Welcome to mirror list, hosted at ThFree Co, Russian Federation.

BPyMesh_octree.py « bpymodules « scripts « release - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 368a33496eb929dda9761cd5269c668cc4fb928e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
from Blender import *

try:
	import psyco
	psyco.full()
except:
	print 'no psyco for you!'

DotVecs= Mathutils.DotVecs
#======================================================== 
# SPACIAL TREE - Seperate Class - use if you want to
# USed for getting vert is a proximity
LEAF_SIZE = 128
class octreeNode:
	def __init__(self, verts, parent):
		
		# Assunme we are a leaf node, until split is run.
		self.verts = verts 
		self.children = []
		
		if parent == None: # ROOT NODE, else set bounds when making children,
			# BOUNDS
			v= verts[0]
			maxx,maxy,maxz= v.co
			minx,miny,minz= maxx,maxy,maxz
			
			for v in verts:
				x,y,z= v.co
				if x>maxx: maxx= x
				if y>maxy: maxy= y
				if z>maxz: maxz= z
				
				if x<minx: minx= x
				if y<miny: miny= y
				if z<minz: minz= z
			
			self.minx= minx
			self.miny= miny
			self.minz= minz
			
			self.maxx= maxx
			self.maxy= maxy
			self.maxz= maxz
			
			# We have no parent to split us so split ourselves.
			#self.setCornerPoints()
			self.splitNode()
			
	def splitNode(self):
		if len(self.verts) > LEAF_SIZE:
			self.makeChildren() # 8 new children,
			self.verts = None
		# Alredy assumed a leaf not so dont do anything here.
		
	def makeChildren(self):
		verts= self.verts
		# Devide into 8 children.
		axisDividedVerts = [[],[],[],[],[],[],[],[]] # Verts Only
		
		
		divx = (self.maxx + self.minx) / 2
		divy = (self.maxy + self.miny) / 2
		divz = (self.maxz + self.minz) / 2
		
		# Sort into 8
		for v in verts:
			x,y,z = v.co
			
			if x > divx:
				if y > divy:
					if z > divz:
						axisDividedVerts[0].append(v)
					else:
						axisDividedVerts[1].append(v)
				else:
					if z > divz:
						axisDividedVerts[2].append(v)
					else:
						axisDividedVerts[3].append(v)
			else:
				if y > divy:
					if z > divz:
						axisDividedVerts[4].append(v)
					else:
						axisDividedVerts[5].append(v)
				else:
					if z > divz:
						axisDividedVerts[6].append(v)
					else:
						axisDividedVerts[7].append(v)
					
		# populate self.children
		for i in xrange(8):
			octNode = octreeNode(axisDividedVerts[i], self)
			# Set bounds manually
			if i == 0:
				octNode.minx = divx
				octNode.maxx = self.maxx
				octNode.miny = divy
				octNode.maxy = self.maxy
				octNode.minz = divz
				octNode.maxz = self.maxz
			elif i == 1:
				octNode.minx = divx
				octNode.maxx = self.maxx
				octNode.miny = divy
				octNode.maxy = self.maxy
				octNode.minz = self.minz #
				octNode.maxz = divz #
			elif i == 2:
				octNode.minx = divx
				octNode.maxx = self.maxx
				octNode.miny = self.miny  # 
				octNode.maxy = divy #
				octNode.minz = divz
				octNode.maxz = self.maxz
			elif i == 3:
				octNode.minx = divx
				octNode.maxx = self.maxx
				octNode.miny = self.miny #
				octNode.maxy = divy #
				octNode.minz = self.minz #
				octNode.maxz = divz #
			elif i == 4:
				octNode.minx = self.minx #
				octNode.maxx = divx #
				octNode.miny = divy
				octNode.maxy = self.maxy
				octNode.minz = divz
				octNode.maxz = self.maxz
			elif i == 5:
				octNode.minx = self.minx #
				octNode.maxx = divx #
				octNode.miny = divy
				octNode.maxy = self.maxy
				octNode.minz = self.minz #
				octNode.maxz = divz #
			elif i == 6:
				octNode.minx = self.minx #
				octNode.maxx = divx #
				octNode.miny = self.miny  # 
				octNode.maxy = divy #
				octNode.minz = divz
				octNode.maxz = self.maxz
			elif i == 7:
				octNode.minx = self.minx #
				octNode.maxx = divx #
				octNode.miny = self.miny  # 
				octNode.maxy = divy #
				octNode.minz = self.minz #
				octNode.maxz = divz #
			#octNode.setCornerPoints()
			octNode.splitNode() # Splits the node if it can.
			self.children.append(octNode)
	
	# GETS VERTS IN A Distance RANGE-
	def getVertsInRange(self, loc, normal, range_val, vertList):
		#loc= Mathutils.Vector(loc)			# MUST BE VECTORS
		#normal= Mathutils.Vector(normal)	

		'''
		loc: Vector of the location to search from
		normal: None or Vector - if a vector- will only get verts on this side of the vector
		range_val: maximum distance. A negative value will fill the list with teh closest vert only.
		vertList: starts as an empty list
		list that this function fills with verts that match
		'''
		xloc,yloc,zloc= loc
		
		if range_val<0:
			range_val= -range_val
			FIND_CLOSEST= True
			vertList.append(None) # just update the 1 vertex
		else:
			FIND_CLOSEST= False
		
		if self.children:
			# Check if the bounds are in range_val,
			for childNode in self.children:
				# First test if we are surrounding the point.
				if\
				childNode.minx - range_val < xloc and\
				childNode.maxx + range_val > xloc and\
				childNode.miny - range_val < yloc and\
				childNode.maxy + range_val > yloc and\
				childNode.minz - range_val < zloc and\
				childNode.maxz + range_val > zloc:
					# Recurse down or get virts.
					childNode.getVertsInRange(loc, normal, range_val, vertList)
					#continue # Next please
		
		else: # we are a leaf node. Test vert locations.
			if not normal:
				# Length only check
				for v in self.verts:
					length = (loc - v.co).length
					if length < range_val:
						if FIND_CLOSEST:
							# Just update the 1 vert
							vertList[0]= (v, length)
							range_val= length # Shink the length so we only get verts from their.
						else:
							vertList.append((v, length))
			else:
				# Lengh and am I infront of the vert.
				for v in self.verts:
					length = (loc - v.co).length
					if length < range_val:
						# Check if the points in front
						dot= DotVecs(normal, loc) - DotVecs(normal, v.co)
						if dot<0:
							vertList.append((v, length))
				
# END TREE




# EXAMPLE RADIO IN PYTHON USING THE ABOVE FUNCTION
"""
import BPyMesh
# Radio bake
def bake():
	
	_AngleBetweenVecs_= Mathutils.AngleBetweenVecs
	def AngleBetweenVecs(a1,a2):
		try:
			return _AngleBetweenVecs_(a1,a2)
		except:
			return 180
	
	
	
	scn = Scene.GetCurrent()
	ob = scn.getActiveObject()
	me = ob.getData(mesh=1)
	
	dist= Draw.PupFloatInput('MaxDist:', 2.0, 0.1, 20.0, 0.1, 3)
	if dist==None:
		return
	
	# Make nice normals
	BPyMesh.meshCalcNormals(me)
	
	
	len_verts= len(me.verts)
	#me.sel= False
	meshOctTree = octreeNode(me.verts, None)

	
	
	# Store face areas
	vertex_areas= [0.0] * len_verts
	
	# Get vertex areas - all areas of face users
	for f in me.faces:
		a= f.area
		for v in f.v:
			vertex_areas[v.index] += a
			
	
	
	bias= 0.001
	
	t= sys.time()
	
	# Tone for the verts
	vert_tones= [0.0] * len_verts
	maxtone= 0.0
	mintone= 100000000
	for i, v in enumerate(me.verts):
		if not i%10:
			print 'verts to go', len_verts-i
		v_co= v.co
		v_no= v.no
		verts_in_range= []
		meshOctTree.getVertsInRange(v_co, v_no, dist, verts_in_range)
		
		tone= 0.0
		# These are verts in our range
		for test_v, length in verts_in_range:
			if bias<length:
				try:
					# Make sure this isnt a back facing vert
					normal_diff= AngleBetweenVecs(test_v.no, v_no)
				except:
					continue
				
				if normal_diff > 90: # were facing this vert
					#if 1:	
					# Current value us between zz90 and 180
					# make between 0 and 90
					# so 0 is right angles and 90 is direct opposite vertex normal
					normal_diff= (normal_diff-90)
					
					# Vertex area needs to be taken into account so we dont have small faces over influencing.
					vertex_area= vertex_areas[test_v.index]
					
					# Get the angle the vertex is in location from the location and normal of the vert.
					above_diff= AngleBetweenVecs(test_v.co-v.co, v_no)
					## Result will be between 0 :above and 90: horizon.. invert this so horizon has littel effect
					above_diff= 90-above_diff
					# dist-length or 1.0/length both work well
					tone= (dist-length) * vertex_area * above_diff * normal_diff
					vert_tones[i] += tone
		
		if maxtone<vert_tones[i]:
			maxtone= vert_tones[i]
		if mintone>vert_tones[i]:
			mintone= vert_tones[i]
	
	
	if not maxtone:
		Draw.PupMenu('No verts in range, use a larger range')
		return
	
	# Apply tones
	for f in me.faces:
		f_col= f.col
		for i, v in enumerate(f.v):
			c= f_col[i]
			v_index= v.index
			tone= int(((maxtone - vert_tones[v.index]) / maxtone) * 255 )
			#print tone
			c.r= c.g= c.b= tone
	
	print 'time', sys.time()-t
	
	
if __name__=="__main__":
	bake()
"""