Welcome to mirror list, hosted at ThFree Co, Russian Federation.

object_cookie_cutter.py « scripts « release - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: a158a6cdfb45767149e85a44730ace060d039d9d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
#!BPY
"""
Name: 'Cookie Cut from View'
Blender: 234
Group: 'Object'
Tooltip: 'Cut from the view axis, (Sel Meshes (only edges) into other meshes with faces)'
""" 
__author__= "Campbell Barton"
__url__= ["blender", "blenderartist"]
__version__= "1.0"

__bpydoc__= """\
This script takes the selected mesh objects, devides them into 2 groups
Cutters and The objects to be cut.

Cutters are meshes with no faces, just edge loops. and any meshes with faces will be cut.

Usage:

Select 2 or more meshes, one with no faces (a closed polyline) and one with faces to cut.

Align the view on the axis you want to cut.
For shapes that have overlapping faces (from the view), hide any backfacing faces so they will be ignored during the cut.
Run the script.

You can choose to make the cut verts lie on the face that they were cut from or on the edge that cut them.
This script supports UV coordinates and images.
"""


import Blender
import BPyMathutils
from math import sqrt
reload(BPyMathutils)
Vector= Blender.Mathutils.Vector
LineIntersect2D= Blender.Geometry.LineIntersect2D

# Auto class
def auto_class(slots):
	exec('class container_class(object): __slots__=%s' % slots)
	return container_class


bignum= 1<<30
def bounds_xy(iter_item):
	'''
	Works with types
	MMesh.verts
	MFace
	MEdge
	'''
	xmin= ymin=  bignum
	xmax= ymax= -bignum
	for v in iter_item:
		x= v.co.x
		y= v.co.y
		if x<xmin: xmin= x
		if y<ymin: ymin= y
		if x>xmax: xmax= x
		if y>ymax: ymax= y
	
	return xmin, ymin, xmax, ymax
	
def bounds_intersect(a,b):
	'''
	each tuple is
	xmin, ymin, xmax, ymax
	'''
	if\
	a[0]>b[2] or\
	a[1]>b[3] or\
	a[2]<b[0] or\
	a[3]<b[1]:
		return False
	else:
		return True

def point_in_bounds(pt, bounds):
	'''
	each tuple is
	xmin, ymin, xmax, ymax
	'''	
	if\
	pt.x<bounds[0] or\
	pt.y<bounds[1] or\
	pt.x>bounds[2] or\
	pt.y>bounds[3]:
		return False
	else:
		return True
	
	
def point_in_poly2d(pt, fvco):
	crazy_point= Vector(pt) # A point far outside the range of the terrain.
	crazy_point.x= crazy_point.x - 10000000
	
	#fvco= [v.co for v in face]
	isect=0
	for i in xrange(len(fvco)):
		isect+= (LineIntersect2D(pt, crazy_point, fvco[i], fvco[i-1]) != None)
	
	return isect%2 # odd number is an intersect which wouold be true (inside the face) 
	

# reuse me more.
def sorted_edge_indicies(ed):
	i1= ed.v1.index
	i2= ed.v2.index
	if i1>i2:
		i1,i2= i2,i1
	return i1, i2

def sorted_indicies(i1, i2):
	if i1>i2:
		i1,i2= i2,i1
	return i1, i2

def fake_length2d(pt1, pt2):
	'''
	Only used for comparison so dont sqrt
	'''
	#return math.sqrt(abs(pow(x1-x2, 2)+ pow(y1-y2, 2)))
	return pow(pt1[0]-pt2[0], 2) + pow(pt1[1]- pt2[1], 2)

def length2d(pt1, pt2):
	'''
	Only used for comparison so dont sqrt
	'''
	#return math.sqrt(abs(pow(x1-x2, 2)+ pow(y1-y2, 2)))
	return sqrt(pow(pt1[0]-pt2[0], 2) + pow(pt1[1]- pt2[1], 2))



def tri_area_2d(v1, v2, v3):
	e1 = length2d(v1, v2)
	e2 = length2d(v2, v3)
	e3 = length2d(v3, v1)
	p = e1+e2+e3
	return 0.25 * sqrt(abs(p*(p-2*e1)*(p-2*e2)*(p-2*e3)))

def tri_pt_find_z_2d(pt, tri):
	""" Takes a face and 3d vector and assigns teh vectors Z to its on the face"""
	
	l1= tri_area_2d(tri[1], tri[2], pt)
	l2= tri_area_2d(tri[0], tri[2], pt)
	l3= tri_area_2d(tri[0], tri[1], pt)
	
	tot= l1+l2+l3
	# Normalize
	l1=l1/tot
	l2=l2/tot
	l3=l3/tot
	
	z1= tri[0].z*l1
	z2= tri[1].z*l2
	z3= tri[2].z*l3
	
	return z1+z2+z3


def tri_pt_find_uv_2d(pt, tri, uvs):
	""" Takes a face and 3d vector and assigns teh vectors Z to its on the face"""
	
	l1= tri_area_2d(tri[1], tri[2], pt)
	l2= tri_area_2d(tri[0], tri[2], pt)
	l3= tri_area_2d(tri[0], tri[1], pt)
	
	tot= l1+l2+l3
	if not tot: # No area, just return the first uv
		return Vector(uvs[0])
	
	# Normalize
	l1=l1/tot
	l2=l2/tot
	l3=l3/tot
	
	uv1= uvs[0]*l1
	uv2= uvs[1]*l2
	uv3= uvs[2]*l3
	
	return uv1+uv2+uv3




def mesh_edge_dict(me):
	ed_dict= {}
	for f in me.faces:
		if not f.hide:
			fidx= [v.index for v in f]
			for i in xrange(len(fidx)):
				edkey= sorted_indicies(fidx[i], fidx[i-1])
				try:
					ed_dict[edkey].append(f)
				except:
					ed_dict[edkey]= [f]
	
	return ed_dict



def terrain_cut_2d(t, c, PREF_Z_LOC):
	'''
	t is the terrain
	c is the cutter
	
	PREF_Z_LOC:		0 - from terrain face
					1 - from cutter edge
					
	returns nothing
	'''
	
	# do we have a 2d intersection
	if not bounds_intersect(t.bounds, c.bounds):
		return
	
	# Local vars
	me_t= t.mesh
	me_c= c.mesh
	
	has_uv= me_t.faceUV

	Blender.Mesh.Mode(Blender.Mesh.SelectModes['VERTEX'])
	'''
	first assign a face terrain face for each cutter verticie
	'''
	cut_verts_temp= list(me_c.verts)
	cut_vert_terrain_faces= [None] * len(me_c.verts)
	vert_z_level= [-10.0] * len(me_c.verts)
	
	for v in me_c.verts:
		v_index= v.index
		v_co= v.co
		for fidx, f in enumerate(me_t.faces):
			if not f.hide:
				if point_in_bounds(v_co, t.face_bounds[fidx]):
					f_v= [vv.co for vv in f]
					if point_in_poly2d(v_co, f_v):
						
						
						if PREF_Z_LOC==0:
							'''
							Get the z location from the face.
							'''
							
							if len(f_v)==3:
								vert_z_level[v_index]= tri_pt_find_z_2d(v_co, (f_v[0], f_v[1], f_v[2]) )
							else:
								# Quad, which side are we on?
								a1= tri_area_2d(f_v[0], f_v[1], v_co)
								a2= tri_area_2d(f_v[1], f_v[2], v_co)
								
								a3= tri_area_2d(f_v[0], f_v[1], f_v[2])
								
								if a1+a2<a3:
									vert_z_level[v_index]= tri_pt_find_z_2d(v_co, (f_v[0], f_v[1], f_v[2]) )
								else:
									vert_z_level[v_index]= tri_pt_find_z_2d(v_co, (f_v[0], f_v[2], f_v[3]) )
							
						else: # PREF_Z_LOC==1
							'''
							Get the z location from the vert
							'''
							vert_z_level[v_index]= v_co.z
						
						# Non overlapping faces in terrain mean we can break
						cut_vert_terrain_faces[v_index]= f
						break
	
	del cut_verts_temp
	
	
	
	edge_intersections= []
	edge_isect_type= auto_class(['point', 'ed_terrain', 'ed_cut'])
	
	# intersect cutter faces with terrain edges.
	for ei_t, ed_t in enumerate(me_t.edges):
		
		eb_t= t.edge_bounds[ei_t]
		if bounds_intersect(eb_t, c.bounds): # face/cutter bounds intersect?
			# Loop through the cutter edges.
			for ei_c, ed_c in enumerate(me_c.edges):
				# If the cutter edge has 2 verts inside the same face then we can ignore it
				# Bothe are different faces or None
				if cut_vert_terrain_faces[ed_c.v1.index] != cut_vert_terrain_faces[ed_c.v2.index] or\
				cut_vert_terrain_faces[ed_c.v1.index] == cut_vert_terrain_faces[ed_c.v2.index] == None:
					eb_c= c.edge_bounds[ei_c]
					if bounds_intersect(eb_t, eb_c): # face/edge bounds intersect?
						# Now we know the 2 edges might intersect, we'll do a propper test
						
						x= LineIntersect2D(ed_t.v1.co, ed_t.v2.co,   ed_c.v1.co, ed_c.v2.co)					
						if x:
							ed_isect= edge_isect_type()
							ed_isect.point= x.resize3D() # fake 3d
							
							# Find the interpolation Z point
							
							if PREF_Z_LOC==0:	
								'''
								Terrains edge
								'''
								l1= length2d(ed_isect.point, ed_t.v1.co)
								l2= length2d(ed_isect.point, ed_t.v2.co)
								ed_isect.point.z= ((l2*ed_t.v1.co.z) + (l1*ed_t.v2.co.z)) / (l1+l2)
							else:
								'''
								Cutters edge
								'''
								l1= length2d(ed_isect.point, ed_c.v1.co)
								l2= length2d(ed_isect.point, ed_c.v2.co)
								ed_isect.point.z= ((l2*ed_c.v1.co.z) + (l1*ed_c.v2.co.z)) / (l1+l2)
							
							ed_isect.ed_terrain= ed_t
							ed_isect.ed_cut= ed_c
							
							edge_intersections.append(ed_isect)
	
	if not edge_intersections:
		return

	# Now we have collected intersections we need to apply them
	
	# Find faces that have intersections, these faces will need to be cut.
	faces_intersecting= {} # face index as key, list of edges as values
	for ed_isect in edge_intersections:
		
		try:
			faces= t.edge_dict[ sorted_edge_indicies(ed_isect.ed_terrain) ]
		except:
			# If the faces are hidden then the faces wont exist.
			faces= []
		
		for f in faces:
			try:
				faces_intersecting[f.index].append(ed_isect)
			except:
				faces_intersecting[f.index]= [ed_isect]
				
	# this list is used to store edges that are totaly inside a face ( no intersections with terrain)
	# we can remove these as we
	face_containing_edges= [[] for i in xrange(len(me_t.faces))]
	for ed_c in me_c.edges:
		if cut_vert_terrain_faces[ed_c.v1.index]==cut_vert_terrain_faces[ed_c.v2.index] != None:
			# were inside a face.
			face_containing_edges[cut_vert_terrain_faces[ed_c.v1.index].index].append(ed_c)
			
	# New Mesh for filling faces only
	new_me= Blender.Mesh.New()
	scn= Blender.Scene.GetCurrent()
	ob= Blender.Object.New('Mesh')
	ob.link(new_me)
	scn.link(ob)
	ob.sel= True
	
	new_faces= []
	new_faces_props= []
	new_uvs= []
	new_verts= []
	
	# Loop through inter
	for fidx_t, isect_edges in faces_intersecting.iteritems():
		f= me_t.faces[fidx_t]
		f_v= f.v
		fidxs_s= [v.index for v in f_v]
		
		# Make new fake edges for each edge, each starts as a list of 2 verts, but more verts can be added
		# This list will then be sorted so the edges are in order from v1 to v2 of the edge.
		face_new_verts= [ (f_v[i], [], f_v[i-1]) for i in xrange(len(f_v)) ]
		# if len(face_new_verts)  < 3: raise 'weirdo'
		
		face_edge_dict = dict( [(sorted_indicies(fidxs_s[i], fidxs_s[i-1]), i) for i in xrange(len(f_v))] )
		
		for ed_isect in isect_edges:
			edge_index_in_face = face_edge_dict[ sorted_edge_indicies(ed_isect.ed_terrain) ]
			# Add this intersection to the face
			face_new_verts[edge_index_in_face][1].append(ed_isect)
		
		# Now sort the intersections
		for new_edge in face_new_verts:
			if len(new_edge[1]) > 1:
				# We have 2+ verts to sort
				edv1= tuple(new_edge[0].co) # 3d but well only use the 2d part
				new_edge[1].sort(lambda a,b: cmp(fake_length2d(a.point, edv1), fake_length2d(b.point, edv1) ))
		
		# now build up a new face by getting edges
		random_face_edges= []
		unique_verts= [] # store vert
		rem_double_edges= {}
		
		def add_edge(p1, p2):
			k1= tuple(p1)
			k2= tuple(p2)
			
			# Adds new verts where needed
			try:
				i1= rem_double_edges[k1]
			except:
				i1= rem_double_edges[k1]= len(rem_double_edges)
				unique_verts.append(k1)
			
			try:
				i2= rem_double_edges[k2]
			except:
				i2= rem_double_edges[k2]= len(rem_double_edges)
				unique_verts.append(k2)
				
			random_face_edges.append( (i1, i2) )
		
		
		
		# edges that dont have a vert in the face have to span between to intersection points
		# since we dont know the other point at any 1 time we need to remember edges that 
		# span a face and add them once we'v collected both
		# first add outline edges
		edge_span_face= {}
		for new_edge in face_new_verts:
			new_edge_subdiv= len(new_edge[1])
			if new_edge_subdiv==0:
				# no subdiv edges, just add
				add_edge(new_edge[0].co, new_edge[2].co)
			elif new_edge_subdiv==1:
				add_edge(new_edge[0].co, new_edge[1][0].point)
				add_edge(new_edge[1][0].point, new_edge[2].co)
			else:
				# 2 or more edges
				add_edge(new_edge[0].co, new_edge[1][0].point)
				add_edge(new_edge[1][-1].point, new_edge[2].co)
				
				# now add multiple
				for i in xrange(new_edge_subdiv-1):
					add_edge(new_edge[1][i].point, new_edge[1][i+1].point)
				
			# done adding outline
			# while looping through the edge subdivs, add the edges that intersect
			
			
			for ed_isect in new_edge[1]:
				ed_cut= ed_isect.ed_cut
				if cut_vert_terrain_faces[ed_cut.v1.index]==f:
					# our first vert is inside the face
					point= Vector(ed_cut.v1.co)
					point.z= vert_z_level[ed_cut.v1.index]
					
					add_edge(point, ed_isect.point)
				elif cut_vert_terrain_faces[ed_cut.v2.index]==f:
					# assume second vert is inside the face
					point= Vector(ed_cut.v2.co)
					point.z= vert_z_level[ed_cut.v2.index]
					add_edge(point, ed_isect.point)
				else:
					# this edge has no verts in the face so it will need to be clipped in 2 places
					try:
						point= edge_span_face[ed_cut]
						
						# if were here it worked ;)
						add_edge(point, ed_isect.point)
						
					except:
						# add the first intersecting point
						edge_span_face[ed_cut]= ed_isect.point
					
			# now add all edges that are inside the the face
			for ed_c in face_containing_edges[fidx_t]:
				point1= Vector(ed_c.v1.co)
				point2= Vector(ed_c.v2.co)
				point1.z= vert_z_level[ed_c.v1.index]
				point2.z= vert_z_level[ed_c.v2.index]
				add_edge(point1, point2)
		
		new_me.verts.extend(unique_verts)
		new_me.edges.extend(random_face_edges)
		new_me.sel= 1
		
		# backup the z values, fill and restore
		
		backup_z= [v.co.z for v in new_me.verts]
		for v in new_me.verts: v.co.z= 0
		#raise 'as'
		new_me.fill()
		for i, v in enumerate(new_me.verts): v.co.z= backup_z[i]
		
		
		# ASSIGN UV's
		if has_uv:
			f_uv= f_uv_mod= f.uv
			f_vco= f_vco_mod= [v.co for v in f]
			
			# f is the face, get the uv's from that.
			
			uvs= [None] * len(new_me.verts)
			for i, v in enumerate(new_me.verts):
				v_co= v.co
				f_uv_mod= f_uv
				f_vco_mod= f_vco
				
				if len(f_v)==4:
					# Quad, which side are we on?
					a1= tri_area_2d(f_vco[0], f_vco[1], v_co)
					a2= tri_area_2d(f_vco[1], f_vco[2], v_co)
					
					a3= tri_area_2d(f_vco[0], f_vco[1], f_vco[2])
					if a1+a2 > a3:
						# 0,2,3
						f_uv_mod= f_uv[0], f_uv[2], f_uv[3]
						f_vco_mod= f_vco[0], f_vco[2], f_vco[3]
					# else - side of 0,1,2 - dont modify the quad
				
				uvs[i]= tri_pt_find_uv_2d(v_co, f_vco_mod, f_uv_mod)	
			
			new_uvs.extend(uvs)
			new_faces_props.extend( [f.image] * len(new_me.faces) )
			
		# collect the fill results
		new_verts_len= len(new_verts) + len(me_t.verts)
		new_faces.extend( [[v.index+new_verts_len for v in ff] for ff in new_me.faces] )
		
		
		
		new_verts.extend(unique_verts)
		
		new_me.verts= None
		#raise 'error'
	
	# Finished filling
	scn.unlink(ob)
	
	
	# Remove faces
	face_len = len(me_t.faces)
	verts_len = len(me_t.verts)
	me_t.verts.extend(new_verts)
	me_t.faces.extend(new_faces)
	
	for i in xrange(len(new_faces)):
		f= me_t.faces[face_len+i]
		
		if has_uv:
			img= new_faces_props[i]
			if img: f.image= img
			
			f_uv= f.uv
			for ii, v in enumerate(f):
				v_index= v.index-verts_len
				new_uv= new_uvs[v_index]
				uv= f_uv[ii]
				uv.x= new_uv.x
				uv.y= new_uv.y
			
			for col in f.col:
				col.r= col.g= col.b= 255
	
	me_t.faces.delete(1, faces_intersecting.keys())
	me_t.sel= 1
	me_t.remDoubles(0.0000001)
	
	
def main():
	PREF_Z_LOC= Blender.Draw.PupMenu('Cut Z Location%t|Original Faces|Cutting Polyline')
	
	if PREF_Z_LOC==-1:
		return
	PREF_Z_LOC-=1
	
	Blender.Window.WaitCursor(1)
	
	print '\nRunning Cookie Cutter'
	time= Blender.sys.time()
	
	obs= [ob for ob in Blender.Object.GetSelected() if ob.getType()=='Mesh']
	
	
	# Divide into 2 lists- 1 with faces, one with only edges
	terrains=	[] #[me for me in mes if me.faces]
	cutters=	[] #[me for me in mes if not me.faces]
	
	terrain_type= auto_class(['mesh', 'bounds', 'face_bounds', 'edge_bounds', 'edge_dict', 'cutters', 'matrix'])
	
	for ob in obs:
		me= ob.getData(mesh=1)
		
		# a new terrain instance
		t= terrain_type()
		
		t.matrix= ob.matrixWorld * Blender.Window.GetViewMatrix()
		
		# Transform the object by its matrix
		me.transform(t.matrix)
		
		# Set the terrain bounds
		t.bounds=		bounds_xy(me.verts)
		t.edge_bounds= 	[bounds_xy(ed) for ed in me.edges]
		t.mesh=			me

		
		if me.faces: # Terrain.
			t.edge_dict=					mesh_edge_dict(me)
			t.face_bounds=					[bounds_xy(f) for f in me.faces]
			t.cutters= 						[] # Store cutting objects that cut us here
			terrains.append(t)
		elif len(me.edges)>2: # Cutter
			cutters.append(t)
	
	totcuts= len(terrains)*len(cutters)
	if not totcuts:
		Blender.Window.WaitCursor(0)
		Blender.Draw.PupMenu('ERROR%t|Select at least 1 closed loop mesh (edges only)|as the cutter...|and 1 or more meshes to cut into')
	
	crazy_point= Vector(100000, 100000)
	
	for t in terrains:
		for c in cutters:
			# Main curring function
			terrain_cut_2d(t, c, PREF_Z_LOC)
			
			# Was the terrain touched?
			if len(t.face_bounds) != len(t.mesh.faces):
				t.edge_dict=					mesh_edge_dict(t.mesh)
				# remake the bounds
				t.edge_bounds=					[bounds_xy(ed) for ed in t.mesh.edges]
				t.face_bounds=					[bounds_xy(f) for f in t.mesh.faces]
				t.cutters.append(c)
			
			print '\t%i remaining' % totcuts
			totcuts-=1
		
		# SELECT INTERNAL FACES ONCE THIS TERRAIN IS CUT
		Blender.Mesh.Mode(Blender.Mesh.SelectModes['FACE'])
		t.mesh.sel= 0
		for c in t.cutters:
			edge_verts_c= [(ed_c.v1.co, ed_c.v2.co) for ed_c in c.mesh.edges]
			for f in t.mesh.faces:
				# How many edges do we intersect on our way to the faces center
				if not f.hide and not f.sel: # Not alredy selected
					c= f.cent
					if point_in_bounds(c, t.bounds):
						isect_count= 0
						for edv1, edv2 in edge_verts_c:
							isect_count += (LineIntersect2D(c, crazy_point,  edv1, edv2) != None)
						
						if isect_count%2:
							f.sel= 1
	Blender.Mesh.Mode(Blender.Mesh.SelectModes['FACE'])
	
	
	# Restore the transformation
	for data in (terrains, cutters):
		for t in data:
			t.mesh.transform(t.matrix.copy().invert())
	
	Blender.Window.WaitCursor(0)
	print 'terrains:%i cutters %i  %.2f secs taken' % (len(terrains), len(cutters), Blender.sys.time()-time)


if __name__=='__main__':
	main()