Welcome to mirror list, hosted at ThFree Co, Russian Federation.

mesh_utils.py « bpy_extras « modules « scripts « release - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: a6f71dc0a2a7c15a2ba038278d409daaec658390 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
# SPDX-License-Identifier: GPL-2.0-or-later

# <pep8-80 compliant>

__all__ = (
    "mesh_linked_uv_islands",
    "mesh_linked_triangles",
    "edge_face_count_dict",
    "edge_face_count",
    "edge_loops_from_edges",
    "ngon_tessellate",
    "triangle_random_points",
)


def mesh_linked_uv_islands(mesh):
    """
    Splits the mesh into connected polygons, use this for separating cubes from
    other mesh elements within 1 mesh datablock.

    :arg mesh: the mesh used to group with.
    :type mesh: :class:`bpy.types.Mesh`
    :return: lists of lists containing polygon indices
    :rtype: list
    """
    uv_loops = [luv.uv[:] for luv in mesh.uv_layers.active.data]
    poly_loops = [poly.loop_indices for poly in mesh.polygons]
    luv_hash = {}
    luv_hash_get = luv_hash.get
    luv_hash_ls = [None] * len(uv_loops)
    for pi, poly_indices in enumerate(poly_loops):
        for li in poly_indices:
            uv = uv_loops[li]
            uv_hub = luv_hash_get(uv)
            if uv_hub is None:
                uv_hub = luv_hash[uv] = [pi]
            else:
                uv_hub.append(pi)
            luv_hash_ls[li] = uv_hub

    poly_islands = []

    # 0 = none, 1 = added, 2 = searched
    poly_tag = [0] * len(poly_loops)

    while True:
        poly_index = -1
        for i in range(len(poly_loops)):
            if poly_tag[i] == 0:
                poly_index = i
                break

        if poly_index != -1:
            island = [poly_index]
            poly_tag[poly_index] = 1
            poly_islands.append(island)
        else:
            break  # we're done

        added = True
        while added:
            added = False
            for poly_index in island[:]:
                if poly_tag[poly_index] == 1:
                    for li in poly_loops[poly_index]:
                        for poly_index_shared in luv_hash_ls[li]:
                            if poly_tag[poly_index_shared] == 0:
                                added = True
                                poly_tag[poly_index_shared] = 1
                                island.append(poly_index_shared)
                    poly_tag[poly_index] = 2

    return poly_islands


def mesh_linked_triangles(mesh):
    """
    Splits the mesh into connected triangles, use this for separating cubes from
    other mesh elements within 1 mesh datablock.

    :arg mesh: the mesh used to group with.
    :type mesh: :class:`bpy.types.Mesh`
    :return: lists of lists containing triangles.
    :rtype: list
    """

    # Build vert face connectivity
    vert_tris = [[] for i in range(len(mesh.vertices))]
    for t in mesh.loop_triangles:
        for v in t.vertices:
            vert_tris[v].append(t)

    # sort triangles into connectivity groups
    tri_groups = [[t] for t in mesh.loop_triangles]
    # map old, new tri location
    tri_mapping = list(range(len(mesh.loop_triangles)))

    # Now clump triangles iteratively
    ok = True
    while ok:
        ok = False

        for t in mesh.loop_triangles:
            mapped_index = tri_mapping[t.index]
            mapped_group = tri_groups[mapped_index]

            for v in t.vertices:
                for nxt_t in vert_tris[v]:
                    if nxt_t != t:
                        nxt_mapped_index = tri_mapping[nxt_t.index]

                        # We are not a part of the same group
                        if mapped_index != nxt_mapped_index:
                            ok = True

                            # Assign mapping to this group so they
                            # all map to this group
                            for grp_t in tri_groups[nxt_mapped_index]:
                                tri_mapping[grp_t.index] = mapped_index

                            # Move triangles into this group
                            mapped_group.extend(tri_groups[nxt_mapped_index])

                            # remove reference to the list
                            tri_groups[nxt_mapped_index] = None

    # return all tri groups that are not null
    # this is all the triangles that are connected in their own lists.
    return [tg for tg in tri_groups if tg]


def edge_face_count_dict(mesh):
    """
    :return: dict of edge keys with their value set to the number of
       faces using each edge.
    :rtype: dict
    """

    face_edge_count = {}
    loops = mesh.loops
    edges = mesh.edges
    for poly in mesh.polygons:
        for i in poly.loop_indices:
            key = edges[loops[i].edge_index].key
            try:
                face_edge_count[key] += 1
            except:
                face_edge_count[key] = 1

    return face_edge_count


def edge_face_count(mesh):
    """
    :return: list face users for each item in mesh.edges.
    :rtype: list
    """
    edge_face_count = edge_face_count_dict(mesh)
    get = dict.get
    return [get(edge_face_count, ed.key, 0) for ed in mesh.edges]


def edge_loops_from_edges(mesh, edges=None):
    """
    Edge loops defined by edges

    Takes me.edges or a list of edges and returns the edge loops

    return a list of vertex indices.
    [ [1, 6, 7, 2], ...]

    closed loops have matching start and end values.
    """
    line_polys = []

    # Get edges not used by a face
    if edges is None:
        edges = mesh.edges

    if not hasattr(edges, "pop"):
        edges = edges[:]

    while edges:
        current_edge = edges.pop()
        vert_end, vert_start = current_edge.vertices[:]
        line_poly = [vert_start, vert_end]

        ok = True
        while ok:
            ok = False
            # for i, ed in enumerate(edges):
            i = len(edges)
            while i:
                i -= 1
                ed = edges[i]
                v1, v2 = ed.vertices
                if v1 == vert_end:
                    line_poly.append(v2)
                    vert_end = line_poly[-1]
                    ok = 1
                    del edges[i]
                    # break
                elif v2 == vert_end:
                    line_poly.append(v1)
                    vert_end = line_poly[-1]
                    ok = 1
                    del edges[i]
                    # break
                elif v1 == vert_start:
                    line_poly.insert(0, v2)
                    vert_start = line_poly[0]
                    ok = 1
                    del edges[i]
                    # break
                elif v2 == vert_start:
                    line_poly.insert(0, v1)
                    vert_start = line_poly[0]
                    ok = 1
                    del edges[i]
                    # break
        line_polys.append(line_poly)

    return line_polys


def ngon_tessellate(from_data, indices, fix_loops=True, debug_print=True):
    """
    Takes a polyline of indices (ngon) and returns a list of face
    index lists. Designed to be used for importers that need indices for an
    ngon to create from existing verts.

    :arg from_data: either a mesh, or a list/tuple of vectors.
    :type from_data: list or :class:`bpy.types.Mesh`
    :arg indices: a list of indices to use this list
       is the ordered closed polyline
       to fill, and can be a subset of the data given.
    :type indices: list
    :arg fix_loops: If this is enabled polylines
       that use loops to make multiple
       polylines are delt with correctly.
    :type fix_loops: bool
    """

    from mathutils.geometry import tessellate_polygon
    from mathutils import Vector
    vector_to_tuple = Vector.to_tuple

    if not indices:
        return []

    def mlen(co):
        # Manhatten length of a vector, faster then length.
        return abs(co[0]) + abs(co[1]) + abs(co[2])

    def vert_from_vector_with_extra_data(v, i):
        # Calculate data per-vector, for reuse.
        return v, vector_to_tuple(v, 6), i, mlen(v)

    def ed_key_mlen(v1, v2):
        if v1[3] > v2[3]:
            return v2[1], v1[1]
        else:
            return v1[1], v2[1]

    if not fix_loops:
        # Normal single concave loop filling.

        if type(from_data) in {tuple, list}:
            verts = [Vector(from_data[i]) for ii, i in enumerate(indices)]
        else:
            verts = [from_data.vertices[i].co for ii, i in enumerate(indices)]

        # same as reversed(range(1, len(verts))):
        for i in range(len(verts) - 1, 0, -1):
            if verts[i][1] == verts[i - 1][0]:
                verts.pop(i - 1)

        fill = tessellate_polygon([verts])

    else:
        # Separate this loop into multiple loops be finding edges that are
        # used twice. This is used by Light-Wave LWO files a lot.

        if type(from_data) in {tuple, list}:
            verts = [
                vert_from_vector_with_extra_data(Vector(from_data[i]), ii)
                for ii, i in enumerate(indices)
            ]
        else:
            verts = [
                vert_from_vector_with_extra_data(from_data.vertices[i].co, ii)
                for ii, i in enumerate(indices)
            ]

        edges = [(i, i - 1) for i in range(len(verts))]
        if edges:
            edges[0] = (0, len(verts) - 1)

        if not verts:
            return []

        edges_used = set()
        edges_doubles = set()
        # We need to check if any edges are used twice location based.
        for ed in edges:
            edkey = ed_key_mlen(verts[ed[0]], verts[ed[1]])
            if edkey in edges_used:
                edges_doubles.add(edkey)
            else:
                edges_used.add(edkey)

        # Store a list of unconnected loop segments split by double edges.
        # will join later
        loop_segments = []

        v_prev = verts[0]
        context_loop = [v_prev]
        loop_segments = [context_loop]

        for v in verts:
            if v != v_prev:
                # Are we crossing an edge we removed?
                if ed_key_mlen(v, v_prev) in edges_doubles:
                    context_loop = [v]
                    loop_segments.append(context_loop)
                else:
                    if context_loop and context_loop[-1][1] == v[1]:
                        pass
                    else:
                        context_loop.append(v)

                v_prev = v
        # Now join loop segments

        def join_seg(s1, s2):
            if s2[-1][1] == s1[0][1]:
                s1, s2 = s2, s1
            elif s1[-1][1] == s2[0][1]:
                pass
            else:
                return False

            # If were still here s1 and s2 are 2 segments in the same poly-line.
            s1.pop()  # remove the last vert from s1
            s1.extend(s2)  # add segment 2 to segment 1

            if s1[0][1] == s1[-1][1]:  # remove endpoints double
                s1.pop()

            del s2[:]  # Empty this segment s2 so we don't use it again.
            return True

        joining_segments = True
        while joining_segments:
            joining_segments = False
            segcount = len(loop_segments)

            for j in range(segcount - 1, -1, -1):  # reversed(range(segcount)):
                seg_j = loop_segments[j]
                if seg_j:
                    for k in range(j - 1, -1, -1):  # reversed(range(j)):
                        if not seg_j:
                            break
                        seg_k = loop_segments[k]

                        if seg_k and join_seg(seg_j, seg_k):
                            joining_segments = True

        loop_list = loop_segments

        for verts in loop_list:
            while verts and verts[0][1] == verts[-1][1]:
                verts.pop()

        loop_list = [verts for verts in loop_list if len(verts) > 2]
        # DONE DEALING WITH LOOP FIXING

        # vert mapping
        vert_map = [None] * len(indices)
        ii = 0
        for verts in loop_list:
            if len(verts) > 2:
                for i, vert in enumerate(verts):
                    vert_map[i + ii] = vert[2]
                ii += len(verts)

        fill = tessellate_polygon([[v[0] for v in loop] for loop in loop_list])
        # draw_loops(loop_list)
        #raise Exception("done loop")
        # map to original indices
        fill = [[vert_map[i] for i in f] for f in fill]

    if not fill:
        if debug_print:
            print('Warning Cannot scanfill, fallback on a triangle fan.')
        fill = [[0, i - 1, i] for i in range(2, len(indices))]
    else:
        # Use real scan-fill.
        # See if its flipped the wrong way.
        flip = None
        for fi in fill:
            if flip is not None:
                break
            for i, vi in enumerate(fi):
                if vi == 0 and fi[i - 1] == 1:
                    flip = False
                    break
                elif vi == 1 and fi[i - 1] == 0:
                    flip = True
                    break

        if not flip:
            for i, fi in enumerate(fill):
                fill[i] = tuple([ii for ii in reversed(fi)])

    return fill


def triangle_random_points(num_points, loop_triangles):
    """
    Generates a list of random points over mesh loop triangles.

    :arg num_points: the number of random points to generate on each triangle.
    :type int:
    :arg loop_triangles: list of the triangles to generate points on.
    :type loop_triangles: :class:`bpy.types.MeshLoopTriangle`, sequence
    :return: list of random points over all triangles.
    :rtype: list
    """

    from random import random

    # For each triangle, generate the required number of random points
    sampled_points = [None] * (num_points * len(loop_triangles))
    for i, lt in enumerate(loop_triangles):
        # Get triangle vertex coordinates
        verts = lt.id_data.vertices
        ltv = lt.vertices[:]
        tv = (verts[ltv[0]].co, verts[ltv[1]].co, verts[ltv[2]].co)

        for k in range(num_points):
            u1 = random()
            u2 = random()
            u_tot = u1 + u2

            if u_tot > 1:
                u1 = 1.0 - u1
                u2 = 1.0 - u2

            side1 = tv[1] - tv[0]
            side2 = tv[2] - tv[0]

            p = tv[0] + u1 * side1 + u2 * side2

            sampled_points[num_points * i + k] = p

    return sampled_points