Welcome to mirror list, hosted at ThFree Co, Russian Federation.

BKE_curves.hh « blenkernel « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: c4edeae99a498e7da71f7ccfe36e84017276bc5c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
/* SPDX-License-Identifier: GPL-2.0-or-later */

#pragma once

#include "BKE_curves.h"

/** \file
 * \ingroup bke
 * \brief Low-level operations for curves.
 */

#include <mutex>

#include "BLI_float4x4.hh"
#include "BLI_generic_virtual_array.hh"
#include "BLI_index_mask.hh"
#include "BLI_math_vec_types.hh"
#include "BLI_span.hh"
#include "BLI_task.hh"
#include "BLI_vector.hh"
#include "BLI_virtual_array.hh"

#include "BKE_attribute_access.hh"

namespace blender::bke {

template<typename T, BLI_ENABLE_IF(std::is_integral_v<T>)>
constexpr IndexRange offsets_to_range(Span<T> offsets, int64_t index)
{
  BLI_assert(index >= 0);
  BLI_assert(index < offsets.size());

  const int offset = offsets[index];
  const int offset_next = offsets[index + 1];
  return {offset, offset_next - offset};
}

namespace curves::nurbs {

struct BasisCache {
  /**
   * For each evaluated point, the weight for all control points that influences it.
   * The vector's size is the evaluated point count multiplied by the curve's order.
   */
  Vector<float> weights;
  /**
   * For each evaluated point, an offset into the curve's control points for the start of #weights.
   * In other words, the index of the first control point that influences this evaluated point.
   */
  Vector<int> start_indices;
};

}  // namespace curves::nurbs

/**
 * Contains derived data, caches, and other information not saved in files, besides a few pointers
 * to arrays that are kept in the non-runtime struct to avoid dereferencing this whenever they are
 * accessed.
 */
class CurvesGeometryRuntime {
 public:
  /**
   * Cache of offsets into the evaluated array for each curve, accounting for all previous
   * evaluated points, Bezier curve vector segments, different resolutions per curve, etc.
   */
  mutable Vector<int> evaluated_offsets_cache;
  mutable Vector<int> bezier_evaluated_offsets;
  mutable std::mutex offsets_cache_mutex;
  mutable bool offsets_cache_dirty = true;

  mutable Vector<curves::nurbs::BasisCache> nurbs_basis_cache;
  mutable std::mutex nurbs_basis_cache_mutex;
  mutable bool nurbs_basis_cache_dirty = true;

  /** Cache of evaluated positions. */
  mutable Vector<float3> evaluated_position_cache;
  mutable std::mutex position_cache_mutex;
  mutable bool position_cache_dirty = true;

  /**
   * Cache of lengths along each evaluated curve for for each evaluated point. If a curve is
   * cyclic, it needs one more length value to correspond to the last segment, so in order to
   * make slicing this array for a curve fast, an extra float is stored for every curve.
   */
  mutable Vector<float> evaluated_length_cache;
  mutable std::mutex length_cache_mutex;
  mutable bool length_cache_dirty = true;

  /** Direction of the curve at each evaluated point. */
  mutable Vector<float3> evaluated_tangent_cache;
  mutable std::mutex tangent_cache_mutex;
  mutable bool tangent_cache_dirty = true;

  /** Normal direction vectors for each evaluated point. */
  mutable Vector<float3> evaluated_normal_cache;
  mutable std::mutex normal_cache_mutex;
  mutable bool normal_cache_dirty = true;
};

/**
 * A C++ class that wraps the DNA struct for better encapsulation and ease of use. It inherits
 * directly from the struct rather than storing a pointer to avoid more complicated ownership
 * handling.
 */
class CurvesGeometry : public ::CurvesGeometry {
 public:
  CurvesGeometry();
  /**
   * Create curves with the given size. Only the position attribute is created, along with the
   * offsets.
   */
  CurvesGeometry(int point_size, int curve_size);
  CurvesGeometry(const CurvesGeometry &other);
  CurvesGeometry(CurvesGeometry &&other);
  CurvesGeometry &operator=(const CurvesGeometry &other);
  CurvesGeometry &operator=(CurvesGeometry &&other);
  ~CurvesGeometry();

  static CurvesGeometry &wrap(::CurvesGeometry &dna_struct)
  {
    CurvesGeometry *geometry = reinterpret_cast<CurvesGeometry *>(&dna_struct);
    return *geometry;
  }
  static const CurvesGeometry &wrap(const ::CurvesGeometry &dna_struct)
  {
    const CurvesGeometry *geometry = reinterpret_cast<const CurvesGeometry *>(&dna_struct);
    return *geometry;
  }

  /* --------------------------------------------------------------------
   * Accessors.
   */

  int points_num() const;
  int curves_num() const;
  IndexRange points_range() const;
  IndexRange curves_range() const;

  /**
   * The index of the first point in every curve. The size of this span is one larger than the
   * number of curves. Consider using #points_for_curve rather than using the offsets directly.
   */
  Span<int> offsets() const;
  MutableSpan<int> offsets_for_write();

  /**
   * Access a range of indices of point data for a specific curve.
   */
  IndexRange points_for_curve(int index) const;
  IndexRange points_for_curves(IndexRange curves) const;

  /** The type (#CurveType) of each curve, or potentially a single if all are the same type. */
  VArray<int8_t> curve_types() const;
  /** Mutable access to curve types. Call #tag_topology_changed after changing any type. */
  MutableSpan<int8_t> curve_types_for_write();

  bool has_curve_with_type(const CurveType type) const;
  /** Return the number of curves with each type. */
  std::array<int, CURVE_TYPES_NUM> count_curve_types() const;

  Span<float3> positions() const;
  MutableSpan<float3> positions_for_write();

  /** Whether the curve loops around to connect to itself, on the curve domain. */
  VArray<bool> cyclic() const;
  /** Mutable access to curve cyclic values. Call #tag_topology_changed after changes. */
  MutableSpan<bool> cyclic_for_write();

  /**
   * How many evaluated points to create for each segment when evaluating Bezier,
   * Catmull Rom, and NURBS curves. On the curve domain.
   */
  VArray<int> resolution() const;
  /** Mutable access to curve resolution. Call #tag_topology_changed after changes. */
  MutableSpan<int> resolution_for_write();

  /**
   * Handle types for Bezier control points. Call #tag_topology_changed after changes.
   */
  VArray<int8_t> handle_types_left() const;
  MutableSpan<int8_t> handle_types_left_for_write();
  VArray<int8_t> handle_types_right() const;
  MutableSpan<int8_t> handle_types_right_for_write();

  /**
   * The positions of Bezier curve handles. Though these are really control points for the Bezier
   * segments, they are stored in separate arrays to better reflect user expectations. Note that
   * values may be generated automatically based on the handle types. Call #tag_positions_changed
   * after changes.
   */
  Span<float3> handle_positions_left() const;
  MutableSpan<float3> handle_positions_left_for_write();
  Span<float3> handle_positions_right() const;
  MutableSpan<float3> handle_positions_right_for_write();

  /**
   * The order (degree plus one) of each NURBS curve, on the curve domain.
   * Call #tag_topology_changed after changes.
   */
  VArray<int8_t> nurbs_orders() const;
  MutableSpan<int8_t> nurbs_orders_for_write();

  /**
   * The automatic generation mode for each NURBS curve's knots vector, on the curve domain.
   * Call #tag_topology_changed after changes.
   */
  VArray<int8_t> nurbs_knots_modes() const;
  MutableSpan<int8_t> nurbs_knots_modes_for_write();

  /**
   * The weight for each control point for NURBS curves. Call #tag_positions_changed after changes.
   */
  Span<float> nurbs_weights() const;
  MutableSpan<float> nurbs_weights_for_write();

  /**
   * The index of a triangle (#MLoopTri) that a curve is attached to.
   * The index is -1, if the curve is not attached.
   */
  VArray<int> surface_triangle_indices() const;
  MutableSpan<int> surface_triangle_indices_for_write();

  /**
   * Barycentric coordinates of the attachment point within a triangle.
   * Only the first two coordinates are stored. The third coordinate can be derived because the sum
   * of the three coordinates is 1.
   *
   * When the triangle index is -1, this coordinate should be ignored.
   * The span can be empty, when all triangle indices are -1.
   */
  Span<float2> surface_triangle_coords() const;
  MutableSpan<float2> surface_triangle_coords_for_write();

  /**
   * Calculate the largest and smallest position values, only including control points
   * (rather than evaluated points). The existing values of `min` and `max` are taken into account.
   *
   * \return Whether there are any points. If the curve is empty, the inputs will be unaffected.
   */
  bool bounds_min_max(float3 &min, float3 &max) const;

 private:
  /**
   * All of the curve indices for curves with a specific type.
   */
  IndexMask indices_for_curve_type(CurveType type, Vector<int64_t> &r_indices) const;

  /* --------------------------------------------------------------------
   * Evaluation.
   */

 public:
  /**
   * The total number of points in the evaluated poly curve.
   * This can depend on the resolution attribute if it exists.
   */
  int evaluated_points_num() const;

  /**
   * Access a range of indices of point data for a specific curve.
   * Call #evaluated_offsets() first to ensure that the evaluated offsets cache is current.
   */
  IndexRange evaluated_points_for_curve(int index) const;
  IndexRange evaluated_points_for_curves(IndexRange curves) const;

  /**
   * The index of the first evaluated point for every curve. The size of this span is one larger
   * than the number of curves. Consider using #evaluated_points_for_curve rather than using the
   * offsets directly.
   */
  Span<int> evaluated_offsets() const;

  /** Makes sure the data described by #evaluated_offsets if necessary. */
  void ensure_evaluated_offsets() const;

  /**
   * Retrieve offsets into a Bezier curve's evaluated points for each control point.
   * Call #ensure_evaluated_offsets() first to ensure that the evaluated offsets cache is current.
   */
  Span<int> bezier_evaluated_offsets_for_curve(int curve_index) const;

  Span<float3> evaluated_positions() const;

  /**
   * Return a cache of accumulated lengths along the curve. Each item is the length of the
   * subsequent segment (the first value is the length of the first segment rather than 0).
   * This calculation is rather trivial, and only depends on the evaluated positions, but
   * the results are used often, and it is necessarily single threaded per curve, so it is cached.
   *
   * \param cyclic: This argument is redundant with the data stored for the curve,
   * but is passed for performance reasons to avoid looking up the attribute.
   */
  Span<float> evaluated_lengths_for_curve(int curve_index, bool cyclic) const;
  float evaluated_length_total_for_curve(int curve_index, bool cyclic) const;

  /** Calculates the data described by #evaluated_lengths_for_curve if necessary. */
  void ensure_evaluated_lengths() const;

  /**
   * Evaluate a generic data to the standard evaluated points of a specific curve,
   * defined by the resolution attribute or other factors, depending on the curve type.
   *
   * \warning This function expects offsets to the evaluated points for each curve to be
   * calculated. That can be ensured with #ensure_evaluated_offsets.
   */
  void interpolate_to_evaluated(int curve_index, GSpan src, GMutableSpan dst) const;

 private:
  /**
   * Make sure the basis weights for NURBS curve's evaluated points are calculated.
   */
  void ensure_nurbs_basis_cache() const;

  /** Return the slice of #evaluated_length_cache that corresponds to this curve index. */
  IndexRange lengths_range_for_curve(int curve_index, bool cyclic) const;

  /* --------------------------------------------------------------------
   * Operations.
   */

 public:
  /**
   * Change the number of elements. New values for existing attributes should be properly
   * initialized afterwards.
   */
  void resize(int points_num, int curves_num);

  /** Call after deforming the position attribute. */
  void tag_positions_changed();
  /**
   * Call after any operation that changes the topology
   * (number of points, evaluated points, or the total count).
   */
  void tag_topology_changed();
  /** Call after changing the "tilt" or "up" attributes. */
  void tag_normals_changed();

  void translate(const float3 &translation);
  void transform(const float4x4 &matrix);

  void calculate_bezier_auto_handles();

  void update_customdata_pointers();

  void remove_curves(IndexMask curves_to_delete);

  /**
   * Change the direction of selected curves (switch the start and end) without changing their
   * shape.
   */
  void reverse_curves(IndexMask curves_to_reverse);

  /* --------------------------------------------------------------------
   * Attributes.
   */

  GVArray adapt_domain(const GVArray &varray, AttributeDomain from, AttributeDomain to) const;
};

namespace curves {

/**
 * The number of segments between control points, accounting for the last segment of cyclic
 * curves. The logic is simple, but this function should be used to make intentions clearer.
 */
inline int curve_segment_size(const int points_num, const bool cyclic)
{
  return cyclic ? points_num : points_num - 1;
}

inline float2 encode_surface_bary_coord(const float3 &v)
{
  BLI_assert(std::abs(v.x + v.y + v.z - 1.0f) < 0.00001f);
  return {v.x, v.y};
}

inline float3 decode_surface_bary_coord(const float2 &v)
{
  return {v.x, v.y, 1.0f - v.x - v.y};
}

namespace bezier {

/**
 * Return true if the handles that make up a segment both have a vector type. Vector segments for
 * Bezier curves have special behavior because they aren't divided into many evaluated points.
 */
bool segment_is_vector(Span<int8_t> handle_types_left,
                       Span<int8_t> handle_types_right,
                       int segment_index);

/**
 * Return true if the curve's last cylic segment has a vector type.
 * This only makes a difference in the shape of cyclic curves.
 */
bool last_cylic_segment_is_vector(Span<int8_t> handle_types_left, Span<int8_t> handle_types_right);

/**
 * Calculate offsets into the curve's evaluated points for each control point. While most control
 * point edges generate the number of edges specified by the resolution, vector segments only
 * generate one edge.
 *
 * The size of the offsets array must be the same as the number of points. The value at each index
 * is the evaluated point offset including the following segment.
 */
void calculate_evaluated_offsets(Span<int8_t> handle_types_left,
                                 Span<int8_t> handle_types_right,
                                 bool cyclic,
                                 int resolution,
                                 MutableSpan<int> evaluated_offsets);

/**
 * Recalculate all auto (#BEZIER_HANDLE_AUTO) and vector (#BEZIER_HANDLE_VECTOR) handles with
 * positions automatically derived from the neighboring control points, and update aligned
 * (#BEZIER_HANDLE_ALIGN) handles to line up with neighboring non-aligned handles. The choices
 * made here are relatively arbitrary, but having standardized behavior is essential.
 */
void calculate_auto_handles(bool cyclic,
                            Span<int8_t> types_left,
                            Span<int8_t> types_right,
                            Span<float3> positions,
                            MutableSpan<float3> positions_left,
                            MutableSpan<float3> positions_right);

/**
 * Change the handles of a single control point, aligning any aligned (#BEZIER_HANDLE_ALIGN)
 * handles on the other side of the control point.
 *
 * \note This ignores the inputs if the handle types are automatically calculated,
 * so the types should be updated before-hand to be editable.
 */
void set_handle_position(const float3 &position,
                         HandleType type,
                         HandleType type_other,
                         const float3 &new_handle,
                         float3 &handle,
                         float3 &handle_other);

/**
 * Evaluate a cubic Bezier segment, using the "forward differencing" method.
 * A generic Bezier curve is made up by four points, but in many cases the first and last
 * points are referred to as the control points, and the middle points are the corresponding
 * handles.
 */
void evaluate_segment(const float3 &point_0,
                      const float3 &point_1,
                      const float3 &point_2,
                      const float3 &point_3,
                      MutableSpan<float3> result);

/**
 * Calculate all evaluated points for the Bezier curve.
 *
 * \param evaluated_offsets: The index in the evaluated points array for each control point,
 * including the points from the corresponding segment. Used to vary the number of evaluated
 * points per segment, i.e. to make vector segment only have one edge. This is expected to be
 * calculated by #calculate_evaluated_offsets, and is the reason why this function doesn't need
 * arguments like "cyclic" and "resolution".
 */
void calculate_evaluated_positions(Span<float3> positions,
                                   Span<float3> handles_left,
                                   Span<float3> handles_right,
                                   Span<int> evaluated_offsets,
                                   MutableSpan<float3> evaluated_positions);

/**
 * Evaluate generic data to the evaluated points, with counts for each segment described by
 * #evaluated_offsets. Unlike other curve types, for Bezier curves generic data and positions
 * are treated separately, since attribute values aren't stored for the handle control points.
 */
void interpolate_to_evaluated(GSpan src, Span<int> evaluated_offsets, GMutableSpan dst);

}  // namespace bezier

namespace catmull_rom {

/**
 * Calculate the number of evaluated points that #interpolate_to_evaluated is expected to produce.
 * \param points_num: The number of points in the curve.
 * \param resolution: The resolution for each segment.
 */
int calculate_evaluated_size(int points_num, bool cyclic, int resolution);

/**
 * Evaluate the Catmull Rom curve. The length of the #dst span should be calculated with
 * #calculate_evaluated_size and is expected to divide evenly by the #src span's segment size.
 */
void interpolate_to_evaluated(GSpan src, bool cyclic, int resolution, GMutableSpan dst);

}  // namespace catmull_rom

namespace nurbs {

/**
 * Checks the conditions that a NURBS curve needs to evaluate.
 */
bool check_valid_size_and_order(int points_num, int8_t order, bool cyclic, KnotsMode knots_mode);

/**
 * Calculate the standard evaluated size for a NURBS curve, using the standard that
 * the resolution is multiplied by the number of segments between the control points.
 *
 * \note Though the number of evaluated points is rather arbitrary, it's useful to have a standard
 * for predictability and so that cached basis weights of NURBS curves with these properties can be
 * shared.
 */
int calculate_evaluated_size(
    int points_num, int8_t order, bool cyclic, int resolution, KnotsMode knots_mode);

/**
 * Calculate the length of the knot vector for a NURBS curve with the given properties.
 * The knots must be longer for a cyclic curve, for example, in order to provide weights for the
 * last evaluated points that are also influenced by the first control points.
 */
int knots_size(int points_num, int8_t order, bool cyclic);

/**
 * Calculate the knots for a curve given its properties, based on built-in standards defined by
 * #KnotsMode.
 *
 * \note Theoretically any sorted values can be used for NURBS knots, but calculating based
 * on standard modes allows useful presets, automatic recalculation when the number of points
 * changes, and is generally more intuitive than defining the knot vector manually.
 */
void calculate_knots(
    int points_num, KnotsMode mode, int8_t order, bool cyclic, MutableSpan<float> knots);

/**
 * Based on the knots, the order, and other properties of a NURBS curve, calculate a cache that can
 * be used to more simply interpolate attributes to the evaluated points later. The cache includes
 * two pieces of information for every evaluated point: the first control point that influences it,
 * and a weight for each control point.
 */
void calculate_basis_cache(int points_num,
                           int evaluated_size,
                           int8_t order,
                           bool cyclic,
                           Span<float> knots,
                           BasisCache &basis_cache);

/**
 * Using a "basis cache" generated by #BasisCache, interpolate attribute values to the evaluated
 * points. The number of evaluated points is determined by the #basis_cache argument.
 *
 * \param control_weights: An optional span of control point weights, which must have the same size
 * as the number of control points in the curve if provided. Using this argument gives a NURBS
 * curve the "Rational" behavior that's part of its acronym; otherwise it is a NUBS.
 */
void interpolate_to_evaluated(const BasisCache &basis_cache,
                              int8_t order,
                              Span<float> control_weights,
                              GSpan src,
                              GMutableSpan dst);

}  // namespace nurbs

}  // namespace curves

Curves *curves_new_nomain(int points_num, int curves_num);

/**
 * Create a new curves data-block containing a single curve with the given length and type.
 */
Curves *curves_new_nomain_single(int points_num, CurveType type);

/** \} */

/* -------------------------------------------------------------------- */
/** \name #CurvesGeometry Inline Methods
 * \{ */

inline int CurvesGeometry::points_num() const
{
  return this->point_size;
}
inline int CurvesGeometry::curves_num() const
{
  return this->curve_size;
}
inline IndexRange CurvesGeometry::points_range() const
{
  return IndexRange(this->points_num());
}
inline IndexRange CurvesGeometry::curves_range() const
{
  return IndexRange(this->curves_num());
}

inline IndexRange CurvesGeometry::points_for_curve(const int index) const
{
  /* Offsets are not allocated when there are no curves. */
  BLI_assert(this->curve_size > 0);
  BLI_assert(this->curve_offsets != nullptr);
  const int offset = this->curve_offsets[index];
  const int offset_next = this->curve_offsets[index + 1];
  return {offset, offset_next - offset};
}

inline IndexRange CurvesGeometry::points_for_curves(const IndexRange curves) const
{
  /* Offsets are not allocated when there are no curves. */
  BLI_assert(this->curve_size > 0);
  BLI_assert(this->curve_offsets != nullptr);
  const int offset = this->curve_offsets[curves.start()];
  const int offset_next = this->curve_offsets[curves.one_after_last()];
  return {offset, offset_next - offset};
}

inline int CurvesGeometry::evaluated_points_num() const
{
  /* This could avoid calculating offsets in the future in simple circumstances. */
  return this->evaluated_offsets().last();
}

inline IndexRange CurvesGeometry::evaluated_points_for_curve(int index) const
{
  BLI_assert(!this->runtime->offsets_cache_dirty);
  return offsets_to_range(this->runtime->evaluated_offsets_cache.as_span(), index);
}

inline IndexRange CurvesGeometry::evaluated_points_for_curves(const IndexRange curves) const
{
  BLI_assert(!this->runtime->offsets_cache_dirty);
  BLI_assert(this->curve_size > 0);
  const int offset = this->runtime->evaluated_offsets_cache[curves.start()];
  const int offset_next = this->runtime->evaluated_offsets_cache[curves.one_after_last()];
  return {offset, offset_next - offset};
}

inline Span<int> CurvesGeometry::bezier_evaluated_offsets_for_curve(const int curve_index) const
{
  const IndexRange points = this->points_for_curve(curve_index);
  return this->runtime->bezier_evaluated_offsets.as_span().slice(points);
}

inline IndexRange CurvesGeometry::lengths_range_for_curve(const int curve_index,
                                                          const bool cyclic) const
{
  BLI_assert(cyclic == this->cyclic()[curve_index]);
  const IndexRange points = this->evaluated_points_for_curve(curve_index);
  const int start = points.start() + curve_index;
  const int size = curves::curve_segment_size(points.size(), cyclic);
  return {start, size};
}

inline Span<float> CurvesGeometry::evaluated_lengths_for_curve(const int curve_index,
                                                               const bool cyclic) const
{
  BLI_assert(!this->runtime->length_cache_dirty);
  const IndexRange range = this->lengths_range_for_curve(curve_index, cyclic);
  return this->runtime->evaluated_length_cache.as_span().slice(range);
}

inline float CurvesGeometry::evaluated_length_total_for_curve(const int curve_index,
                                                              const bool cyclic) const
{
  const Span<float> lengths = this->evaluated_lengths_for_curve(curve_index, cyclic);
  /* Check for curves that have no evaluated segments. */
  return lengths.is_empty() ? 0.0f : lengths.last();
}

/** \} */

}  // namespace blender::bke