Welcome to mirror list, hosted at ThFree Co, Russian Federation.

engine_render_pov.py « io « release - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 22cf1a36dbb1c1329242c7070b849b8553d2ca20 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
import bpy

from math import atan, pi, degrees
import subprocess
import os
import sys
import time

import platform as pltfrm

if pltfrm.architecture()[0] == '64bit':
	bitness = 64
else:
	bitness = 32

def write_pov(filename, scene=None, info_callback = None):
	file = open(filename, 'w')
	
	# Only for testing
	if not scene:
		scene = bpy.data.scenes[0]
	
	render = scene.render_data
	world = scene.world
	
	# --- taken from fbx exporter 
	## This was used to make V, but faster not to do all that
	##valid = 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789-_,.()[]{}'
	##v = range(255)
	##for c in valid: v.remove(ord(c))
	v = [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,42,43,46,47,58,59,60,61,62,63,64,92,94,96,124,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254]
	invalid = ''.join([chr(i) for i in v])
	def cleanName(name):
		for ch in invalid:	name = name.replace(ch, '_')
		return name
	del v
	
	# --- done with clean name.
	
	def uniqueName(name, nameSeq):
		
		if name not in nameSeq:
			return name
		
		name_orig = name
		i = 1
		while name in nameSeq:
			name = '%s_%.3d' % (name_orig, i)
			i+=1
		
		return name
		
	
	def writeMatrix(matrix):
		file.write('\tmatrix <%.6f, %.6f, %.6f,  %.6f, %.6f, %.6f,  %.6f, %.6f, %.6f,  %.6f, %.6f, %.6f>\n' %\
		(matrix[0][0], matrix[0][1], matrix[0][2],  matrix[1][0], matrix[1][1], matrix[1][2],  matrix[2][0], matrix[2][1], matrix[2][2],  matrix[3][0], matrix[3][1], matrix[3][2]) )
	
	def writeObjectMaterial(material):
		if material and material.transparency_method=='RAYTRACE':
			file.write('\tinterior { ior %.6f }\n' % material.raytrace_transparency.ior)
			
			# Other interior args
			# fade_distance 2
			# fade_power [Value]
			# fade_color
			
			# dispersion
			# dispersion_samples
	
	materialNames = {}
	DEF_MAT_NAME = 'Default'
	def writeMaterial(material):
		# Assumes only called once on each material
		
		if material:
			name_orig = material.name
		else:
			name_orig = DEF_MAT_NAME
		
		name = materialNames[name_orig] = uniqueName(cleanName(name_orig), materialNames)
		
		file.write('#declare %s = finish {\n' % name)
		
		if material:
			file.write('\tdiffuse %.3g\n' % material.diffuse_intensity)
			file.write('\tspecular %.3g\n' % material.specular_intensity)
			
			file.write('\tambient %.3g\n' % material.ambient)
			#file.write('\tambient rgb <%.3g, %.3g, %.3g>\n' % tuple([c*material.ambient for c in world.ambient_color])) # povray blends the global value
			
			# map hardness between 0.0 and 1.0
			roughness = ((1.0 - ((material.specular_hardness-1.0)/510.0)))
			# scale from 0.0 to 0.1
			roughness *= 0.1
			# add a small value because 0.0 is invalid
			roughness += (1/511.0)
			
			file.write('\troughness %.3g\n' % roughness)
			
			# 'phong 70.0 '
			
			if material.raytrace_mirror.enabled:
				raytrace_mirror= material.raytrace_mirror
				if raytrace_mirror.reflect_factor:
					file.write('\treflection {\n')
					file.write('\t\trgb <%.3g, %.3g, %.3g>' % tuple(material.mirror_color))
					file.write('\t\tfresnel 1 falloff %.3g exponent %.3g metallic %.3g} ' % (raytrace_mirror.fresnel, raytrace_mirror.fresnel_factor, raytrace_mirror.reflect_factor))
		
		else:
			file.write('\tdiffuse 0.8\n')
			file.write('\tspecular 0.2\n')
			
			
		
		# This is written into the object
		'''
		if material and material.transparency_method=='RAYTRACE':
			'interior { ior %.3g} ' % material.raytrace_transparency.ior
		'''
		
		#file.write('\t\t\tcrand 1.0\n') # Sand granyness
		#file.write('\t\t\tmetallic %.6f\n' % material.spec)
		#file.write('\t\t\tphong %.6f\n' % material.spec)
		#file.write('\t\t\tphong_size %.6f\n' % material.spec)
		#file.write('\t\t\tbrilliance %.6f ' % (material.specular_hardness/256.0) # Like hardness
		
		file.write('}\n')
	
	def exportCamera():
		camera = scene.camera
		matrix = camera.matrix
		
		# compute resolution
		Qsize=float(render.resolution_x)/float(render.resolution_y)
		
		file.write('camera {\n')
		file.write('\tlocation  <0, 0, 0>\n')
		file.write('\tlook_at  <0, 0, -1>\n')
		file.write('\tright <%s, 0, 0>\n' % -Qsize)
		file.write('\tup <0, 1, 0>\n')
		file.write('\tangle  %f \n' % (360.0*atan(16.0/camera.data.lens)/pi))
		
		file.write('\trotate  <%.6f, %.6f, %.6f>\n' % tuple([degrees(e) for e in matrix.rotationPart().toEuler()]))
		file.write('\ttranslate <%.6f, %.6f, %.6f>\n' % (matrix[3][0], matrix[3][1], matrix[3][2]))
		file.write('}\n')
	
	
	
	def exportLamps(lamps):
		# Get all lamps
		for ob in lamps:
			lamp = ob.data
			
			matrix = ob.matrix
			
			color = tuple([c * lamp.energy for c in lamp.color]) # Colour is modified by energy
			
			file.write('light_source {\n')
			file.write('\t< 0,0,0 >\n')
			file.write('\tcolor rgb<%.3g, %.3g, %.3g>\n' % color)
			
			if lamp.type == 'POINT': # Point Lamp 
				pass
			elif lamp.type == 'SPOT': # Spot
				file.write('\tspotlight\n')
				
				# Falloff is the main radius from the centre line
				file.write('\tfalloff %.2f\n' % (lamp.spot_size/2.0) ) # 1 TO 179 FOR BOTH
				file.write('\tradius %.6f\n' % ((lamp.spot_size/2.0) * (1-lamp.spot_blend)) ) 
				
				# Blender does not have a tightness equivilent, 0 is most like blender default.
				file.write('\ttightness 0\n') # 0:10f
				
				file.write('\tpoint_at  <0, 0, -1>\n')
			elif lamp.type == 'SUN':
				file.write('\tparallel\n')
				file.write('\tpoint_at  <0, 0, -1>\n') # *must* be after 'parallel'
				
			elif lamp.type == 'AREA':
				
				size_x = lamp.size
				samples_x = lamp.shadow_ray_samples_x
				if lamp.shape == 'SQUARE':
					size_y = size_x
					samples_y = samples_x
				else:
					size_y = lamp.size_y
					samples_y = lamp.shadow_ray_samples_y
				
				
				
				file.write('\tarea_light <%d,0,0>,<0,0,%d> %d, %d\n' % (size_x, size_y, samples_x, samples_y))
				if lamp.shadow_ray_sampling_method == 'CONSTANT_JITTERED':
					if lamp.jitter:
						file.write('\tjitter\n')
				else:
					file.write('\tadaptive 1\n')
					file.write('\tjitter\n')
			
			if lamp.shadow_method == 'NOSHADOW':
				file.write('\tshadowless\n')	
			
			file.write('\tfade_distance %.6f\n' % lamp.distance)
			file.write('\tfade_power %d\n' % 1) # Could use blenders lamp quad?
			writeMatrix(matrix)
			
			file.write('}\n')
	
	def exportMeta(metas):
		
		# TODO - blenders 'motherball' naming is not supported.
		
		for ob in metas:
			meta = ob.data
			
			file.write('blob {\n')
			file.write('\t\tthreshold %.4g\n' % meta.threshold)
			
			try:
				material= meta.materials[0] # lame! - blender cant do enything else.
			except:
				material= None
			
			for elem in meta.elements:
				
				if elem.type not in ('BALL', 'ELLIPSOID'):
					continue # Not supported
				
				loc = elem.location
				
				stiffness= elem.stiffness
				if elem.negative:
					stiffness = -stiffness
				
				if elem.type == 'BALL':
					
					file.write('\tsphere { <%.6g, %.6g, %.6g>, %.4g, %.4g ' % (loc.x, loc.y, loc.z, elem.radius, stiffness))
					
					# After this wecould do something simple like...
					# 	"pigment {Blue} }"
					# except we'll write the color
				
				elif elem.type == 'ELLIPSOID':
					# location is modified by scale
					file.write('\tsphere { <%.6g, %.6g, %.6g>, %.4g, %.4g ' % (loc.x/elem.size_x, loc.y/elem.size_y, loc.z/elem.size_z, elem.radius, stiffness))
					file.write(	'scale <%.6g, %.6g, %.6g> ' % (elem.size_x, elem.size_y, elem.size_z))
				
				if material:
					diffuse_color = material.diffuse_color
					
					if material.transparency and material.transparency_method=='RAYTRACE':	trans = 1-material.raytrace_transparency.filter
					else:																	trans = 0.0
					
					file.write(
						'pigment {rgbft<%.3g, %.3g, %.3g, %.3g, %.3g>} finish {%s} }\n' % \
						(diffuse_color[0], diffuse_color[1], diffuse_color[2], 1-material.alpha, trans, materialNames[material.name])
					)
					
				else:
					file.write('pigment {rgb<1 1 1>} finish {%s} }\n' % DEF_MAT_NAME)		# Write the finish last.
			
			writeObjectMaterial(material)

			writeMatrix(ob.matrix)
			
			file.write('}\n')
		
		
	
	
	def exportMeshs(sel):
		
		ob_num = 0
		
		for ob in sel:
			ob_num+= 1
			
			if ob.type in ('LAMP', 'CAMERA', 'EMPTY'):
				continue
			
			me = ob.data
			me_materials= me.materials
			
			me = ob.create_render_mesh(scene)
			
			if not me:
				continue
			
			if info_callback:
				info_callback('Object %2.d of %2.d (%s)' % (ob_num, len(sel), ob.name))
			
			#if ob.type!='MESH':
			#	continue
			# me = ob.data
			
			matrix = ob.matrix
			try:	uv_layer = me.active_uv_texture.data
			except:uv_layer = None
				
			try:	vcol_layer = me.active_vertex_color.data
			except:vcol_layer = None
			
			faces_verts = [f.verts for f in me.faces]
			faces_normals = [tuple(f.normal) for f in me.faces]
			verts_normals = [tuple(v.normal) for v in me.verts]
			
			# quads incur an extra face
			quadCount = len([f for f in faces_verts if len(f)==4])
			
			file.write('mesh2 {\n')
			file.write('\tvertex_vectors {\n')
			file.write('\t\t%s' % (len(me.verts))) # vert count
			for v in me.verts:
				file.write(',\n\t\t<%.6f, %.6f, %.6f>' % tuple(v.co)) # vert count
			file.write('\n  }\n')
			
			
			# Build unique Normal list
			uniqueNormals = {}
			for fi, f in enumerate(me.faces):
				fv = faces_verts[fi]
				# [-1] is a dummy index, use a list so we can modify in place
				if f.smooth: # Use vertex normals
					for v in fv:
						key = verts_normals[v]
						uniqueNormals[key] = [-1]
				else: # Use face normal
					key = faces_normals[fi]
					uniqueNormals[key] = [-1]
			
			file.write('\tnormal_vectors {\n')
			file.write('\t\t%d' % len(uniqueNormals)) # vert count
			idx = 0
			for no, index in uniqueNormals.items():
				file.write(',\n\t\t<%.6f, %.6f, %.6f>' % no) # vert count
				index[0] = idx
				idx +=1
			file.write('\n  }\n')
			
			
			# Vertex colours
			vertCols = {} # Use for material colours also.
			
			if uv_layer:
				# Generate unique UV's
				uniqueUVs = {}
				
				for fi, uv in enumerate(uv_layer):
					
					if len(faces_verts[fi])==4:
						uvs = uv.uv1, uv.uv2, uv.uv3, uv.uv4
					else:
						uvs = uv.uv1, uv.uv2, uv.uv3
					
					for uv in uvs:
						uniqueUVs[tuple(uv)] = [-1]
				
				file.write('\tuv_vectors {\n')
				#print unique_uvs
				file.write('\t\t%s' % (len(uniqueUVs))) # vert count
				idx = 0
				for uv, index in uniqueUVs.items():
					file.write(',\n\t\t<%.6f, %.6f>' % uv)
					index[0] = idx
					idx +=1
				'''
				else:
					# Just add 1 dummy vector, no real UV's
					file.write('\t\t1') # vert count
					file.write(',\n\t\t<0.0, 0.0>')
				'''
				file.write('\n  }\n')
			
			
			if me.vertex_colors:
				
				for fi, f in enumerate(me.faces):
					material_index = f.material_index
					material = me_materials[material_index]
					
					if material and material.vertex_color_paint:
						
						col = vcol_layer[fi]
						
						if len(faces_verts[fi])==4:
							cols = col.color1, col.color2, col.color3, col.color4
						else:
							cols = col.color1, col.color2, col.color3
						
						for col in cols:					
							key = col[0], col[1], col[2], material_index # Material index!
							vertCols[key] = [-1]
						
					else:
						if material:
							diffuse_color = tuple(material.diffuse_color)
							key = diffuse_color[0], diffuse_color[1], diffuse_color[2], material_index
							vertCols[key] = [-1]
						
			
			else:
				# No vertex colours, so write material colours as vertex colours
				for i, material in enumerate(me_materials):
					
					if material:
						diffuse_color = tuple(material.diffuse_color)
						key = diffuse_color[0], diffuse_color[1], diffuse_color[2], i # i == f.mat
						vertCols[key] = [-1]
				
			
			# Vert Colours
			file.write('\ttexture_list {\n')
			file.write('\t\t%s' % (len(vertCols))) # vert count
			idx=0
			for col, index in vertCols.items():
				
				if me_materials:
					material = me_materials[col[3]]
					material_finish = materialNames[material.name]
					
					if material.transparency and material.transparency_method=='RAYTRACE':	trans = 1-material.raytrace_transparency.filter
					else:																	trans = 0.0
					
				else:
					material_finish = DEF_MAT_NAME # not working properly,
					trans = 0.0
				
				#print material.apl
				file.write(	',\n\t\ttexture { pigment {rgbft<%.3g, %.3g, %.3g, %.3g, %.3g>} finish {%s}}' %
							(col[0], col[1], col[2], 1-material.alpha, trans, material_finish) )
				
				index[0] = idx
				idx+=1
			
			file.write( '\n  }\n' )
			
			# Face indicies
			file.write('\tface_indices {\n')
			file.write('\t\t%d' % (len(me.faces) + quadCount)) # faces count
			for fi, f in enumerate(me.faces):
				fv = faces_verts[fi]
				material_index= f.material_index
				if len(fv) == 4:	indicies = (0,1,2), (0,2,3)
				else:				indicies = ((0,1,2),)
				
				if vcol_layer:
					col = vcol_layer[fi]
					
					if len(fv) == 4:
						cols = col.color1, col.color2, col.color3, col.color4
					else:
						cols = col.color1, col.color2, col.color3
				
				
				if not me_materials or me_materials[material_index] == None: # No materials
					for i1, i2, i3 in indicies:
						file.write(',\n\t\t<%d,%d,%d>' % (fv[i1], fv[i2], fv[i3])) # vert count
				else:
					material = me_materials[material_index]
					for i1, i2, i3 in indicies:
						if me.vertex_colors and material.vertex_color_paint:
							# Colour per vertex - vertex colour
							
							col1 = cols[i1]
							col2 = cols[i2]
							col3 = cols[i3]
						
							ci1 = vertCols[col1[0], col1[1], col1[2], material_index][0]
							ci2 = vertCols[col2[0], col2[1], col2[2], material_index][0]
							ci3 = vertCols[col3[0], col3[1], col3[2], material_index][0]
						else:
							# Colour per material - flat material colour
							diffuse_color= material.diffuse_color
							ci1 = ci2 = ci3 = vertCols[diffuse_color[0], diffuse_color[1], diffuse_color[2], f.material_index][0]
						
						file.write(',\n\t\t<%d,%d,%d>, %d,%d,%d' % (fv[i1], fv[i2], fv[i3], ci1, ci2, ci3)) # vert count
					
					
					
			file.write('\n  }\n')
			
			# normal_indices indicies
			file.write('\tnormal_indices {\n')
			file.write('\t\t%d' % (len(me.faces) + quadCount)) # faces count
			for fi, fv in enumerate(faces_verts):
				
				if len(fv) == 4:	indicies = (0,1,2), (0,2,3)
				else:				indicies = ((0,1,2),)
				
				for i1, i2, i3 in indicies:
					if f.smooth:
						file.write(',\n\t\t<%d,%d,%d>' %\
						(uniqueNormals[verts_normals[fv[i1]]][0],\
						 uniqueNormals[verts_normals[fv[i2]]][0],\
						 uniqueNormals[verts_normals[fv[i3]]][0])) # vert count
					else:
						idx = uniqueNormals[faces_normals[fi]][0]
						file.write(',\n\t\t<%d,%d,%d>' % (idx, idx, idx)) # vert count
						
			file.write('\n  }\n')
			
			if uv_layer:
				file.write('\tuv_indices {\n')
				file.write('\t\t%d' % (len(me.faces) + quadCount)) # faces count
				for fi, fv in enumerate(faces_verts):
					
					if len(fv) == 4:	indicies = (0,1,2), (0,2,3)
					else:				indicies = ((0,1,2),)
					
					uv = uv_layer[fi]
					if len(faces_verts[fi])==4:
						uvs = tuple(uv.uv1), tuple(uv.uv2), tuple(uv.uv3), tuple(uv.uv4)
					else:
						uvs = tuple(uv.uv1), tuple(uv.uv2), tuple(uv.uv3)
					
					for i1, i2, i3 in indicies:
						file.write(',\n\t\t<%d,%d,%d>' %\
						(uniqueUVs[uvs[i1]][0],\
						 uniqueUVs[uvs[i2]][0],\
						 uniqueUVs[uvs[i2]][0])) # vert count
				file.write('\n  }\n')
			
			if me.materials:
				material = me.materials[0] # dodgy
				writeObjectMaterial(material)
			
			writeMatrix(matrix)
			file.write('}\n')
			
			bpy.data.remove_mesh(me)
	
	def exportWorld(world):
		if not world:
			return
		
		mist = world.mist
		
		if mist.enabled:
			file.write('fog {\n')
			file.write('\tdistance %.6f\n' % mist.depth)
			file.write('\tcolor rgbt<%.3g, %.3g, %.3g, %.3g>\n' % (tuple(world.horizon_color) + (1-mist.intensity,)))
			#file.write('\tfog_offset %.6f\n' % mist.start)
			#file.write('\tfog_alt 5\n')
			#file.write('\tturbulence 0.2\n')
			#file.write('\tturb_depth 0.3\n')
			file.write('\tfog_type 1\n')
			file.write('}\n')
	
	def exportGlobalSettings(scene):
		
		file.write('global_settings {\n')

		if scene.pov_radio_enable:
			file.write('\tradiosity {\n')
			file.write("\t\tadc_bailout %.4g\n" % scene.pov_radio_adc_bailout)
			file.write("\t\talways_sample %d\n" % scene.pov_radio_always_sample)
			file.write("\t\tbrightness %.4g\n" % scene.pov_radio_brightness)
			file.write("\t\tcount %d\n" % scene.pov_radio_count)
			file.write("\t\terror_bound %.4g\n" % scene.pov_radio_error_bound)
			file.write("\t\tgray_threshold %.4g\n" % scene.pov_radio_gray_threshold)
			file.write("\t\tlow_error_factor %.4g\n" % scene.pov_radio_low_error_factor)
			file.write("\t\tmedia %d\n" % scene.pov_radio_media)
			file.write("\t\tminimum_reuse %.4g\n" % scene.pov_radio_minimum_reuse)
			file.write("\t\tnearest_count %d\n" % scene.pov_radio_nearest_count)
			file.write("\t\tnormal %d\n" % scene.pov_radio_normal)
			file.write("\t\trecursion_limit %d\n" % scene.pov_radio_recursion_limit)
			file.write('\t}\n')
		
		if world:
			file.write("\tambient_light rgb<%.3g, %.3g, %.3g>\n" % tuple(world.ambient_color))
		
		file.write('}\n')
	
	
	# Convert all materials to strings we can access directly per vertex.
	writeMaterial(None) # default material
	
	for material in bpy.data.materials:
		writeMaterial(material)
	
	exportCamera()
	#exportMaterials()
	sel = scene.objects
	exportLamps([l for l in sel if l.type == 'LAMP'])
	exportMeta([l for l in sel if l.type == 'META'])
	exportMeshs(sel)
	exportWorld(scene.world)
	exportGlobalSettings(scene)
	
	file.close()


def write_pov_ini(filename_ini, filename_pov, filename_image):
	scene = bpy.data.scenes[0]
	render = scene.render_data
	
	x= int(render.resolution_x*render.resolution_percentage*0.01)
	y= int(render.resolution_y*render.resolution_percentage*0.01)
	
	file = open(filename_ini, 'w')
	
	file.write('Input_File_Name="%s"\n' % filename_pov)
	file.write('Output_File_Name="%s"\n' % filename_image)
	
	file.write('Width=%d\n' % x)
	file.write('Height=%d\n' % y)
	
	# Needed for border render.
	'''
	file.write('Start_Column=%d\n' % part.x)
	file.write('End_Column=%d\n' % (part.x+part.w))
	
	file.write('Start_Row=%d\n' % (part.y))
	file.write('End_Row=%d\n' % (part.y+part.h))
	'''
	
	file.write('Display=0\n')
	file.write('Pause_When_Done=0\n')
	file.write('Output_File_Type=T\n') # TGA, best progressive loading
	file.write('Output_Alpha=1\n')
	
	if render.antialiasing: 
		aa_mapping = {'OVERSAMPLE_5':2, 'OVERSAMPLE_8':3, 'OVERSAMPLE_11':4, 'OVERSAMPLE_16':5} # method 1 assumed
		file.write('Antialias=1\n')
		file.write('Antialias_Depth=%d\n' % aa_mapping[render.antialiasing_samples])
	else:
		file.write('Antialias=0\n')
	
	file.close()

# Radiosity panel, use in the scene for now.
FloatProperty= bpy.types.Scene.FloatProperty
IntProperty= bpy.types.Scene.IntProperty
BoolProperty= bpy.types.Scene.BoolProperty

# Not a real pov option, just to know if we should write
BoolProperty(	attr="pov_radio_enable",
				name="Enable Radiosity",
				description="Enable povrays radiosity calculation.",
				default= False)
BoolProperty(	attr="pov_radio_display_advanced",
				name="Advanced Options",
				description="Show advanced options.",
				default= False)

# Real pov options
FloatProperty(	attr="pov_radio_adc_bailout",
				name="ADC Bailout",
				description="The adc_bailout for radiosity rays. Use adc_bailout = 0.01 / brightest_ambient_object for good results.",
				min=0.0, max=1000.0, soft_min=0.0, soft_max=1.0, default= 0.01)

BoolProperty(	attr="pov_radio_always_sample",
				name="Always Sample",
				description="Only use the data from the pretrace step and not gather any new samples during the final radiosity pass..",
				default= True)

FloatProperty(	attr="pov_radio_brightness",
				name="Brightness",
				description="Ammount objects are brightened before being returned upwards to the rest of the system.",
				min=0.0, max=1000.0, soft_min=0.0, soft_max=10.0, default= 1.0)

IntProperty(	attr="pov_radio_count",
				name="Ray Count",
				description="number of rays that are sent out whenever a new radiosity value has to be calculated.",
				min=1, max=1600, default= 35)

FloatProperty(	attr="pov_radio_error_bound",
				name="Error Bound",
				description="one of the two main speed/quality tuning values, lower values are more accurate.",
				min=0.0, max=1000.0, soft_min=0.1, soft_max=10.0, default= 1.8)

FloatProperty(	attr="pov_radio_gray_threshold",
				name="Gray Threshold",
				description="one of the two main speed/quality tuning values, lower values are more accurate.",
				min=0.0, max=1.0, soft_min=0, soft_max=1, default= 0.0)
								
FloatProperty(	attr="pov_radio_low_error_factor",
				name="Low Error Factor",
				description="If you calculate just enough samples, but no more, you will get an image which has slightly blotchy lighting.",
				min=0.0, max=1.0, soft_min=0.0, soft_max=1.0, default= 0.5)

# max_sample - not available yet
BoolProperty(	attr="pov_radio_media", 
				name="Media",
				description="Radiosity estimation can be affected by media.",
				default= False)

FloatProperty(	attr="pov_radio_minimum_reuse",
				name="Minimum Reuse",
				description="Fraction of the screen width which sets the minimum radius of reuse for each sample point (At values higher than 2% expect errors).",
				min=0.0, max=1.0, soft_min=0.1, soft_max=0.1, default= 0.015)
				
IntProperty(	attr="pov_radio_nearest_count",
				name="Nearest Count",
				description="Number of old ambient values blended together to create a new interpolated value.",
				min=1, max=20, default= 5)
				
BoolProperty(	attr="pov_radio_normal",
				name="Normals",
				description="Radiosity estimation can be affected by normals.",
				default= False)

IntProperty(	attr="pov_radio_recursion_limit",
				name="Recursion Limit",
				description="how many recursion levels are used to calculate the diffuse inter-reflection.",
				min=1, max=20, default= 3)
	

class PovrayRender(bpy.types.RenderEngine):
	__idname__ = 'POVRAY_RENDER'
	__label__ = "Povray"
	DELAY = 0.02
	
	def _export(self, scene):
		import tempfile
		
		self.temp_file_in = tempfile.mktemp(suffix='.pov')
		self.temp_file_out = tempfile.mktemp(suffix='.tga')
		self.temp_file_ini = tempfile.mktemp(suffix='.ini')
		'''
		self.temp_file_in = '/test.pov'
		self.temp_file_out = '/test.tga'
		self.temp_file_ini = '/test.ini'
		'''
		
		def info_callback(txt):
			self.update_stats("", "POVRAY: " + txt)
			
		write_pov(self.temp_file_in, scene, info_callback)
		
	def _render(self):
		
		try:		os.remove(self.temp_file_out) # so as not to load the old file
		except:	pass
		
		write_pov_ini(self.temp_file_ini, self.temp_file_in, self.temp_file_out)
		
		print ("***-STARTING-***")
		
		pov_binary = "povray"
		
		if sys.platform=='win32':
			import winreg
			regKey = winreg.OpenKey(winreg.HKEY_CURRENT_USER, 'Software\\POV-Ray\\v3.6\\Windows')
			
			if bitness == 64:
				pov_binary = winreg.QueryValueEx(regKey, 'Home')[0] + '\\bin\\pvengine64'
			else:
				pov_binary = winreg.QueryValueEx(regKey, 'Home')[0] + '\\bin\\pvengine'
			
		if 1:
			self.process = subprocess.Popen([pov_binary, self.temp_file_ini]) # stdout=subprocess.PIPE, stderr=subprocess.PIPE
		else:
			# This works too but means we have to wait until its done
			os.system('%s %s' % (pov_binary, self.temp_file_ini))
		
		print ("***-DONE-***")
	
	def _cleanup(self):
		for f in (self.temp_file_in, self.temp_file_ini, self.temp_file_out):
			try:		os.remove(f)
			except:	pass
		
		self.update_stats("", "")
	
	def render(self, scene):
		
		self.update_stats("", "POVRAY: Exporting data from Blender")
		self._export(scene)
		self.update_stats("", "POVRAY: Parsing File")
		self._render()
		
		r = scene.render_data
		
		# compute resolution
		x= int(r.resolution_x*r.resolution_percentage*0.01)
		y= int(r.resolution_y*r.resolution_percentage*0.01)
		
		
		
		# Wait for the file to be created
		while not os.path.exists(self.temp_file_out):
			if self.test_break():
				try:		self.process.terminate()
				except:	pass
				break
			
			if self.process.poll() != None:
				self.update_stats("", "POVRAY: Failed")
				break
			
			time.sleep(self.DELAY)
		
		if os.path.exists(self.temp_file_out):
			
			self.update_stats("", "POVRAY: Rendering")
			
			prev_size = -1
			
			def update_image():
				result = self.begin_result(0, 0, x, y)
				lay = result.layers[0]
				# possible the image wont load early on.
				try:		lay.load_from_file(self.temp_file_out)
				except:	pass
				self.end_result(result)
			
			# Update while povray renders
			while True:
				
				# test if povray exists
				if self.process.poll() != None:
					update_image();
					break
				
				# user exit
				if self.test_break():
					try:		self.process.terminate()
					except:	pass
					
					break
				
				# Would be nice to redirect the output
				# stdout_value, stderr_value = self.process.communicate() # locks
				
				
				# check if the file updated
				new_size = os.path.getsize(self.temp_file_out)
				
				if new_size != prev_size:
					update_image()
					prev_size = new_size
				
				time.sleep(self.DELAY)
		
		self._cleanup()

bpy.types.register(PovrayRender)

# Use some of the existing buttons.
import buttons_scene
buttons_scene.SCENE_PT_render.COMPAT_ENGINES.add('POVRAY_RENDER')
buttons_scene.SCENE_PT_dimensions.COMPAT_ENGINES.add('POVRAY_RENDER')
buttons_scene.SCENE_PT_antialiasing.COMPAT_ENGINES.add('POVRAY_RENDER')
buttons_scene.SCENE_PT_output.COMPAT_ENGINES.add('POVRAY_RENDER')
del buttons_scene

# Use only a subset of the world panels
import buttons_world
buttons_world.WORLD_PT_preview.COMPAT_ENGINES.add('POVRAY_RENDER')
buttons_world.WORLD_PT_context_world.COMPAT_ENGINES.add('POVRAY_RENDER')
buttons_world.WORLD_PT_world.COMPAT_ENGINES.add('POVRAY_RENDER')
buttons_world.WORLD_PT_mist.COMPAT_ENGINES.add('POVRAY_RENDER')
del buttons_world

# Example of wrapping every class 'as is'
import buttons_material
for member in dir(buttons_material):
	subclass = getattr(buttons_material, member)
	try:		subclass.COMPAT_ENGINES.add('POVRAY_RENDER')
	except:	pass
del buttons_material

class RenderButtonsPanel(bpy.types.Panel):
	__space_type__ = 'PROPERTIES'
	__region_type__ = 'WINDOW'
	__context__ = "scene"
	# COMPAT_ENGINES must be defined in each subclass, external engines can add themselves here
	
	def poll(self, context):
		rd = context.scene.render_data
		return (rd.use_game_engine==False) and (rd.engine in self.COMPAT_ENGINES)

class SCENE_PT_povray_radiosity(RenderButtonsPanel):
	__label__ = "Radiosity"
	COMPAT_ENGINES = set(['POVRAY_RENDER'])

	def draw_header(self, context):
		layout = self.layout
		scene = context.scene
		layout.itemR(scene, "pov_radio_enable", text="")

	def draw(self, context):
		layout = self.layout
		scene = context.scene
		rd = scene.render_data
		
		layout.active = scene.pov_radio_enable
		
		split = layout.split()
		
		col = split.column()
		
		col.itemR(scene, "pov_radio_count", text="Rays")
		col.itemR(scene, "pov_radio_recursion_limit", text="Recursions")
		col = split.column()
		col.itemR(scene, "pov_radio_error_bound", text="Error")
		
		layout.itemR(scene, "pov_radio_display_advanced")
		
		if scene.pov_radio_display_advanced:
			split = layout.split()
		
			col = split.column()
			col.itemR(scene, "pov_radio_adc_bailout", slider=True)
			col.itemR(scene, "pov_radio_gray_threshold", slider=True)
			col.itemR(scene, "pov_radio_low_error_factor", slider=True)
			
			
			
			col = split.column()
			col.itemR(scene, "pov_radio_brightness")
			col.itemR(scene, "pov_radio_minimum_reuse", text="Min Reuse")
			col.itemR(scene, "pov_radio_nearest_count")
			
			
			split = layout.split()
		
			col = split.column()
			col.itemL(text="Estimation Influence:")
			col.itemR(scene, "pov_radio_media")
			col.itemR(scene, "pov_radio_normal")
			
			col = split.column()
			col.itemR(scene, "pov_radio_always_sample")
		

bpy.types.register(SCENE_PT_povray_radiosity)