Welcome to mirror list, hosted at ThFree Co, Russian Federation.

BKE_spline.hh « blenkernel « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 27542aa35860098228f888ef0d56e57a122adf18 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
/* SPDX-License-Identifier: GPL-2.0-or-later */

#pragma once

/** \file
 * \ingroup bke
 */

#include <mutex>

#include "DNA_curves_types.h"

#include "BLI_float4x4.hh"
#include "BLI_generic_virtual_array.hh"
#include "BLI_math_vec_types.hh"
#include "BLI_vector.hh"

#include "BKE_attribute.hh"
#include "BKE_attribute_math.hh"

struct Curve;
struct Curves;
struct ListBase;

class Spline;
using SplinePtr = std::unique_ptr<Spline>;

/**
 * A spline is an abstraction of a single branch-less curve section, its evaluation methods,
 * and data. The spline data itself is just control points and a set of attributes by the set
 * of "evaluated" data is often used instead. Conceptually, the derived vs. original data is
 * an essential distinction. Derived data is usually calculated lazily and cached on the spline.
 *
 * Any derived class of Spline has to manage two things:
 *  1. Interpolating arbitrary attribute data from the control points to evaluated points.
 *  2. Evaluating the positions based on the stored control point data.
 *
 * Beyond that, everything is the base class's responsibility, with minor exceptions. Further
 * evaluation happens in a layer on top of the evaluated points generated by the derived types.
 *
 * There are a few methods to evaluate a spline:
 *  1. #evaluated_positions and #interpolate_to_evaluated give data for the initial
 *     evaluated points, depending on the resolution.
 *  2. #lookup_evaluated_factor and #lookup_evaluated_factor are meant for one-off lookups
 *     along the length of a curve.
 *  3. #sample_uniform_index_factors returns an array that stores uniform-length samples
 *     along the spline which can be used to interpolate data from method 1.
 *
 * Commonly used evaluated data is stored in caches on the spline itself so that operations on
 * splines don't need to worry about taking ownership of evaluated data when they don't need to.
 */
class Spline {
 public:
  NormalMode normal_mode = NORMAL_MODE_MINIMUM_TWIST;

  blender::bke::CustomDataAttributes attributes;

 protected:
  CurveType type_;
  bool is_cyclic_ = false;

  /** Direction of the spline at each evaluated point. */
  mutable blender::Vector<blender::float3> evaluated_tangents_cache_;
  mutable std::mutex tangent_cache_mutex_;
  mutable bool tangent_cache_dirty_ = true;

  /** Normal direction vectors for each evaluated point. */
  mutable blender::Vector<blender::float3> evaluated_normals_cache_;
  mutable std::mutex normal_cache_mutex_;
  mutable bool normal_cache_dirty_ = true;

  /** Accumulated lengths along the evaluated points. */
  mutable blender::Vector<float> evaluated_lengths_cache_;
  mutable std::mutex length_cache_mutex_;
  mutable bool length_cache_dirty_ = true;

 public:
  virtual ~Spline() = default;
  Spline(const CurveType type) : type_(type)
  {
  }
  Spline(Spline &other) : attributes(other.attributes), type_(other.type_)
  {
    copy_base_settings(other, *this);
  }

  /**
   * Return a new spline with the same data, settings, and attributes.
   */
  SplinePtr copy() const;
  /**
   * Return a new spline with the same type and settings like "cyclic", but without any data.
   */
  SplinePtr copy_only_settings() const;
  /**
   * The same as #copy, but skips copying dynamic attributes to the new spline.
   */
  SplinePtr copy_without_attributes() const;
  static void copy_base_settings(const Spline &src, Spline &dst);

  CurveType type() const;

  /** Return the number of control points. */
  virtual int size() const = 0;
  int segments_num() const;
  bool is_cyclic() const;
  void set_cyclic(bool value);

  virtual void resize(int size) = 0;
  virtual blender::MutableSpan<blender::float3> positions() = 0;
  virtual blender::Span<blender::float3> positions() const = 0;
  virtual blender::MutableSpan<float> radii() = 0;
  virtual blender::Span<float> radii() const = 0;
  virtual blender::MutableSpan<float> tilts() = 0;
  virtual blender::Span<float> tilts() const = 0;

  virtual void translate(const blender::float3 &translation);
  virtual void transform(const blender::float4x4 &matrix);

  /**
   * Change the direction of the spline (switch the start and end) without changing its shape.
   */
  void reverse();

  /**
   * Mark all caches for re-computation. This must be called after any operation that would
   * change the generated positions, tangents, normals, mapping, etc. of the evaluated points.
   */
  virtual void mark_cache_invalid() = 0;
  virtual int evaluated_points_num() const = 0;
  int evaluated_edges_num() const;

  float length() const;

  virtual blender::Span<blender::float3> evaluated_positions() const = 0;

  /**
   * Return non-owning access to the cache of accumulated lengths along the spline. Each item is
   * the length of the subsequent segment, i.e. the first value is the length of the first segment
   * rather than 0. This calculation is rather trivial, and only depends on the evaluated
   * positions. However, the results are used often, and it is necessarily single threaded, so it
   * is cached.
   */
  blender::Span<float> evaluated_lengths() const;
  /**
   * Return non-owning access to the direction of the curve at each evaluated point.
   */
  blender::Span<blender::float3> evaluated_tangents() const;
  /**
   * Return non-owning access to the direction vectors perpendicular to the tangents at every
   * evaluated point. The method used to generate the normal vectors depends on Spline.normal_mode.
   */
  blender::Span<blender::float3> evaluated_normals() const;

  void bounds_min_max(blender::float3 &min, blender::float3 &max, bool use_evaluated) const;

  struct LookupResult {
    /**
     * The index of the evaluated point before the result location. In other words, the index of
     * the edge that the result lies on. If the sampled factor/length is the very end of the
     * spline, this will be the second to last index, if it's the very beginning, this will be 0.
     */
    int evaluated_index;
    /**
     * The index of the evaluated point after the result location, accounting for wrapping when
     * the spline is cyclic. If the sampled factor/length is the very end of the spline, this will
     * be the last index (#evaluated_points_num - 1).
     */
    int next_evaluated_index;
    /**
     * The portion of the way from the evaluated point at #evaluated_index to the next point.
     * If the sampled factor/length is the very end of the spline, this will be the 1.0f
     */
    float factor;
  };
  /**
   * Find the position on the evaluated spline at the given portion of the total length.
   * The return value is the indices of the two neighboring points at that location and the
   * factor between them, which can be used to look up any attribute on the evaluated points.
   * \note This does not support extrapolation.
   */
  LookupResult lookup_evaluated_factor(float factor) const;
  /**
   * The same as #lookup_evaluated_factor, but looks up a length directly instead of
   * a portion of the total.
   */
  LookupResult lookup_evaluated_length(float length) const;

  /**
   * Return an array of evenly spaced samples along the length of the spline. The samples are
   * indices and factors to the next index encoded in floats. The logic for converting from the
   * float values to interpolation data is in #lookup_data_from_index_factor.
   */
  blender::Array<float> sample_uniform_index_factors(int samples_num) const;
  LookupResult lookup_data_from_index_factor(float index_factor) const;

  /**
   * Sample any input data with a value for each evaluated point (already interpolated to evaluated
   * points) to arbitrary parameters in between the evaluated points. The interpolation is quite
   * simple, but this handles the cyclic and end point special cases.
   */
  void sample_with_index_factors(const blender::GVArray &src,
                                 blender::Span<float> index_factors,
                                 blender::GMutableSpan dst) const;
  template<typename T>
  void sample_with_index_factors(const blender::VArray<T> &src,
                                 blender::Span<float> index_factors,
                                 blender::MutableSpan<T> dst) const
  {
    this->sample_with_index_factors(
        blender::GVArray(src), index_factors, blender::GMutableSpan(dst));
  }
  template<typename T>
  void sample_with_index_factors(blender::Span<T> src,
                                 blender::Span<float> index_factors,
                                 blender::MutableSpan<T> dst) const
  {
    this->sample_with_index_factors(blender::VArray<T>::ForSpan(src), index_factors, dst);
  }

  /**
   * Interpolate a virtual array of data with the size of the number of control points to the
   * evaluated points. For poly splines, the lifetime of the returned virtual array must not
   * exceed the lifetime of the input data.
   */
  virtual blender::GVArray interpolate_to_evaluated(const blender::GVArray &src) const = 0;
  blender::GVArray interpolate_to_evaluated(blender::GSpan data) const;
  template<typename T> blender::VArray<T> interpolate_to_evaluated(blender::Span<T> data) const
  {
    return this->interpolate_to_evaluated(blender::GSpan(data)).typed<T>();
  }

 protected:
  virtual void correct_end_tangents() const = 0;
  virtual void copy_settings(Spline &dst) const = 0;
  virtual void copy_data(Spline &dst) const = 0;
  virtual void reverse_impl() = 0;
};

/**
 * A Bezier spline is made up of a many curve segments, possibly achieving continuity of curvature
 * by constraining the alignment of curve handles. Evaluation stores the positions and a map of
 * factors and indices in a list of floats, which is then used to interpolate any other data.
 */
class BezierSpline final : public Spline {
  blender::Vector<blender::float3> positions_;
  blender::Vector<float> radii_;
  blender::Vector<float> tilts_;
  int resolution_;

  blender::Vector<int8_t> handle_types_left_;
  blender::Vector<int8_t> handle_types_right_;

  /* These are mutable to allow lazy recalculation of #Auto and #Vector handle positions. */
  mutable blender::Vector<blender::float3> handle_positions_left_;
  mutable blender::Vector<blender::float3> handle_positions_right_;

  mutable std::mutex auto_handle_mutex_;
  mutable bool auto_handles_dirty_ = true;

  /** Start index in evaluated points array for every control point. */
  mutable blender::Vector<int> offset_cache_;
  mutable std::mutex offset_cache_mutex_;
  mutable bool offset_cache_dirty_ = true;

  /** Cache of evaluated positions. */
  mutable blender::Vector<blender::float3> evaluated_position_cache_;
  mutable std::mutex position_cache_mutex_;
  mutable bool position_cache_dirty_ = true;

  /** Cache of "index factors" based calculated from the evaluated positions. */
  mutable blender::Vector<float> evaluated_mapping_cache_;
  mutable std::mutex mapping_cache_mutex_;
  mutable bool mapping_cache_dirty_ = true;

 public:
  BezierSpline() : Spline(CURVE_TYPE_BEZIER)
  {
  }
  BezierSpline(const BezierSpline &other)
      : Spline((Spline &)other),
        positions_(other.positions_),
        radii_(other.radii_),
        tilts_(other.tilts_),
        resolution_(other.resolution_),
        handle_types_left_(other.handle_types_left_),
        handle_types_right_(other.handle_types_right_),
        handle_positions_left_(other.handle_positions_left_),
        handle_positions_right_(other.handle_positions_right_)
  {
  }

  int size() const final;
  int resolution() const;
  void set_resolution(int value);

  void resize(int size) final;
  blender::MutableSpan<blender::float3> positions() final;
  blender::Span<blender::float3> positions() const final;
  blender::MutableSpan<float> radii() final;
  blender::Span<float> radii() const final;
  blender::MutableSpan<float> tilts() final;
  blender::Span<float> tilts() const final;
  blender::Span<int8_t> handle_types_left() const;
  blender::MutableSpan<int8_t> handle_types_left();
  blender::Span<blender::float3> handle_positions_left() const;
  /**
   * Get writable access to the handle position.
   *
   * \param write_only: pass true for an uninitialized spline, this prevents accessing
   * uninitialized memory while auto-generating handles.
   */
  blender::MutableSpan<blender::float3> handle_positions_left(bool write_only = false);
  blender::Span<int8_t> handle_types_right() const;
  blender::MutableSpan<int8_t> handle_types_right();
  blender::Span<blender::float3> handle_positions_right() const;
  /**
   * Get writable access to the handle position.
   *
   * \param write_only: pass true for an uninitialized spline, this prevents accessing
   * uninitialized memory while auto-generating handles.
   */
  blender::MutableSpan<blender::float3> handle_positions_right(bool write_only = false);
  /**
   * Recalculate all #Auto and #Vector handles with positions automatically
   * derived from the neighboring control points.
   */
  void ensure_auto_handles() const;

  void translate(const blender::float3 &translation) override;
  void transform(const blender::float4x4 &matrix) override;

  /**
   * Set positions for the right handle of the control point, ensuring that
   * aligned handles stay aligned. Has no effect for auto and vector type handles.
   */
  void set_handle_position_right(int index, const blender::float3 &value);
  /**
   * Set positions for the left handle of the control point, ensuring that
   * aligned handles stay aligned. Has no effect for auto and vector type handles.
   */
  void set_handle_position_left(int index, const blender::float3 &value);

  bool point_is_sharp(int index) const;

  void mark_cache_invalid() final;
  int evaluated_points_num() const final;

  /**
   * Returns access to a cache of offsets into the evaluated point array for each control point.
   * While most control point edges generate the number of edges specified by the resolution,
   * vector segments only generate one edge.
   *
   * \note The length of the result is one greater than the number of points, so that the last item
   * is the total number of evaluated points. This is useful to avoid recalculating the size of the
   * last segment everywhere.
   */
  blender::Span<int> control_point_offsets() const;
  /**
   * Returns non-owning access to an array of values containing the information necessary to
   * interpolate values from the original control points to evaluated points. The control point
   * index is the integer part of each value, and the factor used for interpolating to the next
   * control point is the remaining fractional part.
   */
  blender::Span<float> evaluated_mappings() const;
  blender::Span<blender::float3> evaluated_positions() const final;
  struct InterpolationData {
    int control_point_index;
    int next_control_point_index;
    /**
     * Linear interpolation weight between the two indices, from 0 to 1.
     * Higher means closer to next control point.
     */
    float factor;
  };
  /**
   * Convert the data encoded in #evaulated_mappings into its parts-- the information necessary
   * to interpolate data from control points to evaluated points between them. The next control
   * point index result will not overflow the size of the control point vectors.
   */
  InterpolationData interpolation_data_from_index_factor(float index_factor) const;

  virtual blender::GVArray interpolate_to_evaluated(const blender::GVArray &src) const override;

  void evaluate_segment(int index,
                        int next_index,
                        blender::MutableSpan<blender::float3> positions) const;
  /**
   * \warning This functional assumes that the spline has more than one point.
   */
  bool segment_is_vector(int start_index) const;

  /** See comment and diagram for #calculate_segment_insertion. */
  struct InsertResult {
    blender::float3 handle_prev;
    blender::float3 left_handle;
    blender::float3 position;
    blender::float3 right_handle;
    blender::float3 handle_next;
  };
  /**
   * De Casteljau Bezier subdivision.
   * \param index: The index of the segment's start control point.
   * \param next_index: The index of the control point at the end of the segment. Could be 0,
   * if the spline is cyclic.
   * \param parameter: The factor along the segment, between 0 and 1. Note that this is used
   * directly by the calculation, it doesn't correspond to a portion of the evaluated length.
   *
   * <pre>
   *           handle_prev         handle_next
   *                x----------------x
   *               /                  \
   *              /      x---O---x     \
   *             /        result        \
   *            /                        \
   *           O                          O
   *       point_prev                  point_next
   * </pre>
   */
  InsertResult calculate_segment_insertion(int index, int next_index, float parameter);

 private:
  /**
   * If the spline is not cyclic, the direction for the first and last points is just the
   * direction formed by the corresponding handles and control points. In the unlikely situation
   * that the handles define a zero direction, fallback to using the direction defined by the
   * first and last evaluated segments already calculated in #Spline::evaluated_tangents().
   */
  void correct_end_tangents() const final;
  void copy_settings(Spline &dst) const final;
  void copy_data(Spline &dst) const final;

 protected:
  void reverse_impl() override;
};

/**
 * Data for Non-Uniform Rational B-Splines. The mapping from control points to evaluated points is
 * influenced by a vector of knots, weights for each point, and the order of the spline. Every
 * mapping of data to evaluated points is handled the same way, but the positions are cached in
 * the spline.
 */
class NURBSpline final : public Spline {
 public:
  /** Method used to recalculate the knots vector when points are added or removed. */
  KnotsMode knots_mode;

  struct BasisCache {
    /**
     * For each evaluated point, the weight for all control points that influences it.
     * The vector's size is the evaluated point count multiplied by the spline's order.
     */
    blender::Vector<float> weights;
    /**
     * An offset for the start of #weights: the first control point index with a non-zero weight.
     */
    blender::Vector<int> start_indices;
  };

 private:
  blender::Vector<blender::float3> positions_;
  blender::Vector<float> radii_;
  blender::Vector<float> tilts_;
  blender::Vector<float> weights_;
  int resolution_;
  /**
   * Defines the number of nearby control points that influence a given evaluated point. Higher
   * orders give smoother results. The number of control points must be greater than or equal to
   * this value.
   */
  uint8_t order_;

  /**
   * Determines where and how the control points affect the evaluated points. The length should
   * always be the value returned by #knots_num(), and each value should be greater than or equal
   * to the previous. Only invalidated when a point is added or removed.
   */
  mutable blender::Vector<float> knots_;
  mutable std::mutex knots_mutex_;
  mutable bool knots_dirty_ = true;

  /** Cache of control point influences on each evaluated point. */
  mutable BasisCache basis_cache_;
  mutable std::mutex basis_cache_mutex_;
  mutable bool basis_cache_dirty_ = true;

  /**
   * Cache of position data calculated from the basis cache. Though it is interpolated
   * in the same way as any other attribute, it is stored to save unnecessary recalculation.
   */
  mutable blender::Vector<blender::float3> evaluated_position_cache_;
  mutable std::mutex position_cache_mutex_;
  mutable bool position_cache_dirty_ = true;

 public:
  NURBSpline() : Spline(CURVE_TYPE_NURBS)
  {
  }
  NURBSpline(const NURBSpline &other)
      : Spline((Spline &)other),
        knots_mode(other.knots_mode),
        positions_(other.positions_),
        radii_(other.radii_),
        tilts_(other.tilts_),
        weights_(other.weights_),
        resolution_(other.resolution_),
        order_(other.order_)
  {
  }

  int size() const final;
  int resolution() const;
  void set_resolution(int value);
  uint8_t order() const;
  void set_order(uint8_t value);

  bool check_valid_num_and_order() const;
  int knots_num() const;

  void resize(int size) final;
  blender::MutableSpan<blender::float3> positions() final;
  blender::Span<blender::float3> positions() const final;
  blender::MutableSpan<float> radii() final;
  blender::Span<float> radii() const final;
  blender::MutableSpan<float> tilts() final;
  blender::Span<float> tilts() const final;
  blender::Span<float> knots() const;

  blender::MutableSpan<float> weights();
  blender::Span<float> weights() const;

  void mark_cache_invalid() final;
  int evaluated_points_num() const final;

  blender::Span<blender::float3> evaluated_positions() const final;

  blender::GVArray interpolate_to_evaluated(const blender::GVArray &src) const final;

 protected:
  void correct_end_tangents() const final;
  void copy_settings(Spline &dst) const final;
  void copy_data(Spline &dst) const final;
  void reverse_impl() override;

  void calculate_knots() const;
  const BasisCache &calculate_basis_cache() const;
};

/**
 * A Poly spline is like a Bezier spline with a resolution of one. The main reason to distinguish
 * the two is for reduced complexity and increased performance, since interpolating data to control
 * points does not change it.
 *
 * Poly spline code is very simple, since it doesn't do anything that the base #Spline doesn't
 * handle. Mostly it just worries about storing the data used by the base class.
 */
class PolySpline final : public Spline {
  blender::Vector<blender::float3> positions_;
  blender::Vector<float> radii_;
  blender::Vector<float> tilts_;

 public:
  PolySpline() : Spline(CURVE_TYPE_POLY)
  {
  }
  PolySpline(const PolySpline &other)
      : Spline((Spline &)other),
        positions_(other.positions_),
        radii_(other.radii_),
        tilts_(other.tilts_)
  {
  }

  int size() const final;

  void resize(int size) final;
  blender::MutableSpan<blender::float3> positions() final;
  blender::Span<blender::float3> positions() const final;
  blender::MutableSpan<float> radii() final;
  blender::Span<float> radii() const final;
  blender::MutableSpan<float> tilts() final;
  blender::Span<float> tilts() const final;

  void mark_cache_invalid() final;
  int evaluated_points_num() const final;

  blender::Span<blender::float3> evaluated_positions() const final;

  /**
   * Poly spline interpolation from control points to evaluated points is a special case, since
   * the result data is the same as the input data. This function returns a #GVArray that points to
   * the original data. Therefore the lifetime of the returned virtual array must not be longer
   * than the source data.
   */
  blender::GVArray interpolate_to_evaluated(const blender::GVArray &src) const final;

 protected:
  void correct_end_tangents() const final;
  void copy_settings(Spline &dst) const final;
  void copy_data(Spline &dst) const final;
  void reverse_impl() override;
};

/**
 * A collection of #Spline objects with the same attribute types and names. Most data and
 * functionality is in splines, but this contains some helpers for working with them as a group.
 *
 * \note A #CurveEval corresponds to the #Curve object data. The name is different for clarity,
 * since more of the data is stored in the splines, but also just to be different than the name in
 * DNA.
 */
struct CurveEval {
 private:
  blender::Vector<SplinePtr> splines_;

 public:
  blender::bke::CustomDataAttributes attributes;

  CurveEval() = default;
  CurveEval(const CurveEval &other) : attributes(other.attributes)
  {
    for (const SplinePtr &spline : other.splines()) {
      this->add_spline(spline->copy());
    }
  }

  blender::Span<SplinePtr> splines() const;
  blender::MutableSpan<SplinePtr> splines();
  /**
   * \return True if the curve contains a spline with the given type.
   *
   * \note If you are looping over all of the splines in the same scope anyway,
   * it's better to avoid calling this function, in case there are many splines.
   */
  bool has_spline_with_type(const CurveType type) const;

  void resize(int size);
  /**
   * \warning Call #reallocate on the spline's attributes after adding all splines.
   */
  void add_spline(SplinePtr spline);
  void add_splines(blender::MutableSpan<SplinePtr> splines);
  void remove_splines(blender::IndexMask mask);

  void translate(const blender::float3 &translation);
  void transform(const blender::float4x4 &matrix);
  bool bounds_min_max(blender::float3 &min, blender::float3 &max, bool use_evaluated) const;

  blender::bke::MutableAttributeAccessor attributes_for_write();

  /**
   * Return the start indices for each of the curve spline's control points, if they were part
   * of a flattened array. This can be used to facilitate parallelism by avoiding the need to
   * accumulate an offset while doing more complex calculations.
   *
   * \note The result is one longer than the spline count; the last element is the total size.
   */
  blender::Array<int> control_point_offsets() const;
  /**
   * Exactly like #control_point_offsets, but uses the number of evaluated points instead.
   */
  blender::Array<int> evaluated_point_offsets() const;
  /**
   * Return the accumulated length at the start of every spline in the curve.
   * \note The result is one longer than the spline count; the last element is the total length.
   */
  blender::Array<float> accumulated_spline_lengths() const;

  float total_length() const;
  int total_control_point_num() const;

  void mark_cache_invalid();

  /**
   * Check the invariants that curve control point attributes should always uphold, necessary
   * because attributes are stored on splines rather than in a flat array on the curve:
   *  - The same set of attributes exists on every spline.
   *  - Attributes with the same name have the same type on every spline.
   *  - Attributes are in the same order on every spline.
   */
  void assert_valid_point_attributes() const;
};

std::unique_ptr<CurveEval> curve_eval_from_dna_curve(const Curve &curve,
                                                     const ListBase &nurbs_list);
std::unique_ptr<CurveEval> curve_eval_from_dna_curve(const Curve &dna_curve);
std::unique_ptr<CurveEval> curves_to_curve_eval(const Curves &curves);
Curves *curve_eval_to_curves(const CurveEval &curve_eval);