Welcome to mirror list, hosted at ThFree Co, Russian Federation.

engine_render_pov.py « io « scripts « release - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: e64e3bf05fb9f6e2f747335acbec230ff57f66f1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
# ##### BEGIN GPL LICENSE BLOCK #####
#
#  This program is free software; you can redistribute it and/or
#  modify it under the terms of the GNU General Public License
#  as published by the Free Software Foundation; either version 2
#  of the License, or (at your option) any later version.
#
#  This program is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  GNU General Public License for more details.
#
#  You should have received a copy of the GNU General Public License
#  along with this program; if not, write to the Free Software Foundation,
#  Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####

# <pep8 compliant>

import bpy

from math import atan, pi, degrees
import subprocess
import os
import sys
import time

import platform as pltfrm

if pltfrm.architecture()[0] == '64bit':
    bitness = 64
else:
    bitness = 32


def write_pov(filename, scene=None, info_callback=None):
    file = open(filename, 'w')

    # Only for testing
    if not scene:
        scene = bpy.data.scenes[0]

    render = scene.render
    world = scene.world

    def uniqueName(name, nameSeq):

        if name not in nameSeq:
            return name

        name_orig = name
        i = 1
        while name in nameSeq:
            name = '%s_%.3d' % (name_orig, i)
            i += 1

        return name

    def writeMatrix(matrix):
        file.write('\tmatrix <%.6f, %.6f, %.6f,  %.6f, %.6f, %.6f,  %.6f, %.6f, %.6f,  %.6f, %.6f, %.6f>\n' %\
        (matrix[0][0], matrix[0][1], matrix[0][2], matrix[1][0], matrix[1][1], matrix[1][2], matrix[2][0], matrix[2][1], matrix[2][2], matrix[3][0], matrix[3][1], matrix[3][2]))

    def writeObjectMaterial(material):
        if material and material.transparency_method == 'RAYTRACE':
            file.write('\tinterior { ior %.6f }\n' % material.raytrace_transparency.ior)

            # Other interior args
            # fade_distance 2
            # fade_power [Value]
            # fade_color

            # dispersion
            # dispersion_samples

    materialNames = {}
    DEF_MAT_NAME = 'Default'

    def writeMaterial(material):
        # Assumes only called once on each material

        if material:
            name_orig = material.name
        else:
            name_orig = DEF_MAT_NAME

        name = materialNames[name_orig] = uniqueName(bpy.utils.clean_name(name_orig), materialNames)

        file.write('#declare %s = finish {\n' % name)

        if material:
            file.write('\tdiffuse %.3g\n' % material.diffuse_intensity)
            file.write('\tspecular %.3g\n' % material.specular_intensity)

            file.write('\tambient %.3g\n' % material.ambient)
            #file.write('\tambient rgb <%.3g, %.3g, %.3g>\n' % tuple([c*material.ambient for c in world.ambient_color])) # povray blends the global value

            # map hardness between 0.0 and 1.0
            roughness = ((1.0 - ((material.specular_hardness - 1.0) / 510.0)))
            # scale from 0.0 to 0.1
            roughness *= 0.1
            # add a small value because 0.0 is invalid
            roughness += (1 / 511.0)

            file.write('\troughness %.3g\n' % roughness)

            # 'phong 70.0 '

            if material.raytrace_mirror.enabled:
                raytrace_mirror = material.raytrace_mirror
                if raytrace_mirror.reflect_factor:
                    file.write('\treflection {\n')
                    file.write('\t\trgb <%.3g, %.3g, %.3g>' % tuple(material.mirror_color))
                    file.write('\t\tfresnel 1 falloff %.3g exponent %.3g metallic %.3g} ' % (raytrace_mirror.fresnel, raytrace_mirror.fresnel_factor, raytrace_mirror.reflect_factor))

        else:
            file.write('\tdiffuse 0.8\n')
            file.write('\tspecular 0.2\n')


        # This is written into the object
        '''
        if material and material.transparency_method=='RAYTRACE':
            'interior { ior %.3g} ' % material.raytrace_transparency.ior
        '''

        #file.write('\t\t\tcrand 1.0\n') # Sand granyness
        #file.write('\t\t\tmetallic %.6f\n' % material.spec)
        #file.write('\t\t\tphong %.6f\n' % material.spec)
        #file.write('\t\t\tphong_size %.6f\n' % material.spec)
        #file.write('\t\t\tbrilliance %.6f ' % (material.specular_hardness/256.0) # Like hardness

        file.write('}\n')

    def exportCamera():
        camera = scene.camera
        matrix = camera.matrix

        # compute resolution
        Qsize = float(render.resolution_x) / float(render.resolution_y)

        file.write('camera {\n')
        file.write('\tlocation  <0, 0, 0>\n')
        file.write('\tlook_at  <0, 0, -1>\n')
        file.write('\tright <%s, 0, 0>\n' % - Qsize)
        file.write('\tup <0, 1, 0>\n')
        file.write('\tangle  %f \n' % (360.0 * atan(16.0 / camera.data.lens) / pi))

        file.write('\trotate  <%.6f, %.6f, %.6f>\n' % tuple([degrees(e) for e in matrix.rotation_part().to_euler()]))
        file.write('\ttranslate <%.6f, %.6f, %.6f>\n' % (matrix[3][0], matrix[3][1], matrix[3][2]))
        file.write('}\n')

    def exportLamps(lamps):
        # Get all lamps
        for ob in lamps:
            lamp = ob.data

            matrix = ob.matrix

            color = tuple([c * lamp.energy for c in lamp.color]) # Colour is modified by energy

            file.write('light_source {\n')
            file.write('\t< 0,0,0 >\n')
            file.write('\tcolor rgb<%.3g, %.3g, %.3g>\n' % color)

            if lamp.type == 'POINT': # Point Lamp
                pass
            elif lamp.type == 'SPOT': # Spot
                file.write('\tspotlight\n')

                # Falloff is the main radius from the centre line
                file.write('\tfalloff %.2f\n' % (degrees(lamp.spot_size) / 2.0)) # 1 TO 179 FOR BOTH
                file.write('\tradius %.6f\n' % ((degrees(lamp.spot_size) / 2.0) * (1.0 - lamp.spot_blend)))

                # Blender does not have a tightness equivilent, 0 is most like blender default.
                file.write('\ttightness 0\n') # 0:10f

                file.write('\tpoint_at  <0, 0, -1>\n')
            elif lamp.type == 'SUN':
                file.write('\tparallel\n')
                file.write('\tpoint_at  <0, 0, -1>\n') # *must* be after 'parallel'

            elif lamp.type == 'AREA':

                size_x = lamp.size
                samples_x = lamp.shadow_ray_samples_x
                if lamp.shape == 'SQUARE':
                    size_y = size_x
                    samples_y = samples_x
                else:
                    size_y = lamp.size_y
                    samples_y = lamp.shadow_ray_samples_y

                file.write('\tarea_light <%d,0,0>,<0,0,%d> %d, %d\n' % (size_x, size_y, samples_x, samples_y))
                if lamp.shadow_ray_sampling_method == 'CONSTANT_JITTERED':
                    if lamp.jitter:
                        file.write('\tjitter\n')
                else:
                    file.write('\tadaptive 1\n')
                    file.write('\tjitter\n')

            if lamp.shadow_method == 'NOSHADOW':
                file.write('\tshadowless\n')

            file.write('\tfade_distance %.6f\n' % lamp.distance)
            file.write('\tfade_power %d\n' % 1) # Could use blenders lamp quad?
            writeMatrix(matrix)

            file.write('}\n')

    def exportMeta(metas):

        # TODO - blenders 'motherball' naming is not supported.

        for ob in metas:
            meta = ob.data

            file.write('blob {\n')
            file.write('\t\tthreshold %.4g\n' % meta.threshold)

            try:
                material = meta.materials[0] # lame! - blender cant do enything else.
            except:
                material = None

            for elem in meta.elements:

                if elem.type not in ('BALL', 'ELLIPSOID'):
                    continue # Not supported

                loc = elem.location

                stiffness = elem.stiffness
                if elem.negative:
                    stiffness = - stiffness

                if elem.type == 'BALL':

                    file.write('\tsphere { <%.6g, %.6g, %.6g>, %.4g, %.4g ' % (loc.x, loc.y, loc.z, elem.radius, stiffness))

                    # After this wecould do something simple like...
                    # 	"pigment {Blue} }"
                    # except we'll write the color

                elif elem.type == 'ELLIPSOID':
                    # location is modified by scale
                    file.write('\tsphere { <%.6g, %.6g, %.6g>, %.4g, %.4g ' % (loc.x / elem.size_x, loc.y / elem.size_y, loc.z / elem.size_z, elem.radius, stiffness))
                    file.write('scale <%.6g, %.6g, %.6g> ' % (elem.size_x, elem.size_y, elem.size_z))

                if material:
                    diffuse_color = material.diffuse_color

                    if material.transparency and material.transparency_method == 'RAYTRACE':
                        trans = 1.0 - material.raytrace_transparency.filter
                    else:
                        trans = 0.0

                    file.write('pigment {rgbft<%.3g, %.3g, %.3g, %.3g, %.3g>} finish {%s} }\n' % \
                        (diffuse_color[0], diffuse_color[1], diffuse_color[2], 1.0 - material.alpha, trans, materialNames[material.name]))

                else:
                    file.write('pigment {rgb<1 1 1>} finish {%s} }\n' % DEF_MAT_NAME)		# Write the finish last.

            writeObjectMaterial(material)

            writeMatrix(ob.matrix)

            file.write('}\n')

    def exportMeshs(sel):

        ob_num = 0

        for ob in sel:
            ob_num += 1

            if ob.type in ('LAMP', 'CAMERA', 'EMPTY', 'META', 'ARMATURE'):
                continue

            me = ob.data
            me_materials = me.materials

            me = ob.create_mesh(True, 'RENDER')

            if not me:
                continue

            if info_callback:
                info_callback('Object %2.d of %2.d (%s)' % (ob_num, len(sel), ob.name))

            #if ob.type!='MESH':
            #	continue
            # me = ob.data

            matrix = ob.matrix
            try:
                uv_layer = me.active_uv_texture.data
            except:
                uv_layer = None

            try:
                vcol_layer = me.active_vertex_color.data
            except:
                vcol_layer = None

            faces_verts = [f.verts for f in me.faces]
            faces_normals = [tuple(f.normal) for f in me.faces]
            verts_normals = [tuple(v.normal) for v in me.verts]

            # quads incur an extra face
            quadCount = len([f for f in faces_verts if len(f) == 4])

            file.write('mesh2 {\n')
            file.write('\tvertex_vectors {\n')
            file.write('\t\t%s' % (len(me.verts))) # vert count
            for v in me.verts:
                file.write(',\n\t\t<%.6f, %.6f, %.6f>' % tuple(v.co)) # vert count
            file.write('\n  }\n')


            # Build unique Normal list
            uniqueNormals = {}
            for fi, f in enumerate(me.faces):
                fv = faces_verts[fi]
                # [-1] is a dummy index, use a list so we can modify in place
                if f.smooth: # Use vertex normals
                    for v in fv:
                        key = verts_normals[v]
                        uniqueNormals[key] = [-1]
                else: # Use face normal
                    key = faces_normals[fi]
                    uniqueNormals[key] = [-1]

            file.write('\tnormal_vectors {\n')
            file.write('\t\t%d' % len(uniqueNormals)) # vert count
            idx = 0
            for no, index in uniqueNormals.items():
                file.write(',\n\t\t<%.6f, %.6f, %.6f>' % no) # vert count
                index[0] = idx
                idx += 1
            file.write('\n  }\n')


            # Vertex colours
            vertCols = {} # Use for material colours also.

            if uv_layer:
                # Generate unique UV's
                uniqueUVs = {}

                for fi, uv in enumerate(uv_layer):

                    if len(faces_verts[fi]) == 4:
                        uvs = uv.uv1, uv.uv2, uv.uv3, uv.uv4
                    else:
                        uvs = uv.uv1, uv.uv2, uv.uv3

                    for uv in uvs:
                        uniqueUVs[tuple(uv)] = [-1]

                file.write('\tuv_vectors {\n')
                #print unique_uvs
                file.write('\t\t%s' % (len(uniqueUVs))) # vert count
                idx = 0
                for uv, index in uniqueUVs.items():
                    file.write(',\n\t\t<%.6f, %.6f>' % uv)
                    index[0] = idx
                    idx += 1
                '''
                else:
                    # Just add 1 dummy vector, no real UV's
                    file.write('\t\t1') # vert count
                    file.write(',\n\t\t<0.0, 0.0>')
                '''
                file.write('\n  }\n')


            if me.vertex_colors:

                for fi, f in enumerate(me.faces):
                    material_index = f.material_index
                    material = me_materials[material_index]

                    if material and material.vertex_color_paint:

                        col = vcol_layer[fi]

                        if len(faces_verts[fi]) == 4:
                            cols = col.color1, col.color2, col.color3, col.color4
                        else:
                            cols = col.color1, col.color2, col.color3

                        for col in cols:
                            key = col[0], col[1], col[2], material_index # Material index!
                            vertCols[key] = [-1]

                    else:
                        if material:
                            diffuse_color = tuple(material.diffuse_color)
                            key = diffuse_color[0], diffuse_color[1], diffuse_color[2], material_index
                            vertCols[key] = [-1]


            else:
                # No vertex colours, so write material colours as vertex colours
                for i, material in enumerate(me_materials):

                    if material:
                        diffuse_color = tuple(material.diffuse_color)
                        key = diffuse_color[0], diffuse_color[1], diffuse_color[2], i # i == f.mat
                        vertCols[key] = [-1]


            # Vert Colours
            file.write('\ttexture_list {\n')
            file.write('\t\t%s' % (len(vertCols))) # vert count
            idx = 0
            for col, index in vertCols.items():

                if me_materials:
                    material = me_materials[col[3]]
                    material_finish = materialNames[material.name]

                    if material.transparency and material.transparency_method == 'RAYTRACE':
                        trans = 1.0 - material.raytrace_transparency.filter
                    else:
                        trans = 0.0

                else:
                    material_finish = DEF_MAT_NAME # not working properly,
                    trans = 0.0

                #print material.apl
                file.write(',\n\t\ttexture { pigment {rgbft<%.3g, %.3g, %.3g, %.3g, %.3g>} finish {%s}}' %
                            (col[0], col[1], col[2], 1.0 - material.alpha, trans, material_finish))

                index[0] = idx
                idx += 1

            file.write('\n  }\n')

            # Face indicies
            file.write('\tface_indices {\n')
            file.write('\t\t%d' % (len(me.faces) + quadCount)) # faces count
            for fi, f in enumerate(me.faces):
                fv = faces_verts[fi]
                material_index = f.material_index
                if len(fv) == 4:
                    indicies = (0, 1, 2), (0, 2, 3)
                else:
                    indicies = ((0, 1, 2),)

                if vcol_layer:
                    col = vcol_layer[fi]

                    if len(fv) == 4:
                        cols = col.color1, col.color2, col.color3, col.color4
                    else:
                        cols = col.color1, col.color2, col.color3


                if not me_materials or me_materials[material_index] == None: # No materials
                    for i1, i2, i3 in indicies:
                        file.write(',\n\t\t<%d,%d,%d>' % (fv[i1], fv[i2], fv[i3])) # vert count
                else:
                    material = me_materials[material_index]
                    for i1, i2, i3 in indicies:
                        if me.vertex_colors and material.vertex_color_paint:
                            # Colour per vertex - vertex colour

                            col1 = cols[i1]
                            col2 = cols[i2]
                            col3 = cols[i3]

                            ci1 = vertCols[col1[0], col1[1], col1[2], material_index][0]
                            ci2 = vertCols[col2[0], col2[1], col2[2], material_index][0]
                            ci3 = vertCols[col3[0], col3[1], col3[2], material_index][0]
                        else:
                            # Colour per material - flat material colour
                            diffuse_color = material.diffuse_color
                            ci1 = ci2 = ci3 = vertCols[diffuse_color[0], diffuse_color[1], diffuse_color[2], f.material_index][0]

                        file.write(',\n\t\t<%d,%d,%d>, %d,%d,%d' % (fv[i1], fv[i2], fv[i3], ci1, ci2, ci3)) # vert count


            file.write('\n  }\n')

            # normal_indices indicies
            file.write('\tnormal_indices {\n')
            file.write('\t\t%d' % (len(me.faces) + quadCount)) # faces count
            for fi, fv in enumerate(faces_verts):

                if len(fv) == 4:
                    indicies = (0, 1, 2), (0, 2, 3)
                else:
                    indicies = ((0, 1, 2),)

                for i1, i2, i3 in indicies:
                    if f.smooth:
                        file.write(',\n\t\t<%d,%d,%d>' %\
                        (uniqueNormals[verts_normals[fv[i1]]][0],\
                         uniqueNormals[verts_normals[fv[i2]]][0],\
                         uniqueNormals[verts_normals[fv[i3]]][0])) # vert count
                    else:
                        idx = uniqueNormals[faces_normals[fi]][0]
                        file.write(',\n\t\t<%d,%d,%d>' % (idx, idx, idx)) # vert count

            file.write('\n  }\n')

            if uv_layer:
                file.write('\tuv_indices {\n')
                file.write('\t\t%d' % (len(me.faces) + quadCount)) # faces count
                for fi, fv in enumerate(faces_verts):

                    if len(fv) == 4:
                        indicies = (0, 1, 2), (0, 2, 3)
                    else:
                        indicies = ((0, 1, 2),)

                    uv = uv_layer[fi]
                    if len(faces_verts[fi]) == 4:
                        uvs = tuple(uv.uv1), tuple(uv.uv2), tuple(uv.uv3), tuple(uv.uv4)
                    else:
                        uvs = tuple(uv.uv1), tuple(uv.uv2), tuple(uv.uv3)

                    for i1, i2, i3 in indicies:
                        file.write(',\n\t\t<%d,%d,%d>' %\
                        (uniqueUVs[uvs[i1]][0],\
                         uniqueUVs[uvs[i2]][0],\
                         uniqueUVs[uvs[i2]][0])) # vert count
                file.write('\n  }\n')

            if me.materials:
                material = me.materials[0] # dodgy
                writeObjectMaterial(material)

            writeMatrix(matrix)
            file.write('}\n')

            bpy.data.meshes.remove(me)

    def exportWorld(world):
        if not world:
            return

        mist = world.mist

        if mist.enabled:
            file.write('fog {\n')
            file.write('\tdistance %.6f\n' % mist.depth)
            file.write('\tcolor rgbt<%.3g, %.3g, %.3g, %.3g>\n' % (tuple(world.horizon_color) + (1 - mist.intensity,)))
            #file.write('\tfog_offset %.6f\n' % mist.start)
            #file.write('\tfog_alt 5\n')
            #file.write('\tturbulence 0.2\n')
            #file.write('\tturb_depth 0.3\n')
            file.write('\tfog_type 1\n')
            file.write('}\n')

    def exportGlobalSettings(scene):

        file.write('global_settings {\n')

        if scene.pov_radio_enable:
            file.write('\tradiosity {\n')
            file.write("\t\tadc_bailout %.4g\n" % scene.pov_radio_adc_bailout)
            file.write("\t\talways_sample %d\n" % scene.pov_radio_always_sample)
            file.write("\t\tbrightness %.4g\n" % scene.pov_radio_brightness)
            file.write("\t\tcount %d\n" % scene.pov_radio_count)
            file.write("\t\terror_bound %.4g\n" % scene.pov_radio_error_bound)
            file.write("\t\tgray_threshold %.4g\n" % scene.pov_radio_gray_threshold)
            file.write("\t\tlow_error_factor %.4g\n" % scene.pov_radio_low_error_factor)
            file.write("\t\tmedia %d\n" % scene.pov_radio_media)
            file.write("\t\tminimum_reuse %.4g\n" % scene.pov_radio_minimum_reuse)
            file.write("\t\tnearest_count %d\n" % scene.pov_radio_nearest_count)
            file.write("\t\tnormal %d\n" % scene.pov_radio_normal)
            file.write("\t\trecursion_limit %d\n" % scene.pov_radio_recursion_limit)
            file.write('\t}\n')

        if world:
            file.write("\tambient_light rgb<%.3g, %.3g, %.3g>\n" % tuple(world.ambient_color))

        file.write('}\n')


    # Convert all materials to strings we can access directly per vertex.
    writeMaterial(None) # default material

    for material in bpy.data.materials:
        writeMaterial(material)

    exportCamera()
    #exportMaterials()
    sel = scene.objects
    exportLamps([l for l in sel if l.type == 'LAMP'])
    exportMeta([l for l in sel if l.type == 'META'])
    exportMeshs(sel)
    exportWorld(scene.world)
    exportGlobalSettings(scene)

    file.close()


def write_pov_ini(filename_ini, filename_pov, filename_image):
    scene = bpy.data.scenes[0]
    render = scene.render

    x = int(render.resolution_x * render.resolution_percentage * 0.01)
    y = int(render.resolution_y * render.resolution_percentage * 0.01)

    file = open(filename_ini, 'w')

    file.write('Input_File_Name="%s"\n' % filename_pov)
    file.write('Output_File_Name="%s"\n' % filename_image)

    file.write('Width=%d\n' % x)
    file.write('Height=%d\n' % y)

    # Needed for border render.
    '''
    file.write('Start_Column=%d\n' % part.x)
    file.write('End_Column=%d\n' % (part.x+part.w))

    file.write('Start_Row=%d\n' % (part.y))
    file.write('End_Row=%d\n' % (part.y+part.h))
    '''

    file.write('Display=0\n')
    file.write('Pause_When_Done=0\n')
    file.write('Output_File_Type=T\n') # TGA, best progressive loading
    file.write('Output_Alpha=1\n')

    if render.antialiasing:
        aa_mapping = {'5': 2, '8': 3, '11': 4, '16': 5} # method 1 assumed
        file.write('Antialias=1\n')
        file.write('Antialias_Depth=%d\n' % aa_mapping[render.antialiasing_samples])
    else:
        file.write('Antialias=0\n')

    file.close()

# Radiosity panel, use in the scene for now.
FloatProperty = bpy.types.Scene.FloatProperty
IntProperty = bpy.types.Scene.IntProperty
BoolProperty = bpy.types.Scene.BoolProperty

# Not a real pov option, just to know if we should write
BoolProperty(attr="pov_radio_enable",
                name="Enable Radiosity",
                description="Enable povrays radiosity calculation",
                default=False)
BoolProperty(attr="pov_radio_display_advanced",
                name="Advanced Options",
                description="Show advanced options",
                default=False)

# Real pov options
FloatProperty(attr="pov_radio_adc_bailout",
                name="ADC Bailout",
                description="The adc_bailout for radiosity rays. Use adc_bailout = 0.01 / brightest_ambient_object for good results",
                min=0.0, max=1000.0, soft_min=0.0, soft_max=1.0, default=0.01)

BoolProperty(attr="pov_radio_always_sample",
                name="Always Sample",
                description="Only use the data from the pretrace step and not gather any new samples during the final radiosity pass",
                default=True)

FloatProperty(attr="pov_radio_brightness",
                name="Brightness",
                description="Amount objects are brightened before being returned upwards to the rest of the system",
                min=0.0, max=1000.0, soft_min=0.0, soft_max=10.0, default=1.0)

IntProperty(attr="pov_radio_count",
                name="Ray Count",
                description="Number of rays that are sent out whenever a new radiosity value has to be calculated",
                min=1, max=1600, default=35)

FloatProperty(attr="pov_radio_error_bound",
                name="Error Bound",
                description="One of the two main speed/quality tuning values, lower values are more accurate",
                min=0.0, max=1000.0, soft_min=0.1, soft_max=10.0, default=1.8)

FloatProperty(attr="pov_radio_gray_threshold",
                name="Gray Threshold",
                description="One of the two main speed/quality tuning values, lower values are more accurate",
                min=0.0, max=1.0, soft_min=0, soft_max=1, default=0.0)

FloatProperty(attr="pov_radio_low_error_factor",
                name="Low Error Factor",
                description="If you calculate just enough samples, but no more, you will get an image which has slightly blotchy lighting",
                min=0.0, max=1.0, soft_min=0.0, soft_max=1.0, default=0.5)

# max_sample - not available yet
BoolProperty(attr="pov_radio_media",
                name="Media",
                description="Radiosity estimation can be affected by media",
                default=False)

FloatProperty(attr="pov_radio_minimum_reuse",
                name="Minimum Reuse",
                description="Fraction of the screen width which sets the minimum radius of reuse for each sample point (At values higher than 2% expect errors)",
                min=0.0, max=1.0, soft_min=0.1, soft_max=0.1, default=0.015)

IntProperty(attr="pov_radio_nearest_count",
                name="Nearest Count",
                description="Number of old ambient values blended together to create a new interpolated value",
                min=1, max=20, default=5)

BoolProperty(attr="pov_radio_normal",
                name="Normals",
                description="Radiosity estimation can be affected by normals",
                default=False)

IntProperty(attr="pov_radio_recursion_limit",
                name="Recursion Limit",
                description="how many recursion levels are used to calculate the diffuse inter-reflection",
                min=1, max=20, default=3)


class PovrayRender(bpy.types.RenderEngine):
    bl_idname = 'POVRAY_RENDER'
    bl_label = "Povray"
    DELAY = 0.02

    def _export(self, scene):
        import tempfile

        self._temp_file_in = tempfile.mktemp(suffix='.pov')
        self._temp_file_out = tempfile.mktemp(suffix='.tga')
        self._temp_file_ini = tempfile.mktemp(suffix='.ini')
        '''
        self._temp_file_in = '/test.pov'
        self._temp_file_out = '/test.tga'
        self._temp_file_ini = '/test.ini'
        '''

        def info_callback(txt):
            self.update_stats("", "POVRAY: " + txt)

        write_pov(self._temp_file_in, scene, info_callback)

    def _render(self):

        try:
            os.remove(self._temp_file_out) # so as not to load the old file
        except:
            pass

        write_pov_ini(self._temp_file_ini, self._temp_file_in, self._temp_file_out)

        print ("***-STARTING-***")

        pov_binary = "povray"

        if sys.platform == 'win32':
            import winreg
            regKey = winreg.OpenKey(winreg.HKEY_CURRENT_USER, 'Software\\POV-Ray\\v3.6\\Windows')

            if bitness == 64:
                pov_binary = winreg.QueryValueEx(regKey, 'Home')[0] + '\\bin\\pvengine64'
            else:
                pov_binary = winreg.QueryValueEx(regKey, 'Home')[0] + '\\bin\\pvengine'

        if 1:
            # TODO, when povray isnt found this gives a cryptic error, would be nice to be able to detect if it exists
            self._process = subprocess.Popen([pov_binary, self._temp_file_ini]) # stdout=subprocess.PIPE, stderr=subprocess.PIPE
        else:
            # This works too but means we have to wait until its done
            os.system('%s %s' % (pov_binary, self._temp_file_ini))

        print ("***-DONE-***")

    def _cleanup(self):
        for f in (self._temp_file_in, self._temp_file_ini, self._temp_file_out):
            try:
                os.remove(f)
            except:
                pass

        self.update_stats("", "")

    def render(self, scene):

        self.update_stats("", "POVRAY: Exporting data from Blender")
        self._export(scene)
        self.update_stats("", "POVRAY: Parsing File")
        self._render()

        r = scene.render

        # compute resolution
        x = int(r.resolution_x * r.resolution_percentage * 0.01)
        y = int(r.resolution_y * r.resolution_percentage * 0.01)

        # Wait for the file to be created
        while not os.path.exists(self._temp_file_out):
            if self.test_break():
                try:
                    self._process.terminate()
                except:
                    pass
                break

            if self._process.poll() != None:
                self.update_stats("", "POVRAY: Failed")
                break

            time.sleep(self.DELAY)

        if os.path.exists(self._temp_file_out):

            self.update_stats("", "POVRAY: Rendering")

            prev_size = -1

            def update_image():
                result = self.begin_result(0, 0, x, y)
                lay = result.layers[0]
                # possible the image wont load early on.
                try:
                    lay.load_from_file(self._temp_file_out)
                except:
                    pass
                self.end_result(result)

            # Update while povray renders
            while True:

                # test if povray exists
                if self._process.poll() is not None:
                    update_image()
                    break

                # user exit
                if self.test_break():
                    try:
                        self._process.terminate()
                    except:
                        pass

                    break

                # Would be nice to redirect the output
                # stdout_value, stderr_value = self._process.communicate() # locks


                # check if the file updated
                new_size = os.path.getsize(self._temp_file_out)

                if new_size != prev_size:
                    update_image()
                    prev_size = new_size

                time.sleep(self.DELAY)

        self._cleanup()


# Use some of the existing buttons.
import properties_render
properties_render.RENDER_PT_render.COMPAT_ENGINES.add('POVRAY_RENDER')
properties_render.RENDER_PT_dimensions.COMPAT_ENGINES.add('POVRAY_RENDER')
properties_render.RENDER_PT_antialiasing.COMPAT_ENGINES.add('POVRAY_RENDER')
properties_render.RENDER_PT_output.COMPAT_ENGINES.add('POVRAY_RENDER')
del properties_render

# Use only a subset of the world panels
import properties_world
properties_world.WORLD_PT_preview.COMPAT_ENGINES.add('POVRAY_RENDER')
properties_world.WORLD_PT_context_world.COMPAT_ENGINES.add('POVRAY_RENDER')
properties_world.WORLD_PT_world.COMPAT_ENGINES.add('POVRAY_RENDER')
properties_world.WORLD_PT_mist.COMPAT_ENGINES.add('POVRAY_RENDER')
del properties_world

# Example of wrapping every class 'as is'
import properties_material
for member in dir(properties_material):
    subclass = getattr(properties_material, member)
    try:
        subclass.COMPAT_ENGINES.add('POVRAY_RENDER')
    except:
        pass
del properties_material


class RenderButtonsPanel(bpy.types.Panel):
    bl_space_type = 'PROPERTIES'
    bl_region_type = 'WINDOW'
    bl_context = "render"
    # COMPAT_ENGINES must be defined in each subclass, external engines can add themselves here

    def poll(self, context):
        rd = context.scene.render
        return (rd.use_game_engine == False) and (rd.engine in self.COMPAT_ENGINES)


class RENDER_PT_povray_radiosity(RenderButtonsPanel):
    bl_label = "Radiosity"
    COMPAT_ENGINES = {'POVRAY_RENDER'}

    def draw_header(self, context):
        scene = context.scene

        self.layout.prop(scene, "pov_radio_enable", text="")

    def draw(self, context):
        layout = self.layout

        scene = context.scene
        rd = scene.render

        layout.active = scene.pov_radio_enable

        split = layout.split()

        col = split.column()
        col.prop(scene, "pov_radio_count", text="Rays")
        col.prop(scene, "pov_radio_recursion_limit", text="Recursions")
        col = split.column()
        col.prop(scene, "pov_radio_error_bound", text="Error")

        layout.prop(scene, "pov_radio_display_advanced")

        if scene.pov_radio_display_advanced:
            split = layout.split()

            col = split.column()
            col.prop(scene, "pov_radio_adc_bailout", slider=True)
            col.prop(scene, "pov_radio_gray_threshold", slider=True)
            col.prop(scene, "pov_radio_low_error_factor", slider=True)

            col = split.column()
            col.prop(scene, "pov_radio_brightness")
            col.prop(scene, "pov_radio_minimum_reuse", text="Min Reuse")
            col.prop(scene, "pov_radio_nearest_count")

            split = layout.split()

            col = split.column()
            col.label(text="Estimation Influence:")
            col.prop(scene, "pov_radio_media")
            col.prop(scene, "pov_radio_normal")

            col = split.column()
            col.prop(scene, "pov_radio_always_sample")


classes = [
    PovrayRender,
    RENDER_PT_povray_radiosity]


def register():
    register = bpy.types.register
    for cls in classes:
        register(cls)


def unregister():
    unregister = bpy.types.unregister
    for cls in classes:
        unregister(cls)

if __name__ == "__main__":
    register()