Welcome to mirror list, hosted at ThFree Co, Russian Federation.

mesh_skin.py « op « scripts « release - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 5cf526cc23ed74298fc87380046d595391087183 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
# ##### BEGIN GPL LICENSE BLOCK #####
#
#  This program is free software; you can redistribute it and/or
#  modify it under the terms of the GNU General Public License
#  as published by the Free Software Foundation; either version 2
#  of the License, or (at your option) any later version.
#
#  This program is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  GNU General Public License for more details.
#
#  You should have received a copy of the GNU General Public License
#  along with this program; if not, write to the Free Software Foundation,
#  Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
#
# ##### END GPL LICENSE BLOCK #####

# import Blender
import time, functools
import bpy
# from Blender import Window
from Mathutils import MidpointVecs, Vector
from Mathutils import AngleBetweenVecs as _AngleBetweenVecs_
# import BPyMessages

# from Blender.Draw import PupMenu

BIG_NUM = 1<<30

global CULL_METHOD
CULL_METHOD = 0

def AngleBetweenVecs(a1,a2):
    import math
    try:
        return math.degrees(_AngleBetweenVecs_(a1,a2))
    except:
        return 180.0

class edge(object):
    __slots__ = 'v1', 'v2', 'co1', 'co2', 'length', 'removed', 'match', 'cent', 'angle', 'next', 'prev', 'normal', 'fake'
    def __init__(self, v1,v2):
        self.v1 = v1
        self.v2 = v2
        co1, co2= v1.co, v2.co
        self.co1= co1
        self.co2= co2

        # uv1 uv2 vcol1 vcol2 # Add later
        self.length = (co1 - co2).length
        self.removed = 0	# Have we been culled from the eloop
        self.match = None	# The other edge were making a face with

        self.cent= MidpointVecs(co1, co2)
        self.angle= 0.0
        self.fake= False

class edgeLoop(object):
    __slots__ = 'centre', 'edges', 'normal', 'closed', 'backup_edges'
    def __init__(self, loop, me, closed): # Vert loop
        # Use next and prev, nextDist, prevDist

        # Get Loops centre.
        fac= len(loop)
        verts = me.verts
        self.centre= functools.reduce(lambda a,b: a+verts[b].co/fac, loop, Vector())

        # Convert Vert loop to Edges.
        self.edges = [edge(verts[loop[vIdx-1]], verts[loop[vIdx]]) for vIdx in range(len(loop))]

        if not closed:
            self.edges[0].fake = True # fake edge option

        self.closed = closed


        # Assign linked list
        for eIdx in range(len(self.edges)-1):
            self.edges[eIdx].next = self.edges[eIdx+1]
            self.edges[eIdx].prev = self.edges[eIdx-1]
        # Now last
        self.edges[-1].next = self.edges[0]
        self.edges[-1].prev = self.edges[-2]



        # GENERATE AN AVERAGE NORMAL FOR THE WHOLE LOOP.
        self.normal = Vector()
        for e in self.edges:
            n = (self.centre-e.co1).cross(self.centre-e.co2)
            # Do we realy need tot normalize?
            n.normalize()
            self.normal += n

            # Generate the angle
            va= e.cent - e.prev.cent
            vb= e.next.cent - e.cent

            e.angle= AngleBetweenVecs(va, vb)

        # Blur the angles
        #for e in self.edges:
        #	e.angle= (e.angle+e.next.angle)/2

        # Blur the angles
        #for e in self.edges:
        #	e.angle= (e.angle+e.prev.angle)/2

        self.normal.normalize()

        # Generate a normal for each edge.
        for e in self.edges:

            n1 = e.co1
            n2 = e.co2
            n3 = e.prev.co1

            a = n1-n2
            b = n1-n3
            normal1 = a.cross(b)
            normal1.normalize()

            n1 = e.co2
            n3 = e.next.co2
            n2 = e.co1

            a = n1-n2
            b = n1-n3

            normal2 = a.cross(b)
            normal2.normalize()

            # Reuse normal1 var
            normal1 += normal1 + normal2
            normal1.normalize()

            e.normal = normal1
            #print e.normal



    def backup(self):
        # Keep a backup of the edges
        self.backup_edges = self.edges[:]

    def restore(self):
        self.edges = self.backup_edges[:]
        for e in self.edges:
            e.removed = 0

    def reverse(self):
        self.edges.reverse()
        self.normal.negate()

        for e in self.edges:
            e.normal.negate()
            e.v1, e.v2 = e.v2, e.v1
            e.co1, e.co2 = e.co2, e.co1
            e.next, e.prev = e.prev, e.next


    def removeSmallest(self, cullNum, otherLoopLen):
        '''
        Removes N Smallest edges and backs up the loop,
        this is so we can loop between 2 loops as if they are the same length,
        backing up and restoring incase the loop needs to be skinned with another loop of a different length.
        '''
        global CULL_METHOD
        if CULL_METHOD == 1: # Shortest edge
            eloopCopy = self.edges[:]

            # Length sort, smallest first
            try:	eloopCopy.sort(key = lambda e1: e1.length)
            except:	eloopCopy.sort(lambda e1, e2: cmp(e1.length, e2.length ))

            # Dont use atm
            #eloopCopy.sort(lambda e1, e2: cmp(e1.angle*e1.length, e2.angle*e2.length)) # Length sort, smallest first
            #eloopCopy.sort(lambda e1, e2: cmp(e1.angle, e2.angle)) # Length sort, smallest first

            remNum = 0
            for i, e in enumerate(eloopCopy):
                if not e.fake:
                    e.removed = 1
                    self.edges.remove( e ) # Remove from own list, still in linked list.
                    remNum += 1

                    if not remNum < cullNum:
                        break

        else: # CULL METHOD is even

            culled = 0

            step = int(otherLoopLen / float(cullNum)) * 2

            currentEdge = self.edges[0]
            while culled < cullNum:

                # Get the shortest face in the next STEP
                step_count= 0
                bestAng= 360.0
                smallestEdge= None
                while step_count<=step or smallestEdge==None:
                    step_count+=1
                    if not currentEdge.removed: # 0 or -1 will not be accepted
                        if currentEdge.angle<bestAng and not currentEdge.fake:
                            smallestEdge= currentEdge
                            bestAng= currentEdge.angle

                    currentEdge = currentEdge.next

                # In that stepping length we have the smallest edge.remove it
                smallestEdge.removed = 1
                self.edges.remove(smallestEdge)

                # Start scanning from the edge we found? - result is over fanning- no good.
                #currentEdge= smallestEdge.next

                culled+=1


# Returns face edges.
# face must have edge data.

def mesh_faces_extend(me, faces, mat_idx = 0):
    orig_facetot = len(me.faces)
    new_facetot = len(faces)
    me.add_geometry(0, 0, new_facetot)
    tot = orig_facetot+new_facetot
    me_faces = me.faces
    i= 0
    while i < new_facetot:

        f = [v.index for v in faces[i]]
        if len(f)==4:
            if f[3]==0:
                f = f[1], f[2], f[3], f[0]
        else:
            f = f[0], f[1], f[2], 0

        mf = me_faces[orig_facetot+i]
        mf.verts_raw =  f
        mf.material_index = mat_idx
        i+=1
# end utils


def getSelectedEdges(context, me, ob):
    MESH_MODE= context.scene.tool_settings.mesh_selection_mode

    if MESH_MODE in ('EDGE', 'VERTEX'):
        context.scene.tool_settings.mesh_selection_mode = 'EDGE'
        edges= [ ed for ed in me.edges if ed.selected ]
        # print len(edges), len(me.edges)
        context.scene.tool_settings.mesh_selection_mode = MESH_MODE
        return edges

    if MESH_MODE == 'FACE':
        context.scene.tool_settings.mesh_selection_mode = 'EDGE'
        # value is [edge, face_sel_user_in]
        edge_dict=  dict((ed.key, [ed, 0]) for ed in me.edges)

        for f in me.faces:
            if f.selected:
                for edkey in f.edge_keys:
                    edge_dict[edkey][1] += 1

        context.scene.tool_settings.mesh_selection_mode = MESH_MODE
        return [ ed_data[0] for ed_data in edge_dict.values() if ed_data[1] == 1 ]



def getVertLoops(selEdges, me):
    '''
    return a list of vert loops, closed and open [(loop, closed)...]
    '''

    mainVertLoops = []
    # second method
    tot = len(me.verts)
    vert_siblings = [[] for i in range(tot)]
    vert_used = [False] * tot

    for ed in selEdges:
        i1, i2 = ed.key
        vert_siblings[i1].append(i2)
        vert_siblings[i2].append(i1)

    # find the first used vert and keep looping.
    for i in range(tot):
        if vert_siblings[i] and not vert_used[i]:
            sbl = vert_siblings[i] # siblings

            if len(sbl) > 2:
                return None

            vert_used[i] = True

            # do an edgeloop seek
            if len(sbl) == 2:
                contextVertLoop= [sbl[0], i, sbl[1]] # start the vert loop
                vert_used[contextVertLoop[ 0]] = True
                vert_used[contextVertLoop[-1]] = True
            else:
                contextVertLoop= [i, sbl[0]]
                vert_used[contextVertLoop[ 1]] = True

            # Always seek up
            ok = True
            while ok:
                ok = False
                closed = False
                sbl = vert_siblings[contextVertLoop[-1]]
                if len(sbl) == 2:
                    next = sbl[not sbl.index( contextVertLoop[-2] )]
                    if vert_used[next]:
                        closed = True
                        # break
                    else:
                        contextVertLoop.append( next ) # get the vert that isnt the second last
                        vert_used[next] = True
                        ok = True

            # Seek down as long as the starting vert was not at the edge.
            if not closed and len(vert_siblings[i]) == 2:

                ok = True
                while ok:
                    ok = False
                    sbl = vert_siblings[contextVertLoop[0]]
                    if len(sbl) == 2:
                        next = sbl[not sbl.index( contextVertLoop[1] )]
                        if vert_used[next]:
                            closed = True
                        else:
                            contextVertLoop.insert(0, next) # get the vert that isnt the second last
                            vert_used[next] = True
                            ok = True

            mainVertLoops.append((contextVertLoop, closed))


    verts = me.verts
    # convert from indicies to verts
    # mainVertLoops = [([verts[i] for i in contextVertLoop], closed) for contextVertLoop, closed in  mainVertLoops]
    # print len(mainVertLoops)
    return mainVertLoops



def skin2EdgeLoops(eloop1, eloop2, me, ob, MODE):

    new_faces= [] #

    # Make sure e1 loops is bigger then e2
    if len(eloop1.edges) != len(eloop2.edges):
        if len(eloop1.edges) < len(eloop2.edges):
            eloop1, eloop2 = eloop2, eloop1

        eloop1.backup() # were about to cull faces
        CULL_FACES = len(eloop1.edges) - len(eloop2.edges)
        eloop1.removeSmallest(CULL_FACES, len(eloop1.edges))
    else:
        CULL_FACES = 0
    # First make sure poly vert loops are in sync with eachother.

    # The vector allong which we are skinning.
    skinVector = eloop1.centre - eloop2.centre

    loopDist = skinVector.length

    # IS THE LOOP FLIPPED, IF SO FLIP BACK. we keep it flipped, its ok,
    if eloop1.closed or eloop2.closed:
        angleBetweenLoopNormals = AngleBetweenVecs(eloop1.normal, eloop2.normal)
        if angleBetweenLoopNormals > 90:
            eloop2.reverse()


        DIR= eloop1.centre - eloop2.centre

        # if eloop2.closed:
        bestEloopDist = BIG_NUM
        bestOffset = 0
        # Loop rotation offset to test.1
        eLoopIdxs = list(range(len(eloop1.edges)))
        for offset in range(len(eloop1.edges)):
            totEloopDist = 0 # Measure this total distance for thsi loop.

            offsetIndexLs = eLoopIdxs[offset:] + eLoopIdxs[:offset] # Make offset index list


            # e1Idx is always from 0uu to N, e2Idx is offset.
            for e1Idx, e2Idx in enumerate(offsetIndexLs):
                e1= eloop1.edges[e1Idx]
                e2= eloop2.edges[e2Idx]


                # Include fan connections in the measurement.
                OK= True
                while OK or e1.removed:
                    OK= False

                    # Measure the vloop distance ===============
                    diff= ((e1.cent - e2.cent).length) #/ nangle1

                    ed_dir= e1.cent-e2.cent
                    a_diff= AngleBetweenVecs(DIR, ed_dir)/18 # 0 t0 18

                    totEloopDist += (diff * (1+a_diff)) / (1+loopDist)

                    # Premeture break if where no better off
                    if totEloopDist > bestEloopDist:
                        break

                    e1=e1.next

            if totEloopDist < bestEloopDist:
                bestOffset = offset
                bestEloopDist = totEloopDist

        # Modify V2 LS for Best offset
        eloop2.edges = eloop2.edges[bestOffset:] + eloop2.edges[:bestOffset]

    else:
        # Both are open loops, easier to calculate.


        # Make sure the fake edges are at the start.
        for i, edloop in enumerate((eloop1, eloop2)):
            # print "LOOPO"
            if edloop.edges[0].fake:
                # alredy at the start
                #print "A"
                pass
            elif edloop.edges[-1].fake:
                # put the end at the start
                edloop.edges.insert(0, edloop.edges.pop())
                #print "B"

            else:
                for j, ed in enumerate(edloop.edges):
                    if ed.fake:
                        #print "C"
                        edloop.edges = edloop.edges = edloop.edges[j:] + edloop.edges[:j]
                        break
        # print "DONE"
        ed1, ed2 = eloop1.edges[0], eloop2.edges[0]

        if not ed1.fake or not ed2.fake:
            raise "Error"

        # Find the join that isnt flipped (juts like detecting a bow-tie face)
        a1 = (ed1.co1 - ed2.co1).length + (ed1.co2 - ed2.co2).length
        a2 = (ed1.co1 - ed2.co2).length + (ed1.co2 - ed2.co1).length

        if a1 > a2:
            eloop2.reverse()
            # make the first edge the start edge still
            eloop2.edges.insert(0, eloop2.edges.pop())




    for loopIdx in range(len(eloop2.edges)):
        e1 = eloop1.edges[loopIdx]
        e2 = eloop2.edges[loopIdx]

        # Remember the pairs for fan filling culled edges.
        e1.match = e2; e2.match = e1

        if not (e1.fake or e2.fake):
            new_faces.append([e1.v1, e1.v2, e2.v2, e2.v1])

    # FAN FILL MISSING FACES.
    if CULL_FACES:
        # Culled edges will be in eloop1.
        FAN_FILLED_FACES = 0

        contextEdge = eloop1.edges[0] # The larger of teh 2
        while FAN_FILLED_FACES < CULL_FACES:
            while contextEdge.next.removed == 0:
                contextEdge = contextEdge.next

            vertFanPivot = contextEdge.match.v2

            while contextEdge.next.removed == 1:
                #if not contextEdge.next.fake:
                new_faces.append([contextEdge.next.v1, contextEdge.next.v2, vertFanPivot])

                # Should we use another var?, this will work for now.
                contextEdge.next.removed = 1

                contextEdge = contextEdge.next
                FAN_FILLED_FACES += 1

        # may need to fan fill backwards 1 for non closed loops.

        eloop1.restore() # Add culled back into the list.

    return new_faces

def main(context):
    global CULL_METHOD

    ob = context.object

    is_editmode = (ob.mode=='EDIT')
    if is_editmode: bpy.ops.object.mode_set(mode='OBJECT', toggle=False)
    if ob == None or ob.type != 'MESH':
        raise Exception("BPyMessages.Error_NoMeshActive()")
        return

    me = ob.data

    time1 = time.time()
    selEdges = getSelectedEdges(context, me, ob)
    vertLoops = getVertLoops(selEdges, me) # list of lists of edges.
    if vertLoops == None:
        raise Exception('Error%t|Selection includes verts that are a part of more then 1 loop')
        if is_editmode: bpy.ops.object.mode_set(mode='EDIT', toggle=False)
        return
    # print len(vertLoops)


    if len(vertLoops) > 2:
        choice = PupMenu('Loft '+str(len(vertLoops))+' edge loops%t|loop|segment')
        if choice == -1:
            if is_editmode: bpy.ops.object.mode_set(mode='EDIT', toggle=False)
            return

    elif len(vertLoops) < 2:
        raise Exception('Error%t|No Vertloops found!')
        if is_editmode: bpy.ops.object.mode_set(mode='EDIT', toggle=False)
        return
    else:
        choice = 2


    # The line below checks if any of the vert loops are differenyt in length.
    if False in [len(v[0]) == len(vertLoops[0][0]) for v in vertLoops]:
#XXX		CULL_METHOD = PupMenu('Small to large edge loop distrobution method%t|remove edges evenly|remove smallest edges')
#XXX		if CULL_METHOD == -1:
#XXX			if is_editmode: Window.EditMode(1)
#XXX			return

        CULL_METHOD = 1 # XXX FIXME




        if CULL_METHOD ==1: # RESET CULL_METHOD
            CULL_METHOD = 0 # shortest
        else:
            CULL_METHOD = 1 # even


    time1 = time.time()
    # Convert to special edge data.
    edgeLoops = []
    for vloop, closed in vertLoops:
        edgeLoops.append(edgeLoop(vloop, me, closed))


    # VERT LOOP ORDERING CODE
    # "Build a worm" list - grow from Both ends
    edgeOrderedList = [edgeLoops.pop()]

    # Find the closest.
    bestSoFar = BIG_NUM
    bestIdxSoFar = None
    for edLoopIdx, edLoop in enumerate(edgeLoops):
        l =(edgeOrderedList[-1].centre - edLoop.centre).length
        if l < bestSoFar:
            bestIdxSoFar = edLoopIdx
            bestSoFar = l

    edgeOrderedList.append( edgeLoops.pop(bestIdxSoFar) )

    # Now we have the 2 closest, append to either end-
    # Find the closest.
    while edgeLoops:
        bestSoFar = BIG_NUM
        bestIdxSoFar = None
        first_or_last = 0 # Zero is first
        for edLoopIdx, edLoop in enumerate(edgeLoops):
            l1 =(edgeOrderedList[-1].centre - edLoop.centre).length

            if l1 < bestSoFar:
                bestIdxSoFar = edLoopIdx
                bestSoFar = l1
                first_or_last = 1 # last

            l2 =(edgeOrderedList[0].centre - edLoop.centre).length
            if l2 < bestSoFar:
                bestIdxSoFar = edLoopIdx
                bestSoFar = l2
                first_or_last = 0 # last

        if first_or_last: # add closest Last
            edgeOrderedList.append( edgeLoops.pop(bestIdxSoFar) )
        else: # Add closest First
            edgeOrderedList.insert(0, edgeLoops.pop(bestIdxSoFar) )	 # First

    faces = []

    for i in range(len(edgeOrderedList)-1):
        faces.extend( skin2EdgeLoops(edgeOrderedList[i], edgeOrderedList[i+1], me, ob, 0) )
    if choice == 1 and len(edgeOrderedList) > 2: # Loop
        faces.extend( skin2EdgeLoops(edgeOrderedList[0], edgeOrderedList[-1], me, ob, 0) )

    # REMOVE SELECTED FACES.
    MESH_MODE= ob.mode
    if MESH_MODE == 'EDGE' or MESH_MODE == 'VERTEX': pass
    elif MESH_MODE == 'FACE':
        try: me.faces.delete(1, [ f for f in me.faces if f.sel ])
        except: pass

    if 1: # 2.5
        mesh_faces_extend(me, faces, ob.active_material_index)
        me.update(calc_edges=True)
    else:
        me.faces.extend(faces, smooth = True)

    print('\nSkin done in %.4f sec.' % (time.time()-time1))

    if is_editmode: bpy.ops.object.mode_set(mode='EDIT', toggle=False)


class MESH_OT_skin(bpy.types.Operator):
    '''Bridge face loops.'''

    bl_idname = "mesh.skin"
    bl_label = "Add Torus"
    bl_register = True
    bl_undo = True

    '''
    loft_method = EnumProperty(attr="loft_method", items=[(), ()], description="", default= True)

    '''

    def execute(self, context):
        main(context)
        return ('FINISHED',)


# Register the operator
bpy.ops.add(MESH_OT_skin)

# Add to a menu
import dynamic_menu
menu_item = dynamic_menu.add(bpy.types.VIEW3D_MT_edit_mesh_faces, (lambda self, context: self.layout.operator("mesh.skin", text="Bridge Faces")) )

if __name__ == "__main__":
    bpy.ops.mesh.skin()