Welcome to mirror list, hosted at ThFree Co, Russian Federation.

functions.py « freestyle « modules « freestyle « scripts « release - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 674c1f018643f449109d47240ae4aafb6893d255 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
# ##### BEGIN GPL LICENSE BLOCK #####
#
#  This program is free software; you can redistribute it and/or
#  modify it under the terms of the GNU General Public License
#  as published by the Free Software Foundation; either version 2
#  of the License, or (at your option) any later version.
#
#  This program is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  GNU General Public License for more details.
#
#  You should have received a copy of the GNU General Public License
#  along with this program; if not, write to the Free Software Foundation,
#  Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####

"""
Functions operating on vertices (0D elements) and polylines (1D
elements).  Also intended to be a collection of examples for predicate
definition in Python.
"""

# module members
from _freestyle import (
    ChainingTimeStampF1D,
    Curvature2DAngleF0D,
    Curvature2DAngleF1D,
    CurveNatureF0D,
    CurveNatureF1D,
    DensityF0D,
    DensityF1D,
    GetCompleteViewMapDensityF1D,
    GetCurvilinearAbscissaF0D,
    GetDirectionalViewMapDensityF1D,
    GetOccludeeF0D,
    GetOccludeeF1D,
    GetOccludersF0D,
    GetOccludersF1D,
    GetParameterF0D,
    GetProjectedXF0D,
    GetProjectedXF1D,
    GetProjectedYF0D,
    GetProjectedYF1D,
    GetProjectedZF0D,
    GetProjectedZF1D,
    GetShapeF0D,
    GetShapeF1D,
    GetSteerableViewMapDensityF1D,
    GetViewMapGradientNormF0D,
    GetViewMapGradientNormF1D,
    GetXF0D,
    GetXF1D,
    GetYF0D,
    GetYF1D,
    GetZF0D,
    GetZF1D,
    IncrementChainingTimeStampF1D,
    LocalAverageDepthF0D,
    LocalAverageDepthF1D,
    MaterialF0D,
    Normal2DF0D,
    Normal2DF1D,
    Orientation2DF1D,
    Orientation3DF1D,
    QuantitativeInvisibilityF0D,
    QuantitativeInvisibilityF1D,
    ReadCompleteViewMapPixelF0D,
    ReadMapPixelF0D,
    ReadSteerableViewMapPixelF0D,
    ShapeIdF0D,
    TimeStampF1D,
    VertexOrientation2DF0D,
    VertexOrientation3DF0D,
    ZDiscontinuityF0D,
    ZDiscontinuityF1D,
    )

# constructs for function definition in Python
from freestyle.types import (
    CurvePoint,
    IntegrationType,
    UnaryFunction0DDouble,
    UnaryFunction0DMaterial,
    UnaryFunction0DVec2f,
    UnaryFunction1DDouble,
    )
from freestyle.utils import ContextFunctions as CF
from freestyle.utils import integrate

from mathutils import Vector

# -- Functions for 0D elements (vertices) -- #


class CurveMaterialF0D(UnaryFunction0DMaterial):
    """
    A replacement of the built-in MaterialF0D for stroke creation.
    MaterialF0D does not work with Curves and Strokes.  Line color
    priority is used to pick one of the two materials at material
    boundaries.

    Note: expects instances of CurvePoint to be iterated over
    """
    def __call__(self, inter):
        fe = inter.object.fedge
        assert(fe is not None), "CurveMaterialF0D: fe is None"
        if fe.is_smooth:
            return fe.material
        else:
            right, left = fe.material_right, fe.material_left
            return right if (right.priority > left.priority) else left


class pyInverseCurvature2DAngleF0D(UnaryFunction0DDouble):
    def __call__(self, inter):
        func = Curvature2DAngleF0D()
        c = func(inter)
        return (3.1415 - c)


class pyCurvilinearLengthF0D(UnaryFunction0DDouble):
    def __call__(self, inter):
        cp = inter.object
        assert(isinstance(cp, CurvePoint))
        return cp.t2d


class pyDensityAnisotropyF0D(UnaryFunction0DDouble):
    """Estimates the anisotropy of density."""
    def __init__(self, level):
        UnaryFunction0DDouble.__init__(self)
        self.IsoDensity = ReadCompleteViewMapPixelF0D(level)
        self.d0Density = ReadSteerableViewMapPixelF0D(0, level)
        self.d1Density = ReadSteerableViewMapPixelF0D(1, level)
        self.d2Density = ReadSteerableViewMapPixelF0D(2, level)
        self.d3Density = ReadSteerableViewMapPixelF0D(3, level)

    def __call__(self, inter):
        c_iso = self.IsoDensity(inter)
        c_0 = self.d0Density(inter)
        c_1 = self.d1Density(inter)
        c_2 = self.d2Density(inter)
        c_3 = self.d3Density(inter)
        cMax = max(max(c_0, c_1), max(c_2, c_3))
        cMin = min(min(c_0, c_1), min(c_2, c_3))
        return 0 if (c_iso == 0) else (cMax - cMin) / c_iso


class pyViewMapGradientVectorF0D(UnaryFunction0DVec2f):
    """Returns the gradient vector for a pixel.

    :arg level: the level at which to compute the gradient
    :type level: int
    """
    def __init__(self, level):
        UnaryFunction0DVec2f.__init__(self)
        self._l = level
        self._step = pow(2, self._l)

    def __call__(self, iter):
        p = iter.object.point_2d
        gx = CF.read_complete_view_map_pixel(self._l, int(p.x + self._step), int(p.y)) - \
             CF.read_complete_view_map_pixel(self._l, int(p.x), int(p.y))
        gy = CF.read_complete_view_map_pixel(self._l, int(p.x), int(p.y + self._step)) - \
             CF.read_complete_view_map_pixel(self._l, int(p.x), int(p.y))
        return Vector((gx, gy))


class pyViewMapGradientNormF0D(UnaryFunction0DDouble):
    def __init__(self, l):
        UnaryFunction0DDouble.__init__(self)
        self._l = l
        self._step = pow(2, self._l)

    def __call__(self, iter):
        p = iter.object.point_2d
        gx = CF.read_complete_view_map_pixel(self._l, int(p.x + self._step), int(p.y)) - \
             CF.read_complete_view_map_pixel(self._l, int(p.x), int(p.y))
        gy = CF.read_complete_view_map_pixel(self._l, int(p.x), int(p.y + self._step)) - \
             CF.read_complete_view_map_pixel(self._l, int(p.x), int(p.y))
        return Vector((gx, gy)).length

# -- Functions for 1D elements (curves) -- #


class pyGetInverseProjectedZF1D(UnaryFunction1DDouble):
    def __call__(self, inter):
        func = GetProjectedZF1D()
        z = func(inter)
        return (1.0 - z)


class pyGetSquareInverseProjectedZF1D(UnaryFunction1DDouble):
    def __call__(self, inter):
        func = GetProjectedZF1D()
        z = func(inter)
        return (1.0 - pow(z, 2))


class pyDensityAnisotropyF1D(UnaryFunction1DDouble):
    def __init__(self, level, integrationType=IntegrationType.MEAN, sampling=2.0):
        UnaryFunction1DDouble.__init__(self, integrationType)
        self._func = pyDensityAnisotropyF0D(level)
        self._integration = integrationType
        self._sampling = sampling

    def __call__(self, inter):
        v = integrate(self._func, inter.points_begin(self._sampling), inter.points_end(self._sampling), self._integration)
        return v


class pyViewMapGradientNormF1D(UnaryFunction1DDouble):
    def __init__(self, l, integrationType, sampling=2.0):
        UnaryFunction1DDouble.__init__(self, integrationType)
        self._func = pyViewMapGradientNormF0D(l)
        self._integration = integrationType
        self._sampling = sampling

    def __call__(self, inter):
        v = integrate(self._func, inter.points_begin(self._sampling), inter.points_end(self._sampling), self._integration)
        return v