Welcome to mirror list, hosted at ThFree Co, Russian Federation.

opensubdiv_topology_refiner.cc « internal « opensubdiv « intern - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: f4a1a82ca52dbc0ab1d201307cfaea4c09000dd1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
// Copyright 2018 Blender Foundation. All rights reserved.
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 2
// of the License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software Foundation,
// Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
//
// Author: Sergey Sharybin

#include "opensubdiv_topology_refiner_capi.h"

#include <vector>

#include "MEM_guardedalloc.h"
#include "internal/opensubdiv_converter_factory.h"
#include "internal/opensubdiv_converter_internal.h"
#include "internal/opensubdiv_edge_map.h"
#include "internal/opensubdiv_internal.h"
#include "internal/opensubdiv_topology_refiner_internal.h"
#include "internal/opensubdiv_util.h"

using opensubdiv_capi::vector;

namespace {

const OpenSubdiv::Far::TopologyRefiner *getOSDTopologyRefiner(
    const OpenSubdiv_TopologyRefiner *topology_refiner)
{
  return topology_refiner->internal->osd_topology_refiner;
}

const OpenSubdiv::Far::TopologyLevel *getOSDTopologyBaseLevel(
    const OpenSubdiv_TopologyRefiner *topology_refiner)
{
  return &getOSDTopologyRefiner(topology_refiner)->GetLevel(0);
}

int getSubdivisionLevel(const OpenSubdiv_TopologyRefiner *topology_refiner)
{
  return topology_refiner->internal->settings.level;
}

bool getIsAdaptive(const OpenSubdiv_TopologyRefiner *topology_refiner)
{
  return topology_refiner->internal->settings.is_adaptive;
}

////////////////////////////////////////////////////////////////////////////////
// Query basic topology information from base level.

int getNumVertices(const OpenSubdiv_TopologyRefiner *topology_refiner)
{
  return getOSDTopologyBaseLevel(topology_refiner)->GetNumVertices();
}

int getNumEdges(const OpenSubdiv_TopologyRefiner *topology_refiner)
{
  return getOSDTopologyBaseLevel(topology_refiner)->GetNumEdges();
}

int getNumFaces(const OpenSubdiv_TopologyRefiner *topology_refiner)
{
  return getOSDTopologyBaseLevel(topology_refiner)->GetNumFaces();
}

////////////////////////////////////////////////////////////////////////////////
// PTex face geometry queries.

static void convertArrayToRaw(const OpenSubdiv::Far::ConstIndexArray &array, int *raw_array)
{
  for (int i = 0; i < array.size(); ++i) {
    raw_array[i] = array[i];
  }
}

int getNumFaceVertices(const OpenSubdiv_TopologyRefiner *topology_refiner, const int face_index)
{
  const OpenSubdiv::Far::TopologyLevel *base_level = getOSDTopologyBaseLevel(topology_refiner);
  return base_level->GetFaceVertices(face_index).size();
}

void getFaceVertices(const OpenSubdiv_TopologyRefiner *topology_refiner,
                     const int face_index,
                     int *face_vertices_indices)
{
  const OpenSubdiv::Far::TopologyLevel *base_level = getOSDTopologyBaseLevel(topology_refiner);
  OpenSubdiv::Far::ConstIndexArray array = base_level->GetFaceVertices(face_index);
  convertArrayToRaw(array, face_vertices_indices);
}

int getNumFaceEdges(const OpenSubdiv_TopologyRefiner *topology_refiner, const int face_index)
{
  const OpenSubdiv::Far::TopologyLevel *base_level = getOSDTopologyBaseLevel(topology_refiner);
  return base_level->GetFaceEdges(face_index).size();
}

void getFaceEdges(const OpenSubdiv_TopologyRefiner *topology_refiner,
                  const int face_index,
                  int *face_edges_indices)
{
  const OpenSubdiv::Far::TopologyLevel *base_level = getOSDTopologyBaseLevel(topology_refiner);
  OpenSubdiv::Far::ConstIndexArray array = base_level->GetFaceEdges(face_index);
  convertArrayToRaw(array, face_edges_indices);
}

void getEdgeVertices(const OpenSubdiv_TopologyRefiner *topology_refiner,
                     const int edge_index,
                     int edge_vertices_indices[2])
{
  const OpenSubdiv::Far::TopologyLevel *base_level = getOSDTopologyBaseLevel(topology_refiner);
  OpenSubdiv::Far::ConstIndexArray array = base_level->GetEdgeVertices(edge_index);
  assert(array.size() == 2);
  edge_vertices_indices[0] = array[0];
  edge_vertices_indices[1] = array[1];
}

int getNumFacePtexFaces(const OpenSubdiv_TopologyRefiner *topology_refiner, const int face_index)
{
  const int num_face_vertices = topology_refiner->getNumFaceVertices(topology_refiner, face_index);
  if (num_face_vertices == 4) {
    return 1;
  }
  else {
    return num_face_vertices;
  }
}

int getNumPtexFaces(const OpenSubdiv_TopologyRefiner *topology_refiner)
{
  const int num_faces = topology_refiner->getNumFaces(topology_refiner);
  int num_ptex_faces = 0;
  for (int face_index = 0; face_index < num_faces; ++face_index) {
    num_ptex_faces += topology_refiner->getNumFacePtexFaces(topology_refiner, face_index);
  }
  return num_ptex_faces;
}

void fillFacePtexIndexOffset(const OpenSubdiv_TopologyRefiner *topology_refiner,
                             int *face_ptex_index_offset)
{
  const int num_faces = topology_refiner->getNumFaces(topology_refiner);
  int num_ptex_faces = 0;
  for (int face_index = 0; face_index < num_faces; ++face_index) {
    face_ptex_index_offset[face_index] = num_ptex_faces;
    num_ptex_faces += topology_refiner->getNumFacePtexFaces(topology_refiner, face_index);
  }
}

////////////////////////////////////////////////////////////////////////////////
// Face-varying data.

int getNumFVarChannels(const struct OpenSubdiv_TopologyRefiner *topology_refiner)
{
  const OpenSubdiv::Far::TopologyLevel *base_level = getOSDTopologyBaseLevel(topology_refiner);
  return base_level->GetNumFVarChannels();
}

OpenSubdiv_FVarLinearInterpolation getFVarLinearInterpolation(
    const struct OpenSubdiv_TopologyRefiner *topology_refiner)
{
  return opensubdiv_capi::getCAPIFVarLinearInterpolationFromOSD(
      getOSDTopologyRefiner(topology_refiner)->GetFVarLinearInterpolation());
}

int getNumFVarValues(const struct OpenSubdiv_TopologyRefiner *topology_refiner, const int channel)
{
  const OpenSubdiv::Far::TopologyLevel *base_level = getOSDTopologyBaseLevel(topology_refiner);
  return base_level->GetNumFVarValues(channel);
}

const int *getFaceFVarValueIndices(const struct OpenSubdiv_TopologyRefiner *topology_refiner,
                                   const int face_index,
                                   const int channel)
{
  const OpenSubdiv::Far::TopologyLevel *base_level = getOSDTopologyBaseLevel(topology_refiner);
  return &base_level->GetFaceFVarValues(face_index, channel)[0];
}

////////////////////////////////////////////////////////////////////////////////
// Internal helpers.

void assignFunctionPointers(OpenSubdiv_TopologyRefiner *topology_refiner)
{
  topology_refiner->getSubdivisionLevel = getSubdivisionLevel;
  topology_refiner->getIsAdaptive = getIsAdaptive;
  // Basic topology information.
  topology_refiner->getNumVertices = getNumVertices;
  topology_refiner->getNumEdges = getNumEdges;
  topology_refiner->getNumFaces = getNumFaces;
  topology_refiner->getNumFaceVertices = getNumFaceVertices;
  topology_refiner->getFaceVertices = getFaceVertices;
  topology_refiner->getNumFaceEdges = getNumFaceEdges;
  topology_refiner->getFaceEdges = getFaceEdges;
  topology_refiner->getEdgeVertices = getEdgeVertices;
  // PTex face geometry.
  topology_refiner->getNumFacePtexFaces = getNumFacePtexFaces;
  topology_refiner->getNumPtexFaces = getNumPtexFaces;
  topology_refiner->fillFacePtexIndexOffset = fillFacePtexIndexOffset;
  // Face-varying data.
  topology_refiner->getNumFVarChannels = getNumFVarChannels;
  topology_refiner->getFVarLinearInterpolation = getFVarLinearInterpolation;
  topology_refiner->getNumFVarValues = getNumFVarValues;
  topology_refiner->getFaceFVarValueIndices = getFaceFVarValueIndices;
}

OpenSubdiv_TopologyRefiner *allocateTopologyRefiner()
{
  OpenSubdiv_TopologyRefiner *topology_refiner = OBJECT_GUARDED_NEW(OpenSubdiv_TopologyRefiner);
  topology_refiner->internal = OBJECT_GUARDED_NEW(OpenSubdiv_TopologyRefinerInternal);
  assignFunctionPointers(topology_refiner);
  return topology_refiner;
}

}  // namespace

OpenSubdiv_TopologyRefiner *openSubdiv_createTopologyRefinerFromConverter(
    OpenSubdiv_Converter *converter, const OpenSubdiv_TopologyRefinerSettings *settings)
{
  OpenSubdiv::Far::TopologyRefiner *osd_topology_refiner =
      opensubdiv_capi::createOSDTopologyRefinerFromConverter(converter);
  if (osd_topology_refiner == NULL) {
    // Happens on empty or bad topology.
    return NULL;
  }
  OpenSubdiv_TopologyRefiner *topology_refiner = allocateTopologyRefiner();
  topology_refiner->internal->osd_topology_refiner = osd_topology_refiner;
  // Store setting which we want to keep track of and which can not be stored
  // in OpenSubdiv's descriptor yet.
  topology_refiner->internal->settings = *settings;
  return topology_refiner;
}

void openSubdiv_deleteTopologyRefiner(OpenSubdiv_TopologyRefiner *topology_refiner)
{
  OBJECT_GUARDED_DELETE(topology_refiner->internal, OpenSubdiv_TopologyRefinerInternal);
  OBJECT_GUARDED_DELETE(topology_refiner, OpenSubdiv_TopologyRefiner);
}

////////////////////////////////////////////////////////////////////////////////
// Comparison with converter.

namespace opensubdiv_capi {
namespace {

///////////////////////////////////////////////////////////
// Quick preliminary checks.

bool checkSchemeTypeMatches(const OpenSubdiv::Far::TopologyRefiner *topology_refiner,
                            const OpenSubdiv_Converter *converter)
{
  const OpenSubdiv::Sdc::SchemeType converter_scheme_type = opensubdiv_capi::getSchemeTypeFromCAPI(
      converter->getSchemeType(converter));
  return (converter_scheme_type == topology_refiner->GetSchemeType());
}

bool checkOptionsMatches(const OpenSubdiv::Far::TopologyRefiner *topology_refiner,
                         const OpenSubdiv_Converter *converter)
{
  typedef OpenSubdiv::Sdc::Options Options;
  const Options options = topology_refiner->GetSchemeOptions();
  const Options::FVarLinearInterpolation fvar_interpolation = options.GetFVarLinearInterpolation();
  const Options::FVarLinearInterpolation converter_fvar_interpolation =
      opensubdiv_capi::getFVarLinearInterpolationFromCAPI(
          converter->getFVarLinearInterpolation(converter));
  if (fvar_interpolation != converter_fvar_interpolation) {
    return false;
  }
  return true;
}

bool checkGeometryCountersMatches(const OpenSubdiv::Far::TopologyRefiner *topology_refiner,
                                  const OpenSubdiv_Converter *converter)
{
  using OpenSubdiv::Far::TopologyLevel;
  const TopologyLevel &base_level = topology_refiner->GetLevel(0);
  return ((converter->getNumVertices(converter) == base_level.GetNumVertices()) &&
          (converter->getNumEdges(converter) == base_level.GetNumEdges()) &&
          (converter->getNumFaces(converter) == base_level.GetNumFaces()));
}

bool checkPreliminaryMatches(const OpenSubdiv::Far::TopologyRefiner *topology_refiner,
                             const OpenSubdiv_Converter *converter)
{
  return checkSchemeTypeMatches(topology_refiner, converter) &&
         checkOptionsMatches(topology_refiner, converter) &&
         checkGeometryCountersMatches(topology_refiner, converter);
}

///////////////////////////////////////////////////////////
// Geometry comparison.

// A thin wrapper around index like array which does cyclic access. This means,
// it basically does indices[requested_index % num_indices].
//
// NOTE: This array does not own the memory.
//
// TODO(sergey): Consider moving this to a more reusable place.
class CyclicArray {
 public:
  typedef int value_type;
  typedef int size_type;
  static constexpr size_type npos = -1;

  explicit CyclicArray(const std::vector<int> &data) : data_(data.data()), size_(data.size())
  {
  }

  explicit CyclicArray(const OpenSubdiv::Far::ConstIndexArray &data)
      : data_(&data[0]), size_(data.size())
  {
  }

  inline value_type operator[](int index) const
  {
    assert(index >= 0);
    // TODO(sergey): Check whether doing check for element index exceeding total
    // number of indices prior to modulo helps performance.
    return data_[index % size()];
  }

  inline size_type size() const
  {
    return size_;
  }

  // Find index of first occurrence of a given value.
  inline size_type find(const value_type value) const
  {
    const int num_indices = size();
    for (size_type i = 0; i < num_indices; ++i) {
      if (value == (*this)[i]) {
        return i;
      }
    }
    return npos;
  }

 protected:
  const value_type *data_;
  const size_type size_;
};

bool compareCyclicForward(const CyclicArray &array_a,
                          const int start_a,
                          const CyclicArray &array_b,
                          const int start_b)
{
  const int num_elements = array_a.size();
  for (int i = 0; i < num_elements; ++i) {
    if (array_a[start_a + i] != array_b[start_b + i]) {
      return false;
    }
  }
  return true;
}

bool compareCyclicBackward(const CyclicArray &array_a,
                           const int start_a,
                           const CyclicArray &array_b,
                           const int start_b)
{
  const int num_elements = array_a.size();
  // TODO(sergey): Some optimization might be possible with memcmp trickery.
  for (int i = 0; i < num_elements; ++i) {
    if (array_a[start_a + (num_elements - i - 1)] != array_b[start_b + (num_elements - i - 1)]) {
      return false;
    }
  }
  return true;
}

// Utility function dedicated for checking whether whether vertices indices
// used by two faces match.
// The tricky part here is that we can't trust 1:1 array match here, since it's
// possible that OpenSubdiv oriented edges of a face to make it compatible with
// an internal representation of non-manifold meshes.
//
// TODO(sergey): Check whether this is needed, ot whether OpenSubdiv is only
// creating edges in a proper orientation without modifying indices of face
// vertices.
bool checkVerticesOfFacesMatch(const CyclicArray &indices_a, const CyclicArray &indices_b)
{
  if (indices_a.size() != indices_a.size()) {
    return false;
  }
  // "Align" the arrays so we know first matched element.
  const int start_b = indices_b.find(indices_a[0]);
  if (start_b == indices_b.npos) {
    return false;
  }
  // Check match in both directions, for the case OpenSubdiv did orient face in
  // a way which made normals more consistent internally.
  if (compareCyclicForward(indices_a, 0, indices_b, start_b)) {
    return true;
  }
  if (compareCyclicBackward(indices_a, 0, indices_b, start_b)) {
    return true;
  }
  return false;
}

bool checkGeometryFacesMatch(const OpenSubdiv::Far::TopologyRefiner *topology_refiner,
                             const OpenSubdiv_Converter *converter)
{
  using OpenSubdiv::Far::ConstIndexArray;
  using OpenSubdiv::Far::TopologyLevel;
  const TopologyLevel &base_level = topology_refiner->GetLevel(0);
  const int num_faces = base_level.GetNumFaces();
  // TODO(sergey): Consider using data structure which keeps handful of
  // elements on stack before doing heep allocation.
  vector<int> conv_face_vertices;
  for (int face_index = 0; face_index < num_faces; ++face_index) {
    const ConstIndexArray &face_vertices = base_level.GetFaceVertices(face_index);
    const int num_face_vertices = face_vertices.size();
    if (num_face_vertices != converter->getNumFaceVertices(converter, face_index)) {
      return false;
    }
    conv_face_vertices.resize(num_face_vertices);
    converter->getFaceVertices(converter, face_index, &conv_face_vertices[0]);
    if (!checkVerticesOfFacesMatch(CyclicArray(conv_face_vertices), CyclicArray(face_vertices))) {
      return false;
    }
  }
  return true;
}

bool checkGeometryMatches(const OpenSubdiv::Far::TopologyRefiner *topology_refiner,
                          const OpenSubdiv_Converter *converter)
{
  // NOTE: Since OpenSubdiv's topology refiner doesn't contain loose edges, we
  // are only checking for faces to be matched. Changes in edges we don't care
  // here too much (they'll be checked for creases changes later).
  return checkGeometryFacesMatch(topology_refiner, converter);
}

///////////////////////////////////////////////////////////
// Compare attributes which affects on topology

inline bool checkSingleEdgeSharpnessMatch(const OpenSubdiv::Far::TopologyLevel &base_level,
                                          int base_level_edge_index,
                                          const OpenSubdiv_Converter *converter,
                                          int converter_edge_index)
{
  // NOTE: Boundary and non-manifold edges are internally forced to an infinite
  // sharpness. So we can not reliably compare those.
  //
  // TODO(sergey): Watch for NON_MANIFOLD_SHARP option.
  if (base_level.IsEdgeBoundary(base_level_edge_index) ||
      base_level.IsEdgeNonManifold(base_level_edge_index)) {
    return true;
  }
  const float sharpness = base_level.GetEdgeSharpness(base_level_edge_index);
  const float converter_sharpness = converter->getEdgeSharpness(converter, converter_edge_index);
  if (sharpness != converter_sharpness) {
    return false;
  }
  return true;
}

inline bool checkSingleEdgeTagMatch(const OpenSubdiv::Far::TopologyLevel &base_level,
                                    int base_level_edge_index,
                                    const OpenSubdiv_Converter *converter,
                                    int converter_edge_index)
{
  return checkSingleEdgeSharpnessMatch(
      base_level, base_level_edge_index, converter, converter_edge_index);
}

// Compares edge tags between topology refiner and converter in a case when
// converter specifies a full topology.
// This is simplest loop, since we know that order of edges matches.
bool checkEdgeTagsMatchFullTopology(const OpenSubdiv::Far::TopologyRefiner *topology_refiner,
                                    const OpenSubdiv_Converter *converter)
{
  using OpenSubdiv::Far::ConstIndexArray;
  using OpenSubdiv::Far::TopologyLevel;
  const TopologyLevel &base_level = topology_refiner->GetLevel(0);
  const int num_edges = base_level.GetNumEdges();
  for (int edge_index = 0; edge_index < num_edges; ++edge_index) {
    if (!checkSingleEdgeTagMatch(base_level, edge_index, converter, edge_index)) {
      return false;
    }
  }
  return true;
}

// Compares tags of edges in the case when orientation of edges is left up to
// OpenSubdiv. In this case we do need to take care of mapping edges from the
// converter to current topology refiner, since the order is not guaranteed.
bool checkEdgeTagsMatchAutoOrient(const OpenSubdiv::Far::TopologyRefiner *topology_refiner,
                                  const OpenSubdiv_Converter *converter)
{
  using OpenSubdiv::Far::ConstIndexArray;
  using OpenSubdiv::Far::TopologyLevel;
  const TopologyLevel &base_level = topology_refiner->GetLevel(0);
  const int num_edges = base_level.GetNumEdges();
  // Create mapping for quick lookup of edge index from its vertices indices.
  //
  // TODO(sergey): Consider caching it in some sort of wrapper around topology
  // refiner.
  EdgeTagMap<int> edge_map;
  for (int edge_index = 0; edge_index < num_edges; ++edge_index) {
    ConstIndexArray edge_vertices = base_level.GetEdgeVertices(edge_index);
    edge_map.insert(edge_vertices[0], edge_vertices[1], edge_index);
  }
  // Compare all edges.
  for (int converter_edge_index = 0; converter_edge_index < num_edges; ++converter_edge_index) {
    // Get edge vertices indices, and lookup corresponding edge index in the
    // base topology level.
    int edge_vertices[2];
    converter->getEdgeVertices(converter, converter_edge_index, edge_vertices);
    const int base_level_edge_index = edge_map.at(edge_vertices[0], edge_vertices[1]);
    // Perform actual test.
    if (!checkSingleEdgeTagMatch(
            base_level, base_level_edge_index, converter, converter_edge_index)) {
      return false;
    }
  }
  return true;
}

bool checkEdgeTagsMatch(const OpenSubdiv::Far::TopologyRefiner *topology_refiner,
                        const OpenSubdiv_Converter *converter)
{
  if (converter->specifiesFullTopology(converter)) {
    return checkEdgeTagsMatchFullTopology(topology_refiner, converter);
  }
  else {
    return checkEdgeTagsMatchAutoOrient(topology_refiner, converter);
  }
}

bool checkvertexSharpnessMatch(const OpenSubdiv::Far::TopologyRefiner *topology_refiner,
                               const OpenSubdiv_Converter *converter)
{
  using OpenSubdiv::Far::ConstIndexArray;
  using OpenSubdiv::Far::TopologyLevel;
  using OpenSubdiv::Sdc::Crease;
  const TopologyLevel &base_level = topology_refiner->GetLevel(0);
  // Create mapping for quick lookup of edge index from its vertices indices.
  //
  // TODO(sergey): Consider caching it in some sort of wrapper around topology
  // refiner.
  const int num_edges = base_level.GetNumEdges();
  EdgeTagMap<int> edge_map;
  for (int edge_index = 0; edge_index < num_edges; ++edge_index) {
    int edge_vertices[2];
    converter->getEdgeVertices(converter, edge_index, edge_vertices);
    edge_map.insert(edge_vertices[0], edge_vertices[1], edge_index);
  }
  const int num_vertices = base_level.GetNumVertices();
  for (int vertex_index = 0; vertex_index < num_vertices; ++vertex_index) {
    const float current_sharpness = base_level.GetVertexSharpness(vertex_index);
    if (converter->isInfiniteSharpVertex(converter, vertex_index)) {
      if (current_sharpness != Crease::SHARPNESS_INFINITE) {
        return false;
      }
    }
    else {
      ConstIndexArray vertex_edges = base_level.GetVertexEdges(vertex_index);
      float sharpness = converter->getVertexSharpness(converter, vertex_index);
      if (vertex_edges.size() == 2) {
        const int edge0 = vertex_edges[0], edge1 = vertex_edges[1];
        // Construct keys for lookup.
        ConstIndexArray edge0_vertices = base_level.GetEdgeVertices(edge0);
        ConstIndexArray edge1_vertices = base_level.GetEdgeVertices(edge1);
        EdgeKey edge0_key(edge0_vertices[0], edge0_vertices[1]);
        EdgeKey edge1_key(edge1_vertices[0], edge1_vertices[1]);
        // Lookup edge indices in the converter.
        const int edge0_converter_index = edge_map[edge0_key];
        const int edge1_converter_index = edge_map[edge1_key];
        // Lookup sharpness.
        const float sharpness0 = converter->getEdgeSharpness(converter, edge0_converter_index);
        const float sharpness1 = converter->getEdgeSharpness(converter, edge1_converter_index);
        // TODO(sergey): Find a better mixing between edge and vertex sharpness.
        sharpness += min(sharpness0, sharpness1);
        sharpness = min(sharpness, 10.0f);
      }
      if (sharpness != current_sharpness) {
        return false;
      }
    }
  }
  return true;
}

bool checkSingleUVLayerMatch(const OpenSubdiv::Far::TopologyLevel &base_level,
                             const OpenSubdiv_Converter *converter,
                             const int layer_index)
{
  converter->precalcUVLayer(converter, layer_index);
  const int num_faces = base_level.GetNumFaces();
  // TODO(sergey): Need to check whether converter changed the winding of
  // face to match OpenSubdiv's expectations.
  for (int face_index = 0; face_index < num_faces; ++face_index) {
    OpenSubdiv::Far::ConstIndexArray base_level_face_uvs = base_level.GetFaceFVarValues(
        face_index, layer_index);
    for (int corner = 0; corner < base_level_face_uvs.size(); ++corner) {
      const int uv_index = converter->getFaceCornerUVIndex(converter, face_index, corner);
      if (base_level_face_uvs[corner] != uv_index) {
        converter->finishUVLayer(converter);
        return false;
      }
    }
  }
  converter->finishUVLayer(converter);
  return true;
}

bool checkUVLayersMatch(const OpenSubdiv::Far::TopologyRefiner *topology_refiner,
                        const OpenSubdiv_Converter *converter)
{
  using OpenSubdiv::Far::TopologyLevel;
  const int num_layers = converter->getNumUVLayers(converter);
  const TopologyLevel &base_level = topology_refiner->GetLevel(0);
  // Number of UV layers should match.
  if (base_level.GetNumFVarChannels() != num_layers) {
    return false;
  }
  for (int layer_index = 0; layer_index < num_layers; ++layer_index) {
    if (!checkSingleUVLayerMatch(base_level, converter, layer_index)) {
      return false;
    }
  }
  return true;
}

bool checkTopologyAttributesMatch(const OpenSubdiv::Far::TopologyRefiner *topology_refiner,
                                  const OpenSubdiv_Converter *converter)
{
  return checkEdgeTagsMatch(topology_refiner, converter) &&
         checkvertexSharpnessMatch(topology_refiner, converter) &&
         checkUVLayersMatch(topology_refiner, converter);
}

}  // namespace
}  // namespace opensubdiv_capi

bool openSubdiv_topologyRefinerCompareWithConverter(
    const OpenSubdiv_TopologyRefiner *topology_refiner, const OpenSubdiv_Converter *converter)
{
  const OpenSubdiv::Far::TopologyRefiner *refiner = getOSDTopologyRefiner(topology_refiner);
  return (opensubdiv_capi::checkPreliminaryMatches(refiner, converter) &&
          opensubdiv_capi::checkGeometryMatches(refiner, converter) &&
          opensubdiv_capi::checkTopologyAttributesMatch(refiner, converter));
}