Welcome to mirror list, hosted at ThFree Co, Russian Federation.

parameter_editor.py « modules « freestyle « scripts « release - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: aad470edb9d7275d64b96cf74f4961687e0f1d9e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
# ##### BEGIN GPL LICENSE BLOCK #####
#
#  This program is free software; you can redistribute it and/or
#  modify it under the terms of the GNU General Public License
#  as published by the Free Software Foundation; either version 2
#  of the License, or (at your option) any later version.
#
#  This program is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  GNU General Public License for more details.
#
#  You should have received a copy of the GNU General Public License
#  along with this program; if not, write to the Free Software Foundation,
#  Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####

#  Filename : parameter_editor.py
#  Authors  : Tamito Kajiyama
#  Date     : 26/07/2010
#  Purpose  : Interactive manipulation of stylization parameters

from freestyle.types import (
    BinaryPredicate1D,
    IntegrationType,
    Interface0DIterator,
    Nature,
    Noise,
    Operators,
    StrokeAttribute,
    UnaryPredicate0D,
    UnaryPredicate1D,
    TVertex,
    Material,
    ViewEdge,
    )
from freestyle.chainingiterators import (
    ChainPredicateIterator,
    ChainSilhouetteIterator,
    pySketchyChainSilhouetteIterator,
    pySketchyChainingIterator,
    )
from freestyle.functions import (
    Curvature2DAngleF0D,
    Normal2DF0D,
    QuantitativeInvisibilityF1D,
    VertexOrientation2DF0D,
    CurveMaterialF0D,
    )
from freestyle.predicates import (
    AndUP1D,
    ContourUP1D,
    ExternalContourUP1D,
    FalseBP1D,
    FalseUP1D,
    Length2DBP1D,
    NotBP1D,
    NotUP1D,
    OrUP1D,
    QuantitativeInvisibilityUP1D,
    TrueBP1D,
    TrueUP1D,
    WithinImageBoundaryUP1D,
    pyNFirstUP1D,
    pyNatureUP1D,
    pyProjectedXBP1D,
    pyProjectedYBP1D,
    pyZBP1D,
    )
from freestyle.shaders import (
    BackboneStretcherShader,
    BezierCurveShader,
    BlenderTextureShader,
    ConstantColorShader,
    GuidingLinesShader,
    PolygonalizationShader,
    SamplingShader,
    SpatialNoiseShader,
    StrokeShader,
    StrokeTextureStepShader,
    TipRemoverShader,
    pyBluePrintCirclesShader,
    pyBluePrintEllipsesShader,
    pyBluePrintSquaresShader,
    RoundCapShader,
    SquareCapShader,
    )
from freestyle.utils import (
    ContextFunctions,
    getCurrentScene,
    iter_distance_along_stroke,
    iter_t2d_along_stroke,
    iter_distance_from_camera,
    iter_distance_from_object,
    iter_material_value,
    stroke_normal,
    bound,
    pairwise,
    BoundedProperty,
    )
from _freestyle import (
    blendRamp,
    evaluateColorRamp,
    evaluateCurveMappingF,
    )

import time
from mathutils import Vector
from math import pi, sin, cos, acos, radians
from itertools import cycle, tee

# lists of callback functions
# WARNING: highly experimental, not a stable API
callbacks_lineset_pre = []
callbacks_modifiers_post = []
callbacks_lineset_post = []


class ColorRampModifier(StrokeShader):
    """Primitive for the color modifiers."""
    def __init__(self, blend, influence, ramp):
        StrokeShader.__init__(self)
        self.blend = blend
        self.influence = influence
        self.ramp = ramp

    def evaluate(self, t):
        col = evaluateColorRamp(self.ramp, t)
        return col.xyz  # omit alpha

    def blend_ramp(self, a, b):
        return blendRamp(self.blend, a, self.influence, b)


class ScalarBlendModifier(StrokeShader):
    """Primitive for alpha and thickness modifiers."""
    def __init__(self, blend_type, influence):
        StrokeShader.__init__(self)
        self.blend_type = blend_type
        self.influence = influence

    def blend(self, v1, v2):
        fac = self.influence
        facm = 1.0 - fac
        if self.blend_type == 'MIX':
            v1 = facm * v1 + fac * v2
        elif self.blend_type == 'ADD':
            v1 += fac * v2
        elif self.blend_type == 'MULTIPLY':
            v1 *= facm + fac * v2
        elif self.blend_type == 'SUBTRACT':
            v1 -= fac * v2
        elif self.blend_type == 'DIVIDE':
            v1 = facm * v1 + fac * v1 / v2 if v2 != 0.0 else v1
        elif self.blend_type == 'DIFFERENCE':
            v1 = facm * v1 + fac * abs(v1 - v2)
        elif self.blend_type == 'MININUM':
            v1 = min(fac * v2, v1)
        elif self.blend_type == 'MAXIMUM':
            v1 = max(fac * v2, v1)
        else:
            raise ValueError("unknown curve blend type: " + self.blend_type)
        return v1


class CurveMappingModifier(ScalarBlendModifier):
    def __init__(self, blend, influence, mapping, invert, curve):
        ScalarBlendModifier.__init__(self, blend, influence)
        assert mapping in {'LINEAR', 'CURVE'}
        self.evaluate = getattr(self, mapping)
        self.invert = invert
        self.curve = curve

    def LINEAR(self, t):
        return (1.0 - t) if self.invert else t

    def CURVE(self, t):
        return evaluateCurveMappingF(self.curve, 0, t)


class ThicknessModifierMixIn:
    def __init__(self):
        scene = getCurrentScene()
        self.persp_camera = (scene.camera.data.type == 'PERSP')

    def set_thickness(self, sv, outer, inner):
        fe = sv.fedge
        nature = fe.nature
        if (nature & Nature.BORDER):
            if self.persp_camera:
                point = -sv.point_3d.normalized()
                dir = point.dot(fe.normal_left)
            else:
                dir = fe.normal_left.z
            if dir < 0.0:  # the back side is visible
                outer, inner = inner, outer
        elif (nature & Nature.SILHOUETTE):
            if fe.is_smooth:  # TODO more tests needed
                outer, inner = inner, outer
        else:
            outer = inner = (outer + inner) / 2
        sv.attribute.thickness = (outer, inner)


class ThicknessBlenderMixIn(ThicknessModifierMixIn):
    def __init__(self, position, ratio):
        ThicknessModifierMixIn.__init__(self)
        self.position = position
        self.ratio = ratio

    def blend_thickness(self, svert, v):
        """Blends and sets the thickness."""
        outer, inner = svert.attribute.thickness
        fe = svert.fedge
        v = self.blend(outer + inner, v)

        # Part 1: blend
        if self.position == 'CENTER':
            outer = inner = v * 0.5
        elif self.position == 'INSIDE':
            outer, inner = 0, v
        elif self.position == 'OUTSIDE':
            outer, inner = v, 0
        elif self.position == 'RELATIVE':
            outer, inner = v * self.ratio, v - (v * self.ratio)
        else:
            raise ValueError("unknown thickness position: " + position)

        # Part 2: set
        if (fe.nature & Nature.BORDER):
            if self.persp_camera:
                point = -svert.point_3d.normalized()
                dir = point.dot(fe.normal_left)
            else:
                dir = fe.normal_left.z
            if dir < 0.0:  # the back side is visible
                outer, inner = inner, outer
        elif (fe.nature & Nature.SILHOUETTE):
            if fe.is_smooth:  # TODO more tests needed
                outer, inner = inner, outer
        else:
            outer = inner = (outer + inner) / 2
        svert.attribute.thickness = (outer, inner)


class BaseThicknessShader(StrokeShader, ThicknessModifierMixIn):
    def __init__(self, thickness, position, ratio):
        StrokeShader.__init__(self)
        ThicknessModifierMixIn.__init__(self)
        if position == 'CENTER':
            self.outer = thickness * 0.5
            self.inner = thickness - self.outer
        elif position == 'INSIDE':
            self.outer = 0
            self.inner = thickness
        elif position == 'OUTSIDE':
            self.outer = thickness
            self.inner = 0
        elif position == 'RELATIVE':
            self.outer = thickness * ratio
            self.inner = thickness - self.outer
        else:
            raise ValueError("unknown thickness position: " + position)

    def shade(self, stroke):
        for svert in stroke:
            self.set_thickness(svert, self.outer, self.inner)


# Along Stroke modifiers

class ColorAlongStrokeShader(ColorRampModifier):
    """Maps a ramp to the color of the stroke, using the curvilinear abscissa (t)."""
    def shade(self, stroke):
        for svert, t in zip(stroke, iter_t2d_along_stroke(stroke)):
            a = svert.attribute.color
            b = self.evaluate(t)
            svert.attribute.color = self.blend_ramp(a, b)


class AlphaAlongStrokeShader(CurveMappingModifier):
    """Maps a curve to the alpha/transparancy of the stroke, using the curvilinear abscissa (t)."""
    def shade(self, stroke):
        for svert, t in zip(stroke, iter_t2d_along_stroke(stroke)):
            a = svert.attribute.alpha
            b = self.evaluate(t)
            svert.attribute.alpha = self.blend(a, b)


class ThicknessAlongStrokeShader(ThicknessBlenderMixIn, CurveMappingModifier):
    """Maps a curve to the thickness of the stroke, using the curvilinear abscissa (t)."""
    def __init__(self, thickness_position, thickness_ratio,
                 blend, influence, mapping, invert, curve, value_min, value_max):
        ThicknessBlenderMixIn.__init__(self, thickness_position, thickness_ratio)
        CurveMappingModifier.__init__(self, blend, influence, mapping, invert, curve)
        self.value = BoundedProperty(value_min, value_max, value_max - value_min)

    def shade(self, stroke):
        for svert, t in zip(stroke, iter_t2d_along_stroke(stroke)):
            b = self.value.min + self.evaluate(t) * self.value.delta
            self.blend_thickness(svert, b)


# -- Distance from Camera modifiers -- #

class ColorDistanceFromCameraShader(ColorRampModifier):
    """Picks a color value from a ramp based on the vertex' distance from the camera."""
    def __init__(self, blend, influence, ramp, range_min, range_max):
        ColorRampModifier.__init__(self, blend, influence, ramp)
        self.range = BoundedProperty(range_min, range_max, range_max - range_min)

    def shade(self, stroke):
        it = iter_distance_from_camera(stroke, *self.range)
        for svert, t in it:
            a = svert.attribute.color
            b = self.evaluate(t)
            svert.attribute.color = self.blend_ramp(a, b)


class AlphaDistanceFromCameraShader(CurveMappingModifier):
    """Picks an alpha value from a curve based on the vertex' distance from the camera"""
    def __init__(self, blend, influence, mapping, invert, curve, range_min, range_max):
        CurveMappingModifier.__init__(self, blend, influence, mapping, invert, curve)
        self.range = BoundedProperty(range_min, range_max, range_max - range_min)

    def shade(self, stroke):
        it = iter_distance_from_camera(stroke, *self.range)
        for svert, t in it:
            a = svert.attribute.alpha
            b = self.evaluate(t)
            svert.attribute.alpha = self.blend(a, b)


class ThicknessDistanceFromCameraShader(ThicknessBlenderMixIn, CurveMappingModifier):
    """Picks a thickness value from a curve based on the vertex' distance from the camera."""
    def __init__(self, thickness_position, thickness_ratio,
                 blend, influence, mapping, invert, curve, range_min, range_max, value_min, value_max):
        ThicknessBlenderMixIn.__init__(self, thickness_position, thickness_ratio)
        CurveMappingModifier.__init__(self, blend, influence, mapping, invert, curve)
        self.range = BoundedProperty(range_min, range_max, range_max - range_min)
        self.value = BoundedProperty(value_min, value_max, value_max - value_min)

    def shade(self, stroke):
        for (svert, t) in iter_distance_from_camera(stroke, *self.range):
            b = self.value.min + self.evaluate(t) * self.value.delta
            self.blend_thickness(svert, b)


# Distance from Object modifiers

class ColorDistanceFromObjectShader(ColorRampModifier):
    """Picks a color value from a ramp based on the vertex' distance from a given object."""
    def __init__(self, blend, influence, ramp, target, range_min, range_max):
        ColorRampModifier.__init__(self, blend, influence, ramp)
        if target is None:
            raise ValueError("ColorDistanceFromObjectShader: target can't be None ")
        self.range = BoundedProperty(range_min, range_max, range_max - range_min)
        # construct a model-view matrix
        matrix = getCurrentScene().camera.matrix_world.inverted()
        # get the object location in the camera coordinate
        self.loc = matrix * target.location

    def shade(self, stroke):
        it = iter_distance_from_object(stroke, self.loc, *self.range)
        for svert, t in it:
            a = svert.attribute.color
            b = self.evaluate(t)
            svert.attribute.color = self.blend_ramp(a, b)


class AlphaDistanceFromObjectShader(CurveMappingModifier):
    """Picks an alpha value from a curve based on the vertex' distance from a given object."""
    def __init__(self, blend, influence, mapping, invert, curve, target, range_min, range_max):
        CurveMappingModifier.__init__(self, blend, influence, mapping, invert, curve)
        if target is None:
            raise ValueError("AlphaDistanceFromObjectShader: target can't be None ")
        self.range = BoundedProperty(range_min, range_max, range_max - range_min)
        # construct a model-view matrix
        matrix = getCurrentScene().camera.matrix_world.inverted()
        # get the object location in the camera coordinate
        self.loc = matrix * target.location

    def shade(self, stroke):
        it = iter_distance_from_object(stroke, self.loc, *self.range)
        for svert, t in it:
            a = svert.attribute.alpha
            b = self.evaluate(t)
            svert.attribute.alpha = self.blend(a, b)


class ThicknessDistanceFromObjectShader(ThicknessBlenderMixIn, CurveMappingModifier):
    """Picks a thickness value from a curve based on the vertex' distance from a given object."""
    def __init__(self, thickness_position, thickness_ratio,
                 blend, influence, mapping, invert, curve, target, range_min, range_max, value_min, value_max):
        ThicknessBlenderMixIn.__init__(self, thickness_position, thickness_ratio)
        CurveMappingModifier.__init__(self, blend, influence, mapping, invert, curve)
        if target is None:
            raise ValueError("ThicknessDistanceFromObjectShader: target can't be None ")
        self.range = BoundedProperty(range_min, range_max, range_max - range_min)
        self.value = BoundedProperty(value_min, value_max, value_max - value_min)
        # construct a model-view matrix
        matrix = getCurrentScene().camera.matrix_world.inverted()
        # get the object location in the camera coordinate
        self.loc = matrix * target.location

    def shade(self, stroke):
        it = iter_distance_from_object(stroke, self.loc, *self.range)
        for svert, t in it:
            b = self.value.min + self.evaluate(t) * self.value.delta
            self.blend_thickness(svert, b)

# Material modifiers
class ColorMaterialShader(ColorRampModifier):
    """Assigns a color to the vertices based on their underlying material."""
    def __init__(self, blend, influence, ramp, material_attribute, use_ramp):
        ColorRampModifier.__init__(self, blend, influence, ramp)
        self.attribute = material_attribute
        self.use_ramp = use_ramp
        self.func = CurveMaterialF0D()

    def shade(self, stroke, attributes={'DIFF', 'SPEC', 'LINE'}):
        it = Interface0DIterator(stroke)
        if not self.use_ramp and self.attribute in attributes:
            for svert in it:
                material = self.func(it)
                if self.attribute == 'LINE':
                    b = material.line[0:3] 
                elif self.attribute == 'DIFF':
                    b = material.diffuse[0:3]
                else:
                    b = material.specular[0:3]
                a = svert.attribute.color
                svert.attribute.color = self.blend_ramp(a, b)
        else:
            for svert, value in iter_material_value(stroke, self.func, self.attribute):
                a = svert.attribute.color
                b = self.evaluate(value)
                svert.attribute.color = self.blend_ramp(a, b)

class AlphaMaterialShader(CurveMappingModifier):
    """Assigns an alpha value to the vertices based on their underlying material."""
    def __init__(self, blend, influence, mapping, invert, curve, material_attribute):
        CurveMappingModifier.__init__(self, blend, influence, mapping, invert, curve)
        self.attribute = material_attribute
        self.func = CurveMaterialF0D()

    def shade(self, stroke):
        for svert, value in iter_material_value(stroke, self.func, self.attribute):
            a = svert.attribute.alpha
            b = self.evaluate(value)
            svert.attribute.alpha = self.blend(a, b)


class ThicknessMaterialShader(ThicknessBlenderMixIn, CurveMappingModifier):
    """Assigns a thickness value to the vertices based on their underlying material."""
    def __init__(self, thickness_position, thickness_ratio,
                 blend, influence, mapping, invert, curve, material_attribute, value_min, value_max):
        ThicknessBlenderMixIn.__init__(self, thickness_position, thickness_ratio)
        CurveMappingModifier.__init__(self, blend, influence, mapping, invert, curve)
        self.attribute = material_attribute
        self.value = BoundedProperty(value_min, value_max, value_max - value_min)
        self.func = CurveMaterialF0D()

    def shade(self, stroke):
        for svert, value in iter_material_value(stroke, self.func, self.attribute):
            b = self.value.min + self.evaluate(value) * self.value.delta
            self.blend_thickness(svert, b)


# Calligraphic thickness modifier


class CalligraphicThicknessShader(ThicknessBlenderMixIn, ScalarBlendModifier):
    """Thickness modifier for achieving a calligraphy-like effect."""
    def __init__(self, thickness_position, thickness_ratio,
                 blend_type, influence, orientation, thickness_min, thickness_max):
        ThicknessBlenderMixIn.__init__(self, thickness_position, thickness_ratio)
        ScalarBlendModifier.__init__(self, blend_type, influence)
        self.orientation = Vector((cos(orientation), sin(orientation)))
        self.thickness = BoundedProperty(thickness_min, thickness_max, thickness_max - thickness_min)
        self.func = VertexOrientation2DF0D()

    def shade(self, stroke):
        it = Interface0DIterator(stroke)
        for svert in it:
            dir = self.func(it)
            if dir.length != 0.0:
                dir.normalize()
                fac = abs(dir.orthogonal() * self.orientation)
                b = self.thickness.min + fac * self.thickness.delta
            else:
                b = self.thickness.min
            self.blend_thickness(svert, b)


# Geometry modifiers

class SinusDisplacementShader(StrokeShader):
    """Displaces the stroke in a sinewave-like shape."""
    def __init__(self, wavelength, amplitude, phase):
        StrokeShader.__init__(self)
        self.wavelength = wavelength
        self.amplitude = amplitude
        self.phase = phase / wavelength * 2 * pi

    def shade(self, stroke):
        # normals are stored in a tuple, so they don't update when we reposition vertices.
        normals = tuple(stroke_normal(stroke))
        distances = iter_distance_along_stroke(stroke)
        coeff = 1 / self.wavelength * 2 * pi
        for svert, distance, normal in zip(stroke, distances, normals):
            n = normal * self.amplitude * cos(distance * coeff + self.phase)
            svert.point += n
        stroke.update_length()


class PerlinNoise1DShader(StrokeShader):
    """
    Displaces the stroke using the curvilinear abscissa.  This means
    that lines with the same length and sampling interval will be
    identically distorded.
    """
    def __init__(self, freq=10, amp=10, oct=4, angle=radians(45), seed=-1):
        StrokeShader.__init__(self)
        self.noise = Noise(seed)
        self.freq = freq
        self.amp = amp
        self.oct = oct
        self.dir = Vector((cos(angle), sin(angle)))

    def shade(self, stroke):
        length = stroke.length_2d
        for svert in stroke:
            nres = self.noise.turbulence1(length * svert.u, self.freq, self.amp, self.oct)
            svert.point += nres * self.dir
        stroke.update_length()


class PerlinNoise2DShader(StrokeShader):
    """
    Displaces the stroke using the strokes coordinates.  This means
    that in a scene no strokes will be distorded identically.

    More information on the noise shaders can be found at:
    freestyleintegration.wordpress.com/2011/09/25/development-updates-on-september-25/
    """
    def __init__(self, freq=10, amp=10, oct=4, angle=radians(45), seed=-1):
        StrokeShader.__init__(self)
        self.noise = Noise(seed)
        self.freq = freq
        self.amp = amp
        self.oct = oct
        self.dir = Vector((cos(angle), sin(angle)))

    def shade(self, stroke):
        for svert in stroke:
            projected = Vector((svert.projected_x, svert.projected_y))
            nres = self.noise.turbulence2(projected, self.freq, self.amp, self.oct)
            svert.point += nres * self.dir
        stroke.update_length()


class Offset2DShader(StrokeShader):
    """Offsets the stroke by a given amount."""
    def __init__(self, start, end, x, y):
        StrokeShader.__init__(self)
        self.start = start
        self.end = end
        self.xy = Vector((x, y))

    def shade(self, stroke):
        # normals are stored in a tuple, so they don't update when we reposition vertices.
        normals = tuple(stroke_normal(stroke))
        for svert, normal in zip(stroke, normals):
            a = self.start + svert.u * (self.end - self.start)
            svert.point += (normal * a) + self.xy
        stroke.update_length()


class Transform2DShader(StrokeShader):
    """Transforms the stroke (scale, rotation, location) around a given pivot point """
    def __init__(self, pivot, scale_x, scale_y, angle, pivot_u, pivot_x, pivot_y):
        StrokeShader.__init__(self)
        self.pivot = pivot
        self.scale = Vector((scale_x, scale_y))
        self.cos_theta = cos(angle)
        self.sin_theta = sin(angle)
        self.pivot_u = pivot_u
        self.pivot_x = pivot_x
        self.pivot_y = pivot_y
        if pivot not in {'START', 'END', 'CENTER', 'ABSOLUTE', 'PARAM'}:
            raise ValueError("expected pivot in {'START', 'END', 'CENTER', 'ABSOLUTE', 'PARAM'}, not" + pivot)

    def shade(self, stroke):
        # determine the pivot of scaling and rotation operations
        if self.pivot == 'START':
            pivot = stroke[0].point
        elif self.pivot == 'END':
            pivot = stroke[-1].point
        elif self.pivot == 'CENTER':
            # minor rounding errors here, because
            # given v = Vector(a, b), then (v / n) != Vector(v.x / n, v.y / n)
            pivot = (1 / len(stroke)) * sum((svert.point for svert in stroke), Vector((0.0, 0.0)))
        elif self.pivot == 'ABSOLUTE':
            pivot = Vector((self.pivot_x, self.pivot_y))
        elif self.pivot == 'PARAM':
            if self.pivot_u < stroke[0].u:
                pivot = stroke[0].point
            else:
                for prev, svert in pairwise(stroke):
                    if self.pivot_u < svert.u:
                        break
                pivot = svert.point + (svert.u - self.pivot_u) * (prev.point - svert.point)

        # apply scaling and rotation operations
        for svert in stroke:
            p = (svert.point - pivot)
            x = p.x * self.scale.x
            y = p.y * self.scale.y
            p.x = x * self.cos_theta - y * self.sin_theta
            p.y = x * self.sin_theta + y * self.cos_theta
            svert.point = p + pivot
        stroke.update_length()


# Predicates and helper functions

class QuantitativeInvisibilityRangeUP1D(UnaryPredicate1D):
    def __init__(self, qi_start, qi_end):
        UnaryPredicate1D.__init__(self)
        self.getQI = QuantitativeInvisibilityF1D()
        self.qi_start = qi_start
        self.qi_end = qi_end

    def __call__(self, inter):
        qi = self.getQI(inter)
        return self.qi_start <= qi <= self.qi_end


class ObjectNamesUP1D(UnaryPredicate1D):
    def __init__(self, names, negative):
        UnaryPredicate1D.__init__(self)
        self.names = names
        self.negative = negative

    def __call__(self, viewEdge):
        found = viewEdge.viewshape.name in self.names
        if self.negative:
            return not found
        return found


# -- Split by dashed line pattern -- #

class SplitPatternStartingUP0D(UnaryPredicate0D):
    def __init__(self, controller):
        UnaryPredicate0D.__init__(self)
        self.controller = controller

    def __call__(self, inter):
        return self.controller.start()


class SplitPatternStoppingUP0D(UnaryPredicate0D):
    def __init__(self, controller):
        UnaryPredicate0D.__init__(self)
        self.controller = controller

    def __call__(self, inter):
        return self.controller.stop()


class SplitPatternController:
    def __init__(self, pattern, sampling):
        self.sampling = float(sampling)
        k = len(pattern) // 2
        n = k * 2
        self.start_pos = [pattern[i] + pattern[i + 1] for i in range(0, n, 2)]
        self.stop_pos = [pattern[i] for i in range(0, n, 2)]
        self.init()

    def init(self):
        self.start_len = 0.0
        self.start_idx = 0
        self.stop_len = self.sampling
        self.stop_idx = 0

    def start(self):
        self.start_len += self.sampling
        if abs(self.start_len - self.start_pos[self.start_idx]) < self.sampling / 2.0:
            self.start_len = 0.0
            self.start_idx = (self.start_idx + 1) % len(self.start_pos)
            return True
        return False

    def stop(self):
        if self.start_len > 0.0:
            self.init()
        self.stop_len += self.sampling
        if abs(self.stop_len - self.stop_pos[self.stop_idx]) < self.sampling / 2.0:
            self.stop_len = self.sampling
            self.stop_idx = (self.stop_idx + 1) % len(self.stop_pos)
            return True
        return False


# Dashed line

class DashedLineShader(StrokeShader):
    def __init__(self, pattern):
        StrokeShader.__init__(self)
        self.pattern = pattern

    def shade(self, stroke):
        start = 0.0  # 2D curvilinear length
        visible = True
        # The extra 'sampling' term is added below, because the
        # visibility attribute of the i-th vertex refers to the
        # visibility of the stroke segment between the i-th and
        # (i+1)-th vertices.
        sampling = 1.0
        it = stroke.stroke_vertices_begin(sampling)
        pattern_cycle = cycle(self.pattern)
        pattern = next(pattern_cycle)
        for svert in it:
            pos = it.t  # curvilinear abscissa

            if pos - start + sampling > pattern:
                start = pos
                pattern = next(pattern_cycle)
                visible = not visible

            if not visible:
                it.object.attribute.visible = False


# predicates for chaining

class AngleLargerThanBP1D(BinaryPredicate1D):
    def __init__(self, angle):
        BinaryPredicate1D.__init__(self)
        self.angle = angle

    def __call__(self, i1, i2):
        sv1a = i1.first_fedge.first_svertex.point_2d
        sv1b = i1.last_fedge.second_svertex.point_2d
        sv2a = i2.first_fedge.first_svertex.point_2d
        sv2b = i2.last_fedge.second_svertex.point_2d
        if (sv1a - sv2a).length < 1e-6:
            dir1 = sv1a - sv1b
            dir2 = sv2b - sv2a
        elif (sv1b - sv2b).length < 1e-6:
            dir1 = sv1b - sv1a
            dir2 = sv2a - sv2b
        elif (sv1a - sv2b).length < 1e-6:
            dir1 = sv1a - sv1b
            dir2 = sv2a - sv2b
        elif (sv1b - sv2a).length < 1e-6:
            dir1 = sv1b - sv1a
            dir2 = sv2b - sv2a
        else:
            return False
        denom = dir1.length * dir2.length
        if denom < 1e-6:
            return False
        x = (dir1 * dir2) / denom
        return acos(bound(-1.0, x, 1.0)) > self.angle

# predicates for selection


class LengthThresholdUP1D(UnaryPredicate1D):
    def __init__(self, length_min=None, length_max=None):
        UnaryPredicate1D.__init__(self)
        self.length_min = length_min
        self.length_max = length_max

    def __call__(self, inter):
        length = inter.length_2d
        if self.length_min is not None and length < self.length_min:
            return False
        if self.length_max is not None and length > self.length_max:
            return False
        return True


class FaceMarkBothUP1D(UnaryPredicate1D):
    def __call__(self, inter: ViewEdge):
        fe = inter.first_fedge
        while fe is not None:
            if fe.is_smooth:
                if fe.face_mark:
                    return True
            elif (fe.nature & Nature.BORDER):
                if fe.face_mark_left:
                    return True
            else:
                if fe.face_mark_right and fe.face_mark_left:
                    return True
            fe = fe.next_fedge
        return False


class FaceMarkOneUP1D(UnaryPredicate1D):
    def __call__(self, inter: ViewEdge):
        fe = inter.first_fedge
        while fe is not None:
            if fe.is_smooth:
                if fe.face_mark:
                    return True
            elif (fe.nature & Nature.BORDER):
                if fe.face_mark_left:
                    return True
            else:
                if fe.face_mark_right or fe.face_mark_left:
                    return True
            fe = fe.next_fedge
        return False


# predicates for splitting

class MaterialBoundaryUP0D(UnaryPredicate0D):
    def __call__(self, it):
        # can't use only it.is_end here, see commit rBeb8964fb7f19
        if it.is_begin or it.at_last or it.is_end:
            return False
        it.decrement()
        prev, v, succ = next(it), next(it), next(it)
        fe = v.get_fedge(prev)
        idx1 = fe.material_index if fe.is_smooth else fe.material_index_left
        fe = v.get_fedge(succ)
        idx2 = fe.material_index if fe.is_smooth else fe.material_index_left
        return idx1 != idx2


class Curvature2DAngleThresholdUP0D(UnaryPredicate0D):
    def __init__(self, angle_min=None, angle_max=None):
        UnaryPredicate0D.__init__(self)
        self.angle_min = angle_min
        self.angle_max = angle_max
        self.func = Curvature2DAngleF0D()

    def __call__(self, inter):
        angle = pi - self.func(inter)
        if self.angle_min is not None and angle < self.angle_min:
            return True
        if self.angle_max is not None and angle > self.angle_max:
            return True
        return False


class Length2DThresholdUP0D(UnaryPredicate0D):
    def __init__(self, length_limit):
        UnaryPredicate0D.__init__(self)
        self.length_limit = length_limit
        self.t = 0.0

    def __call__(self, inter):
        t = inter.t  # curvilinear abscissa
        if t < self.t:
            self.t = 0.0
            return False
        if t - self.t < self.length_limit:
            return False
        self.t = t
        return True


# Seed for random number generation

class Seed:
    def __init__(self):
        self.t_max = 2 ** 15
        self.t = int(time.time()) % self.t_max

    def get(self, seed):
        if seed < 0:
            self.t = (self.t + 1) % self.t_max
            return self.t
        return seed

_seed = Seed()


def get_dashed_pattern(linestyle):
    """Extracts the dashed pattern from the various UI options """
    pattern = []
    if linestyle.dash1 > 0 and linestyle.gap1 > 0:
        pattern.append(linestyle.dash1)
        pattern.append(linestyle.gap1)
    if linestyle.dash2 > 0 and linestyle.gap2 > 0:
        pattern.append(linestyle.dash2)
        pattern.append(linestyle.gap2)
    if linestyle.dash3 > 0 and linestyle.gap3 > 0:
        pattern.append(linestyle.dash3)
        pattern.append(linestyle.gap3)
    return pattern


integration_types = {
    'MEAN': IntegrationType.MEAN,
    'MIN': IntegrationType.MIN,
    'MAX': IntegrationType.MAX,
    'FIRST': IntegrationType.FIRST,
    'LAST': IntegrationType.LAST}


# main function for parameter processing
def process(layer_name, lineset_name):
    scene = getCurrentScene()
    layer = scene.render.layers[layer_name]
    lineset = layer.freestyle_settings.linesets[lineset_name]
    linestyle = lineset.linestyle

    # execute line set pre-processing callback functions
    for fn in callbacks_lineset_pre:
        try:
            fn(scene, layer, lineset)
        except Exception as e:
            print(e)

    selection_criteria = []
    # prepare selection criteria by visibility
    if lineset.select_by_visibility:
        if lineset.visibility == 'VISIBLE':
            selection_criteria.append(
                QuantitativeInvisibilityUP1D(0))
        elif lineset.visibility == 'HIDDEN':
            selection_criteria.append(
                NotUP1D(QuantitativeInvisibilityUP1D(0)))
        elif lineset.visibility == 'RANGE':
            selection_criteria.append(
                QuantitativeInvisibilityRangeUP1D(lineset.qi_start, lineset.qi_end))
    # prepare selection criteria by edge types
    if lineset.select_by_edge_types:
        edge_type_criteria = []
        if lineset.select_silhouette:
            upred = pyNatureUP1D(Nature.SILHOUETTE)
            edge_type_criteria.append(NotUP1D(upred) if lineset.exclude_silhouette else upred)
        if lineset.select_border:
            upred = pyNatureUP1D(Nature.BORDER)
            edge_type_criteria.append(NotUP1D(upred) if lineset.exclude_border else upred)
        if lineset.select_crease:
            upred = pyNatureUP1D(Nature.CREASE)
            edge_type_criteria.append(NotUP1D(upred) if lineset.exclude_crease else upred)
        if lineset.select_ridge_valley:
            upred = pyNatureUP1D(Nature.RIDGE)
            edge_type_criteria.append(NotUP1D(upred) if lineset.exclude_ridge_valley else upred)
        if lineset.select_suggestive_contour:
            upred = pyNatureUP1D(Nature.SUGGESTIVE_CONTOUR)
            edge_type_criteria.append(NotUP1D(upred) if lineset.exclude_suggestive_contour else upred)
        if lineset.select_material_boundary:
            upred = pyNatureUP1D(Nature.MATERIAL_BOUNDARY)
            edge_type_criteria.append(NotUP1D(upred) if lineset.exclude_material_boundary else upred)
        if lineset.select_edge_mark:
            upred = pyNatureUP1D(Nature.EDGE_MARK)
            edge_type_criteria.append(NotUP1D(upred) if lineset.exclude_edge_mark else upred)
        if lineset.select_contour:
            upred = ContourUP1D()
            edge_type_criteria.append(NotUP1D(upred) if lineset.exclude_contour else upred)
        if lineset.select_external_contour:
            upred = ExternalContourUP1D()
            edge_type_criteria.append(NotUP1D(upred) if lineset.exclude_external_contour else upred)
        if lineset.edge_type_combination == 'OR':
            upred = OrUP1D(*edge_type_criteria)
        else:
            upred = AndUP1D(*edge_type_criteria)
        if upred is not None:
            if lineset.edge_type_negation == 'EXCLUSIVE':
                upred = NotUP1D(upred)
            selection_criteria.append(upred)
    # prepare selection criteria by face marks
    if lineset.select_by_face_marks:
        if lineset.face_mark_condition == 'BOTH':
            upred = FaceMarkBothUP1D()
        else:
            upred = FaceMarkOneUP1D()

        if lineset.face_mark_negation == 'EXCLUSIVE':
            upred = NotUP1D(upred)
        selection_criteria.append(upred)
    # prepare selection criteria by group of objects
    if lineset.select_by_group:
        if lineset.group is not None:
            names = {ob.name: True for ob in lineset.group.objects}
            upred = ObjectNamesUP1D(names, lineset.group_negation == 'EXCLUSIVE')
            selection_criteria.append(upred)
    # prepare selection criteria by image border
    if lineset.select_by_image_border:
        upred = WithinImageBoundaryUP1D(*ContextFunctions.get_border())
        selection_criteria.append(upred)
    # select feature edges
    upred = AndUP1D(*selection_criteria)
    if upred is None:
        upred = TrueUP1D()
    Operators.select(upred)
    # join feature edges to form chains
    if linestyle.use_chaining:
        if linestyle.chaining == 'PLAIN':
            if linestyle.use_same_object:
                Operators.bidirectional_chain(ChainSilhouetteIterator(), NotUP1D(upred))
            else:
                Operators.bidirectional_chain(ChainPredicateIterator(upred, TrueBP1D()), NotUP1D(upred))
        elif linestyle.chaining == 'SKETCHY':
            if linestyle.use_same_object:
                Operators.bidirectional_chain(pySketchyChainSilhouetteIterator(linestyle.rounds))
            else:
                Operators.bidirectional_chain(pySketchyChainingIterator(linestyle.rounds))
    else:
        Operators.chain(ChainPredicateIterator(FalseUP1D(), FalseBP1D()), NotUP1D(upred))
    # split chains
    if linestyle.material_boundary:
        Operators.sequential_split(MaterialBoundaryUP0D())
    if linestyle.use_angle_min or linestyle.use_angle_max:
        angle_min = linestyle.angle_min if linestyle.use_angle_min else None
        angle_max = linestyle.angle_max if linestyle.use_angle_max else None
        Operators.sequential_split(Curvature2DAngleThresholdUP0D(angle_min, angle_max))
    if linestyle.use_split_length:
        Operators.sequential_split(Length2DThresholdUP0D(linestyle.split_length), 1.0)
    if linestyle.use_split_pattern:
        pattern = []
        if linestyle.split_dash1 > 0 and linestyle.split_gap1 > 0:
            pattern.append(linestyle.split_dash1)
            pattern.append(linestyle.split_gap1)
        if linestyle.split_dash2 > 0 and linestyle.split_gap2 > 0:
            pattern.append(linestyle.split_dash2)
            pattern.append(linestyle.split_gap2)
        if linestyle.split_dash3 > 0 and linestyle.split_gap3 > 0:
            pattern.append(linestyle.split_dash3)
            pattern.append(linestyle.split_gap3)
        if len(pattern) > 0:
            sampling = 1.0
            controller = SplitPatternController(pattern, sampling)
            Operators.sequential_split(SplitPatternStartingUP0D(controller),
                                       SplitPatternStoppingUP0D(controller),
                                       sampling)
    # sort selected chains
    if linestyle.use_sorting:
        integration = integration_types.get(linestyle.integration_type, IntegrationType.MEAN)
        if linestyle.sort_key == 'DISTANCE_FROM_CAMERA':
            bpred = pyZBP1D(integration)
        elif linestyle.sort_key == '2D_LENGTH':
            bpred = Length2DBP1D()
        elif linestyle.sort_key == 'PROJECTED_X':
            bpred = pyProjectedXBP1D(integration)
        elif linestyle.sort_key == 'PROJECTED_Y':
            bpred = pyProjectedYBP1D(integration)
        if linestyle.sort_order == 'REVERSE':
            bpred = NotBP1D(bpred)
        Operators.sort(bpred)
    # select chains
    if linestyle.use_length_min or linestyle.use_length_max:
        length_min = linestyle.length_min if linestyle.use_length_min else None
        length_max = linestyle.length_max if linestyle.use_length_max else None
        Operators.select(LengthThresholdUP1D(length_min, length_max))
    if linestyle.use_chain_count:
        Operators.select(pyNFirstUP1D(linestyle.chain_count))
    # prepare a list of stroke shaders
    shaders_list = []
    for m in linestyle.geometry_modifiers:
        if not m.use:
            continue
        if m.type == 'SAMPLING':
            shaders_list.append(SamplingShader(
                m.sampling))
        elif m.type == 'BEZIER_CURVE':
            shaders_list.append(BezierCurveShader(
                m.error))
        elif m.type == 'SINUS_DISPLACEMENT':
            shaders_list.append(SinusDisplacementShader(
                m.wavelength, m.amplitude, m.phase))
        elif m.type == 'SPATIAL_NOISE':
            shaders_list.append(SpatialNoiseShader(
                m.amplitude, m.scale, m.octaves, m.smooth, m.use_pure_random))
        elif m.type == 'PERLIN_NOISE_1D':
            shaders_list.append(PerlinNoise1DShader(
                m.frequency, m.amplitude, m.octaves, m.angle, _seed.get(m.seed)))
        elif m.type == 'PERLIN_NOISE_2D':
            shaders_list.append(PerlinNoise2DShader(
                m.frequency, m.amplitude, m.octaves, m.angle, _seed.get(m.seed)))
        elif m.type == 'BACKBONE_STRETCHER':
            shaders_list.append(BackboneStretcherShader(
                m.backbone_length))
        elif m.type == 'TIP_REMOVER':
            shaders_list.append(TipRemoverShader(
                m.tip_length))
        elif m.type == 'POLYGONIZATION':
            shaders_list.append(PolygonalizationShader(
                m.error))
        elif m.type == 'GUIDING_LINES':
            shaders_list.append(GuidingLinesShader(
                m.offset))
        elif m.type == 'BLUEPRINT':
            if m.shape == 'CIRCLES':
                shaders_list.append(pyBluePrintCirclesShader(
                    m.rounds, m.random_radius, m.random_center))
            elif m.shape == 'ELLIPSES':
                shaders_list.append(pyBluePrintEllipsesShader(
                    m.rounds, m.random_radius, m.random_center))
            elif m.shape == 'SQUARES':
                shaders_list.append(pyBluePrintSquaresShader(
                    m.rounds, m.backbone_length, m.random_backbone))
        elif m.type == '2D_OFFSET':
            shaders_list.append(Offset2DShader(
                m.start, m.end, m.x, m.y))
        elif m.type == '2D_TRANSFORM':
            shaders_list.append(Transform2DShader(
                m.pivot, m.scale_x, m.scale_y, m.angle, m.pivot_u, m.pivot_x, m.pivot_y))
    # -- Base color, alpha and thickness -- #
    if (not linestyle.use_chaining) or (linestyle.chaining == 'PLAIN' and linestyle.use_same_object):
        thickness_position = linestyle.thickness_position
    else:
        thickness_position = 'CENTER'
        import bpy
        if bpy.app.debug_freestyle:
            print("Warning: Thickness position options are applied when chaining is disabled\n"
                  "         or the Plain chaining is used with the Same Object option enabled.")
    shaders_list.append(ConstantColorShader(*(linestyle.color), alpha=linestyle.alpha))
    shaders_list.append(BaseThicknessShader(linestyle.thickness, thickness_position,
                                            linestyle.thickness_ratio))
    # -- Modifiers -- #
    for m in linestyle.color_modifiers:
        if not m.use:
            continue
        if m.type == 'ALONG_STROKE':
            shaders_list.append(ColorAlongStrokeShader(
                m.blend, m.influence, m.color_ramp))
        elif m.type == 'DISTANCE_FROM_CAMERA':
            shaders_list.append(ColorDistanceFromCameraShader(
                m.blend, m.influence, m.color_ramp,
                m.range_min, m.range_max))
        elif m.type == 'DISTANCE_FROM_OBJECT' and m.target is not None:
            shaders_list.append(ColorDistanceFromObjectShader(
                m.blend, m.influence, m.color_ramp, m.target,
                m.range_min, m.range_max))
        elif m.type == 'MATERIAL':
            shaders_list.append(ColorMaterialShader(
                m.blend, m.influence, m.color_ramp, m.material_attribute,
                m.use_ramp))
    for m in linestyle.alpha_modifiers:
        if not m.use:
            continue
        if m.type == 'ALONG_STROKE':
            shaders_list.append(AlphaAlongStrokeShader(
                m.blend, m.influence, m.mapping, m.invert, m.curve))
        elif m.type == 'DISTANCE_FROM_CAMERA':
            shaders_list.append(AlphaDistanceFromCameraShader(
                m.blend, m.influence, m.mapping, m.invert, m.curve,
                m.range_min, m.range_max))
        elif m.type == 'DISTANCE_FROM_OBJECT' and m.target is not None:
            shaders_list.append(AlphaDistanceFromObjectShader(
                m.blend, m.influence, m.mapping, m.invert, m.curve, m.target,
                m.range_min, m.range_max))
        elif m.type == 'MATERIAL':
            shaders_list.append(AlphaMaterialShader(
                m.blend, m.influence, m.mapping, m.invert, m.curve,
                m.material_attribute))
    for m in linestyle.thickness_modifiers:
        if not m.use:
            continue
        if m.type == 'ALONG_STROKE':
            shaders_list.append(ThicknessAlongStrokeShader(
                thickness_position, linestyle.thickness_ratio,
                m.blend, m.influence, m.mapping, m.invert, m.curve,
                m.value_min, m.value_max))
        elif m.type == 'DISTANCE_FROM_CAMERA':
            shaders_list.append(ThicknessDistanceFromCameraShader(
                thickness_position, linestyle.thickness_ratio,
                m.blend, m.influence, m.mapping, m.invert, m.curve,
                m.range_min, m.range_max, m.value_min, m.value_max))
        elif m.type == 'DISTANCE_FROM_OBJECT' and m.target is not None:
            shaders_list.append(ThicknessDistanceFromObjectShader(
                thickness_position, linestyle.thickness_ratio,
                m.blend, m.influence, m.mapping, m.invert, m.curve, m.target,
                m.range_min, m.range_max, m.value_min, m.value_max))
        elif m.type == 'MATERIAL':
            shaders_list.append(ThicknessMaterialShader(
                thickness_position, linestyle.thickness_ratio,
                m.blend, m.influence, m.mapping, m.invert, m.curve,
                m.material_attribute, m.value_min, m.value_max))
        elif m.type == 'CALLIGRAPHY':
            shaders_list.append(CalligraphicThicknessShader(
                thickness_position, linestyle.thickness_ratio,
                m.blend, m.influence,
                m.orientation, m.thickness_min, m.thickness_max))
    # -- Textures -- #
    has_tex = False
    if scene.render.use_shading_nodes:
        if linestyle.use_nodes and linestyle.node_tree:
            shaders_list.append(BlenderTextureShader(linestyle.node_tree))
            has_tex = True
    else:
        if linestyle.use_texture:
            textures = tuple(BlenderTextureShader(slot) for slot in linestyle.texture_slots if slot is not None)
            if textures:
                shaders_list.extend(textures)
                has_tex = True
    if has_tex:
        shaders_list.append(StrokeTextureStepShader(linestyle.texture_spacing))

    # execute post-base stylization callbacks
    for fn in callbacks_modifiers_post:
        shaders_list.extend(fn(scene, layer, lineset))

    # -- Stroke caps -- #
    if linestyle.caps == 'ROUND':
        shaders_list.append(RoundCapShader())
    elif linestyle.caps == 'SQUARE':
        shaders_list.append(SquareCapShader())

    # -- Dashed line -- #
    if linestyle.use_dashed_line:
        pattern = get_dashed_pattern(linestyle)
        if len(pattern) > 0:
            shaders_list.append(DashedLineShader(pattern))

    # create strokes using the shaders list
    Operators.create(TrueUP1D(), shaders_list)

    # execute line set post-processing callback functions
    for fn in callbacks_lineset_post:
        fn(scene, layer, lineset)