_t*
 *          Record the statistics on runtime and floating-point operation count.
 *          See util.h for the definition of 'SuperLUStat_t'.
 *
 * info     (output) int*
 *          = 0: successful exit
 *          < 0: if info = -i, the i-th argument had an illegal value
 *          > 0: if info = i, and i is
 *             <= A->ncol: U(i,i) is exactly zero. The factorization has
 *                been completed, but the factor U is exactly singular,
 *                and division by zero will occur if it is used to solve a
 *                system of equations.
 *             > A->ncol: number of bytes allocated when memory allocation
 *                failure occurred, plus A->ncol. If lwork = -1, it is
 *                the estimated amount of space needed, plus A->ncol.
 *
 * ======================================================================
 *
 * Local Working Arrays: 
 * ======================
 *   m = number of rows in the matrix
 *   n = number of columns in the matrix
 *
 *   xprune[0:n-1]: xprune[*] points to locations in subscript 
 *	vector lsub[*]. For column i, xprune[i] denotes the point where 
 *	structural pruning begins. I.e. only xlsub[i],..,xprune[i]-1 need 
 *	to be traversed for symbolic factorization.
 *
 *   marker[0:3*m-1]: marker[i] = j means that node i has been 
 *	reached when working on column j.
 *	Storage: relative to original row subscripts
 *	NOTE: There are 3 of them: marker/marker1 are used for panel dfs, 
 *	      see spanel_dfs.c; marker2 is used for inner-factorization,
 *            see scolumn_dfs.c.
 *
 *   parent[0:m-1]: parent vector used during dfs
 *      Storage: relative to new row subscripts
 *
 *   xplore[0:m-1]: xplore[i] gives the location of the next (dfs) 
 *	unexplored neighbor of i in lsub[*]
 *
 *   segrep[0:nseg-1]: contains the list of supernodal representatives
 *	in topological order of the dfs. A supernode representative is the 
 *	last column of a supernode.
 *      The maximum size of segrep[] is n.
 *
 *   repfnz[0:W*m-1]: for a nonzero segment U[*,j] that ends at a 
 *	supernodal representative r, repfnz[r] is the location of the first 
 *	nonzero in this segment.  It is also used during the dfs: repfnz[r]>0
 *	indicates the supernode r has been explored.
 *	NOTE: There are W of them, each used for one column of a panel. 
 *
 *   panel_lsub[0:W*m-1]: temporary for the nonzeros row indices below 
 *      the panel diagonal. These are filled in during spanel_dfs(), and are
 *      used later in the inner LU factorization within the panel.
 *	panel_lsub[]/dense[] pair forms the SPA data structure.
 *	NOTE: There are W of them.
 *
 *   dense[0:W*m-1]: sparse accumulating (SPA) vector for intermediate values;
 *	    	   NOTE: there are W of them.
 *
 *   tempv[0:*]: real temporary used for dense numeric kernels;
 *	The size of this array is defined by NUM_TEMPV() in ssp_defs.h.
 *
 */
    /* Local working arrays */
    NCPformat *Astore;
    int       *iperm_r = NULL; /* inverse of perm_r;
			   used when options->Fact == SamePattern_SameRowPerm */
    int       *iperm_c; /* inverse of perm_c */
    int       *iwork;
    float    *swork;
    int	      *segrep, *repfnz, *parent, *xplore;
    int	      *panel_lsub; /* dense[]/panel_lsub[] pair forms a w-wide SPA */
    int	      *xprune;
    int	      *marker;
    float    *dense, *tempv;
    int       *relax_end;
    float    *a;
    int       *asub;
    int       *xa_begin, *xa_end;
    int       *xsup, *supno;
    int       *xlsub, *xlusup, *xusub;
    int       nzlumax;
    static GlobalLU_t Glu; /* persistent to facilitate multiple factors. */

    /* Local scalars */
    fact_t    fact = options->Fact;
    double    diag_pivot_thresh = options->DiagPivotThresh;
    int       pivrow;   /* pivotal row number in the original matrix A */
    int       nseg1;	/* no of segments in U-column above panel row jcol */
    int       nseg;	/* no of segments in each U-column */
    register int jcol;	
    register int kcol;	/* end column of a relaxed snode */
    register int icol;
    register int i, k, jj, new_next, iinfo;
    int       m, n, min_mn, jsupno, fsupc, nextlu, nextu;
    int       w_def;	/* upper bound on panel width */
    int       usepr, iperm_r_allocated = 0;
    int       nnzL, nnzU;
    int       *panel_histo = stat->panel_histo;
    flops_t   *ops = stat->ops;

    iinfo    = 0;
    m        = A->nrow;
    n        = A->ncol;
    min_mn   = SUPERLU_MIN(m, n);
    Astore   = A->Store;
    a        = Astore->nzval;
    asub     = Astore->rowind;
    xa_begin = Astore->colbeg;
    xa_end   = Astore->colend;

    /* Allocate storage common to the factor routines */
    *info = sLUMemInit(fact, work, lwork, m, n, Astore->nnz,
                       panel_size, L, U, &Glu, &iwork, &swork);
    if ( *info ) return;
    
    xsup    = Glu.xsup;
    supno   = Glu.supno;
    xlsub   = Glu.xlsub;
    xlusup  = Glu.xlusup;
    xusub   = Glu.xusub;
    
    SetIWork(m, n, panel_size, iwork, &segrep, &parent, &xplore,
	     &repfnz, &panel_lsub, &xprune, &marker);
    sSetRWork(m, panel_size, swork, &dense, &tempv);
    
    usepr = (fact == SamePattern_SameRowPerm);
    if ( usepr ) {
	/* Compute the inverse of perm_r */
	iperm_r = (int *) intMalloc(m);
	for (k = 0; k < m; ++k) iperm_r[perm_r[k]] = k;
	iperm_r_allocated = 1;
    }
    iperm_c = (int *) intMalloc(n);
    for (k = 0; k < n; ++k) iperm_c[perm_c[k]] = k;

    /* Identify relaxed snodes */
    relax_end = (int *) intMalloc(n);
    if ( options->SymmetricMode == YES ) {
        heap_relax_snode(n, etree, relax, marker, relax_end); 
    } else {
        relax_snode(n, etree, relax, marker, relax_end); 
    }
    
    ifill (perm_r, m, EMPTY);
    ifill (marker, m * NO_MARKER, EMPTY);
    supno[0] = -1;
    xsup[0]  = xlsub[0] = xusub[0] = xlusup[0] = 0;
    w_def    = panel_size;

    /* 
     * Work on one "panel" at a time. A panel is one of the following: 
     *	   (a) a relaxed supernode at the bottom of the etree, or
     *	   (b) panel_size contiguous columns, defined by the user
     */
    for (jcol = 0; jcol < min_mn; ) {

	if ( relax_end[jcol] != EMPTY ) { /* start of a relaxed snode */
   	    kcol = relax_end[jcol];	  /* end of the relaxed snode */
	    panel_histo[kcol-jcol+1]++;

	    /* --------------------------------------
	     * Factorize the relaxed supernode(jcol:kcol) 
	     * -------------------------------------- */
	    /* Determine the union of the row structure of the snode */
	    if ( (*info = ssnode_dfs(jcol, kcol, asub, xa_begin, xa_end,
				    xprune, marker, &Glu)) != 0 ) {
		if ( iperm_r_allocated ) SUPERLU_FREE (iperm_r);
		SUPERLU_FREE (iperm_c);
		SUPERLU_FREE (relax_end);
		return;
	    }

            nextu    = xusub[jcol];
	    nextlu   = xlusup[jcol];
	    jsupno   = supno[jcol];
	    fsupc    = xsup[jsupno];
	    new_next = nextlu + (xlsub[fsupc+1]-xlsub[fsupc])*(kcol-jcol+1);
	    nzlumax = Glu.nzlumax;
	    while ( new_next > nzlumax ) {
		if ( (*info = sLUMemXpand(jcol, nextlu, LUSUP, &nzlumax, &Glu)) ) {
			if ( iperm_r_allocated ) SUPERLU_FREE (iperm_r);
			SUPERLU_FREE (iperm_c);
			SUPERLU_FREE (relax_end);
			return;
		}
	    }
    
	    for (icol = jcol; icol<= kcol; icol++) {
		xusub[icol+1] = nextu;
		
    		/* Scatter into SPA dense[*] */
    		for (k = xa_begin[icol]; k < xa_end[icol]; k++)
        	    dense[asub[k]] = a[k];

	       	/* Numeric update within the snode */
	        ssnode_bmod(icol, fsupc, dense, tempv, &Glu, stat);

		if ( (*info = spivotL(icol, diag_pivot_thresh, &usepr, perm_r,
				      iperm_r, iperm_c, &pivrow, &Glu, stat)) )
		    if ( iinfo == 0 ) iinfo = *info;
		
#ifdef DEBUG
		sprint_lu_col("[1]: ", icol, pivrow, xprune, &Glu);
#endif

	    }

	    jcol = icol;

	} else { /* Work on one panel of panel_size columns */
	    
	    /* Adjust panel_size so that a panel won't overlap with the next 
	     * relaxed snode.
	     */
	    panel_size = w_def;
	    for (k = jcol + 1; k < SUPERLU_MIN(jcol+panel_size, min_mn); k++) 
		if ( relax_end[k] != EMPTY ) {
		    panel_size = k - jcol;
		    break;
		}
	    if ( k == min_mn ) panel_size = min_mn - jcol;
	    panel_histo[panel_size]++;

	    /* symbolic factor on a panel of columns */
	    spanel_dfs(m, panel_size, jcol, A, perm_r, &nseg1,
		      dense, panel_lsub, segrep, repfnz, xprune,
		      marker, parent, xplore, &Glu);
	    
	    /* numeric sup-panel updates in topological order */
	    spanel_bmod(m, panel_size, jcol, nseg1, dense,
		        tempv, segrep, repfnz, &Glu, stat);
	    
	    /* Sparse LU within the panel, and below panel diagonal */
    	    for ( jj = jcol; jj < jcol + panel_size; jj++) {
 		k = (jj - jcol) * m; /* column index for w-wide arrays */

		nseg = nseg1;	/* Begin after all the panel segments */

	    	if ((*info = scolumn_dfs(m, jj, perm_r, &nseg, &panel_lsub[k],
					segrep, &repfnz[k], xprune, marker,
					parent, xplore, &Glu)) != 0) {
			if ( iperm_r_allocated ) SUPERLU_FREE (iperm_r);
			SUPERLU_FREE (iperm_c);
			SUPERLU_FREE (relax_end);
			return;
		}

	      	/* Numeric updates */
	    	if ((*info = scolumn_bmod(jj, (nseg - nseg1), &dense[k],
					 tempv, &segrep[nseg1], &repfnz[k],
					 jcol, &Glu, stat)) != 0) {
			if ( iperm_r_allocated ) SUPERLU_FREE (iperm_r);
			SUPERLU_FREE (iperm_c);
			SUPERLU_FREE (relax_end);
			return;
		}
		
	        /* Copy the U-segments to ucol[*] */
		if ((*info = scopy_to_ucol(jj, nseg, segrep, &repfnz[k],
					  perm_r, &dense[k], &Glu)) != 0) {
			if ( iperm_r_allocated ) SUPERLU_FREE (iperm_r);
			SUPERLU_FREE (iperm_c);
			SUPERLU_FREE (relax_end);
			return;
		}

	    	if ( (*info = spivotL(jj, diag_pivot_thresh, &usepr, perm_r,
				      iperm_r, iperm_c, &pivrow, &Glu, stat)) )
		    if ( iinfo == 0 ) iinfo = *info;

		/* Prune columns (0:jj-1) using column jj */
	    	spruneL(jj, perm_r, pivrow, nseg, segrep,
                        &repfnz[k], xprune, &Glu);

		/* Reset repfnz[] for this column */
	    	resetrep_col (nseg, segrep, &repfnz[k]);
		
#ifdef DEBUG
		sprint_lu_col("[2]: ", jj, pivrow, xprune, &Glu);
#endif

	    }

   	    jcol += panel_size;	/* Move to the next panel */

	} /* else */

    } /* for */

    *info = iinfo;
    
    if ( m > n ) {
	k = 0;
        for (i = 0; i < m; ++i) 
            if ( perm_r[i] == EMPTY ) {
    		perm_r[i] = n + k;
		++k;
	    }
    }

    countnz(min_mn, xprune, &nnzL, &nnzU, &Glu);
    fixupL(min_mn, perm_r, &Glu);

    sLUWorkFree(iwork, swork, &Glu); /* Free work space and compress storage */

    if ( fact == SamePattern_SameRowPerm ) {
        /* L and U structures may have changed due to possibly different
	   pivoting, even though the storage is available.
	   There could also be memory expansions, so the array locations
           may have changed, */
        ((SCformat *)L->Store)->nnz = nnzL;
	((SCformat *)L->Store)->nsuper = Glu.supno[n];
	((SCformat *)L->Store)->nzval = Glu.lusup;
	((SCformat *)L->Store)->nzval_colptr = Glu.xlusup;
	((SCformat *)L->Store)->rowind = Glu.lsub;
	((SCformat *)L->Store)->rowind_colptr = Glu.xlsub;
	((NCformat *)U->Store)->nnz = nnzU;
	((NCformat *)U->Store)->nzval = Glu.ucol;
	((NCformat *)U->Store)->rowind = Glu.usub;
	((NCformat *)U->Store)->colptr = Glu.xusub;
    } else {
        sCreate_SuperNode_Matrix(L, A->nrow, A->ncol, nnzL, Glu.lusup, 
	                         Glu.xlusup, Glu.lsub, Glu.xlsub, Glu.supno,
			         Glu.xsup, SLU_SC, SLU_S, SLU_TRLU);
    	sCreate_CompCol_Matrix(U, min_mn, min_mn, nnzU, Glu.ucol, 
			       Glu.usub, Glu.xusub, SLU_NC, SLU_S, SLU_TRU);
    }
    
    ops[FACT] += ops[TRSV] + ops[GEMV];	
    
    if ( iperm_r_allocated ) SUPERLU_FREE (iperm_r);
    SUPERLU_FREE (iperm_c);
    SUPERLU_FREE (relax_end);
}