Welcome to mirror list, hosted at ThFree Co, Russian Federation.

armature.c « intern « blenkernel « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 1149d8eee258094177cdeaecae53824f417ccc70 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
/*
 * ***** BEGIN GPL LICENSE BLOCK *****
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version. 
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 *
 * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
 * All rights reserved.
 *
 * Contributor(s): Full recode, Ton Roosendaal, Crete 2005
 *
 * ***** END GPL LICENSE BLOCK *****
 */

/** \file blender/blenkernel/intern/armature.c
 *  \ingroup bke
 */


#include <ctype.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include <stdio.h>
#include <float.h>

#include "MEM_guardedalloc.h"

#include "BLI_math.h"
#include "BLI_blenlib.h"
#include "BLI_utildefines.h"

#include "DNA_anim_types.h"
#include "DNA_armature_types.h"
#include "DNA_constraint_types.h"
#include "DNA_mesh_types.h"
#include "DNA_lattice_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_nla_types.h"
#include "DNA_scene_types.h"
#include "DNA_object_types.h"

#include "BKE_animsys.h"
#include "BKE_armature.h"
#include "BKE_action.h"
#include "BKE_anim.h"
#include "BKE_constraint.h"
#include "BKE_curve.h"
#include "BKE_depsgraph.h"
#include "BKE_DerivedMesh.h"
#include "BKE_deform.h"
#include "BKE_displist.h"
#include "BKE_global.h"
#include "BKE_idprop.h"
#include "BKE_library.h"
#include "BKE_lattice.h"
#include "BKE_main.h"
#include "BKE_object.h"

#include "BIK_api.h"
#include "BKE_sketch.h"

/*	**************** Generic Functions, data level *************** */

bArmature *add_armature(const char *name)
{
	bArmature *arm;
	
	arm= alloc_libblock (&G.main->armature, ID_AR, name);
	arm->deformflag = ARM_DEF_VGROUP|ARM_DEF_ENVELOPE;
	arm->flag = ARM_COL_CUSTOM; /* custom bone-group colors */
	arm->layer= 1;
	return arm;
}

bArmature *get_armature(Object *ob)
{
	if(ob->type==OB_ARMATURE)
		return (bArmature *)ob->data;
	return NULL;
}

void free_bonelist (ListBase *lb)
{
	Bone *bone;

	for(bone=lb->first; bone; bone=bone->next) {
		if(bone->prop) {
			IDP_FreeProperty(bone->prop);
			MEM_freeN(bone->prop);
		}
		free_bonelist(&bone->childbase);
	}
	
	BLI_freelistN(lb);
}

void free_armature(bArmature *arm)
{
	if (arm) {
		free_bonelist(&arm->bonebase);
		
		/* free editmode data */
		if (arm->edbo) {
			BLI_freelistN(arm->edbo);
			
			MEM_freeN(arm->edbo);
			arm->edbo= NULL;
		}

		/* free sketch */
		if (arm->sketch) {
			freeSketch(arm->sketch);
			arm->sketch = NULL;
		}
		
		/* free animation data */
		if (arm->adt) {
			BKE_free_animdata(&arm->id);
			arm->adt= NULL;
		}
	}
}

void make_local_armature(bArmature *arm)
{
	Main *bmain= G.main;
	int local=0, lib=0;
	Object *ob;

	if (arm->id.lib==NULL) return;
	if (arm->id.us==1) {
		arm->id.lib= NULL;
		arm->id.flag= LIB_LOCAL;
		new_id(&bmain->armature, (ID*)arm, NULL);
		return;
	}

	for(ob= bmain->object.first; ob && ELEM(0, lib, local); ob= ob->id.next) {
		if(ob->data == arm) {
			if(ob->id.lib) lib= 1;
			else local= 1;
		}
	}

	if(local && lib==0) {
		arm->id.lib= NULL;
		arm->id.flag= LIB_LOCAL;
		new_id(&bmain->armature, (ID *)arm, NULL);
	}
	else if(local && lib) {
		bArmature *armn= copy_armature(arm);
		armn->id.us= 0;
		
		for(ob= bmain->object.first; ob; ob= ob->id.next) {
			if(ob->data == arm) {
				if(ob->id.lib==NULL) {
					ob->data= armn;
					armn->id.us++;
					arm->id.us--;
				}
			}
		}
	}
}

static void	copy_bonechildren (Bone* newBone, Bone* oldBone, Bone* actBone, Bone **newActBone)
{
	Bone	*curBone, *newChildBone;
	
	if(oldBone == actBone)
		*newActBone= newBone;

	if(oldBone->prop)
		newBone->prop= IDP_CopyProperty(oldBone->prop);

	/*	Copy this bone's list*/
	BLI_duplicatelist(&newBone->childbase, &oldBone->childbase);
	
	/*	For each child in the list, update it's children*/
	newChildBone=newBone->childbase.first;
	for (curBone=oldBone->childbase.first;curBone;curBone=curBone->next){
		newChildBone->parent=newBone;
		copy_bonechildren(newChildBone, curBone, actBone, newActBone);
		newChildBone=newChildBone->next;
	}
}

bArmature *copy_armature(bArmature *arm)
{
	bArmature *newArm;
	Bone		*oldBone, *newBone;
	Bone		*newActBone= NULL;
	
	newArm= copy_libblock (arm);
	BLI_duplicatelist(&newArm->bonebase, &arm->bonebase);
	
	/*	Duplicate the childrens' lists*/
	newBone=newArm->bonebase.first;
	for (oldBone=arm->bonebase.first;oldBone;oldBone=oldBone->next){
		newBone->parent=NULL;
		copy_bonechildren (newBone, oldBone, arm->act_bone, &newActBone);
		newBone=newBone->next;
	};
	
	newArm->act_bone= newActBone;

	newArm->edbo= NULL;
	newArm->act_edbone= NULL;
	newArm->sketch= NULL;

	return newArm;
}

static Bone *get_named_bone_bonechildren (Bone *bone, const char *name)
{
	Bone *curBone, *rbone;
	
	if (!strcmp (bone->name, name))
		return bone;
	
	for (curBone=bone->childbase.first; curBone; curBone=curBone->next){
		rbone=get_named_bone_bonechildren (curBone, name);
		if (rbone)
			return rbone;
	}
	
	return NULL;
}


Bone *get_named_bone (bArmature *arm, const char *name)
/*
	Walk the list until the bone is found
 */
{
	Bone *bone=NULL, *curBone;
	
	if (!arm) return NULL;
	
	for (curBone=arm->bonebase.first; curBone; curBone=curBone->next){
		bone = get_named_bone_bonechildren (curBone, name);
		if (bone)
			return bone;
	}
	
	return bone;
}

/* Finds the best possible extension to the name on a particular axis. (For renaming, check for unique names afterwards)
 * 	strip_number: removes number extensions  (TODO: not used)
 *	axis: the axis to name on
 *	head/tail: the head/tail co-ordinate of the bone on the specified axis
 */
int bone_autoside_name (char name[MAXBONENAME], int UNUSED(strip_number), short axis, float head, float tail)
{
	unsigned int len;
	char	basename[MAXBONENAME]= "";
	char 	extension[5]= "";

	len= strlen(name);
	if (len == 0) return 0;
	BLI_strncpy(basename, name, sizeof(basename));
	
	/* Figure out extension to append: 
	 *	- The extension to append is based upon the axis that we are working on.
	 *	- If head happens to be on 0, then we must consider the tail position as well to decide
	 *	  which side the bone is on
	 *		-> If tail is 0, then it's bone is considered to be on axis, so no extension should be added
	 *		-> Otherwise, extension is added from perspective of object based on which side tail goes to
	 *	- If head is non-zero, extension is added from perspective of object based on side head is on
	 */
	if (axis == 2) {
		/* z-axis - vertical (top/bottom) */
		if (IS_EQ(head, 0)) {
			if (tail < 0)
				strcpy(extension, "Bot");
			else if (tail > 0)
				strcpy(extension, "Top");
		}
		else {
			if (head < 0)
				strcpy(extension, "Bot");
			else
				strcpy(extension, "Top");
		}
	}
	else if (axis == 1) {
		/* y-axis - depth (front/back) */
		if (IS_EQ(head, 0)) {
			if (tail < 0)
				strcpy(extension, "Fr");
			else if (tail > 0)
				strcpy(extension, "Bk");
		}
		else {
			if (head < 0)
				strcpy(extension, "Fr");
			else
				strcpy(extension, "Bk");
		}
	}
	else {
		/* x-axis - horizontal (left/right) */
		if (IS_EQ(head, 0)) {
			if (tail < 0)
				strcpy(extension, "R");
			else if (tail > 0)
				strcpy(extension, "L");
		}
		else {
			if (head < 0)
				strcpy(extension, "R");
			else if (head > 0)
				strcpy(extension, "L");
		}
	}

	/* Simple name truncation 
	 *	- truncate if there is an extension and it wouldn't be able to fit
	 *	- otherwise, just append to end
	 */
	if (extension[0]) {
		int change = 1;
		
		while (change) { /* remove extensions */
			change = 0;
			if (len > 2 && basename[len-2]=='.') {
				if (basename[len-1]=='L' || basename[len-1] == 'R' ) { /* L R */
					basename[len-2] = '\0';
					len-=2;
					change= 1;
				}
			} else if (len > 3 && basename[len-3]=='.') {
				if (	(basename[len-2]=='F' && basename[len-1] == 'r') ||	/* Fr */
						(basename[len-2]=='B' && basename[len-1] == 'k')	/* Bk */
				) {
					basename[len-3] = '\0';
					len-=3;
					change= 1;
				}
			} else if (len > 4 && basename[len-4]=='.') {
				if (	(basename[len-3]=='T' && basename[len-2]=='o' && basename[len-1] == 'p') ||	/* Top */
						(basename[len-3]=='B' && basename[len-2]=='o' && basename[len-1] == 't')	/* Bot */
				) {
					basename[len-4] = '\0';
					len-=4;
					change= 1;
				}
			}
		}

		if ((MAXBONENAME - len) < strlen(extension) + 1) { /* add 1 for the '.' */
			strncpy(name, basename, len-strlen(extension));
		}

		BLI_snprintf(name, MAXBONENAME, "%s.%s", basename, extension);

		return 1;
	}

	else {
		return 0;
	}
}

/* ************* B-Bone support ******************* */

#define MAX_BBONE_SUBDIV	32

/* data has MAX_BBONE_SUBDIV+1 interpolated points, will become desired amount with equal distances */
static void equalize_bezier(float *data, int desired)
{
	float *fp, totdist, ddist, dist, fac1, fac2;
	float pdist[MAX_BBONE_SUBDIV+1];
	float temp[MAX_BBONE_SUBDIV+1][4];
	int a, nr;
	
	pdist[0]= 0.0f;
	for(a=0, fp= data; a<MAX_BBONE_SUBDIV; a++, fp+=4) {
		QUATCOPY(temp[a], fp);
		pdist[a+1]= pdist[a]+len_v3v3(fp, fp+4);
	}
	/* do last point */
	QUATCOPY(temp[a], fp);
	totdist= pdist[a];
	
	/* go over distances and calculate new points */
	ddist= totdist/((float)desired);
	nr= 1;
	for(a=1, fp= data+4; a<desired; a++, fp+=4) {
		
		dist= ((float)a)*ddist;
		
		/* we're looking for location (distance) 'dist' in the array */
		while((dist>= pdist[nr]) && nr<MAX_BBONE_SUBDIV) {
			nr++;
		}
		
		fac1= pdist[nr]- pdist[nr-1];
		fac2= pdist[nr]-dist;
		fac1= fac2/fac1;
		fac2= 1.0f-fac1;
		
		fp[0]= fac1*temp[nr-1][0]+ fac2*temp[nr][0];
		fp[1]= fac1*temp[nr-1][1]+ fac2*temp[nr][1];
		fp[2]= fac1*temp[nr-1][2]+ fac2*temp[nr][2];
		fp[3]= fac1*temp[nr-1][3]+ fac2*temp[nr][3];
	}
	/* set last point, needed for orientation calculus */
	QUATCOPY(fp, temp[MAX_BBONE_SUBDIV]);
}

/* returns pointer to static array, filled with desired amount of bone->segments elements */
/* this calculation is done  within unit bone space */
Mat4 *b_bone_spline_setup(bPoseChannel *pchan, int rest)
{
	static Mat4 bbone_array[MAX_BBONE_SUBDIV];
	static Mat4 bbone_rest_array[MAX_BBONE_SUBDIV];
	Mat4 *result_array= (rest)? bbone_rest_array: bbone_array;
	bPoseChannel *next, *prev;
	Bone *bone= pchan->bone;
	float h1[3], h2[3], scale[3], length, hlength1, hlength2, roll1=0.0f, roll2;
	float mat3[3][3], imat[4][4], posemat[4][4], scalemat[4][4], iscalemat[4][4];
	float data[MAX_BBONE_SUBDIV+1][4], *fp;
	int a, doscale= 0;

	length= bone->length;

	if(!rest) {
		/* check if we need to take non-uniform bone scaling into account */
		scale[0]= len_v3(pchan->pose_mat[0]);
		scale[1]= len_v3(pchan->pose_mat[1]);
		scale[2]= len_v3(pchan->pose_mat[2]);

		if(fabsf(scale[0] - scale[1]) > 1e-6f || fabsf(scale[1] - scale[2]) > 1e-6f) {
			unit_m4(scalemat);
			scalemat[0][0]= scale[0];
			scalemat[1][1]= scale[1];
			scalemat[2][2]= scale[2];
			invert_m4_m4(iscalemat, scalemat);

			length *= scale[1];
			doscale = 1;
		}
	}
	
	hlength1= bone->ease1*length*0.390464f;		// 0.5*sqrt(2)*kappa, the handle length for near-perfect circles
	hlength2= bone->ease2*length*0.390464f;
	
	/* evaluate next and prev bones */
	if(bone->flag & BONE_CONNECTED)
		prev= pchan->parent;
	else
		prev= NULL;
	
	next= pchan->child;
	
	/* find the handle points, since this is inside bone space, the 
		first point = (0,0,0)
		last point =  (0, length, 0) */
	
	if(rest) {
		invert_m4_m4(imat, pchan->bone->arm_mat);
	}
	else if(doscale) {
		copy_m4_m4(posemat, pchan->pose_mat);
		normalize_m4(posemat);
		invert_m4_m4(imat, posemat);
	}
	else
		invert_m4_m4(imat, pchan->pose_mat);
	
	if(prev) {
		float difmat[4][4], result[3][3], imat3[3][3];

		/* transform previous point inside this bone space */
		if(rest)
			VECCOPY(h1, prev->bone->arm_head)
		else
			VECCOPY(h1, prev->pose_head)
		mul_m4_v3(imat, h1);

		if(prev->bone->segments>1) {
			/* if previous bone is B-bone too, use average handle direction */
			h1[1]-= length;
			roll1= 0.0f;
		}

		normalize_v3(h1);
		mul_v3_fl(h1, -hlength1);

		if(prev->bone->segments==1) {
			/* find the previous roll to interpolate */
			if(rest)
				mul_m4_m4m4(difmat, prev->bone->arm_mat, imat);
			else
				mul_m4_m4m4(difmat, prev->pose_mat, imat);
			copy_m3_m4(result, difmat);				// the desired rotation at beginning of next bone
			
			vec_roll_to_mat3(h1, 0.0f, mat3);			// the result of vec_roll without roll
			
			invert_m3_m3(imat3, mat3);
			mul_m3_m3m3(mat3, result, imat3);			// the matrix transforming vec_roll to desired roll
			
			roll1= (float)atan2(mat3[2][0], mat3[2][2]);
		}
	}
	else {
		h1[0]= 0.0f; h1[1]= hlength1; h1[2]= 0.0f;
		roll1= 0.0f;
	}
	if(next) {
		float difmat[4][4], result[3][3], imat3[3][3];
		
		/* transform next point inside this bone space */
		if(rest)
			VECCOPY(h2, next->bone->arm_tail)
		else
			VECCOPY(h2, next->pose_tail)
		mul_m4_v3(imat, h2);
		/* if next bone is B-bone too, use average handle direction */
		if(next->bone->segments>1);
		else h2[1]-= length;
		normalize_v3(h2);
		
		/* find the next roll to interpolate as well */
		if(rest)
			mul_m4_m4m4(difmat, next->bone->arm_mat, imat);
		else
			mul_m4_m4m4(difmat, next->pose_mat, imat);
		copy_m3_m4(result, difmat);				// the desired rotation at beginning of next bone
		
		vec_roll_to_mat3(h2, 0.0f, mat3);			// the result of vec_roll without roll
		
		invert_m3_m3(imat3, mat3);
		mul_m3_m3m3(mat3, imat3, result);			// the matrix transforming vec_roll to desired roll
		
		roll2= (float)atan2(mat3[2][0], mat3[2][2]);
		
		/* and only now negate handle */
		mul_v3_fl(h2, -hlength2);
	}
	else {
		h2[0]= 0.0f; h2[1]= -hlength2; h2[2]= 0.0f;
		roll2= 0.0;
	}

	/* make curve */
	if(bone->segments > MAX_BBONE_SUBDIV)
		bone->segments= MAX_BBONE_SUBDIV;
	
	forward_diff_bezier(0.0, h1[0],		h2[0],			0.0,		data[0],	MAX_BBONE_SUBDIV, 4*sizeof(float));
	forward_diff_bezier(0.0, h1[1],		length + h2[1],	length,		data[0]+1,	MAX_BBONE_SUBDIV, 4*sizeof(float));
	forward_diff_bezier(0.0, h1[2],		h2[2],			0.0,		data[0]+2,	MAX_BBONE_SUBDIV, 4*sizeof(float));
	forward_diff_bezier(roll1, roll1 + 0.390464f*(roll2-roll1), roll2 - 0.390464f*(roll2-roll1),	roll2,	data[0]+3,	MAX_BBONE_SUBDIV, 4*sizeof(float));
	
	equalize_bezier(data[0], bone->segments);	// note: does stride 4!
	
	/* make transformation matrices for the segments for drawing */
	for(a=0, fp= data[0]; a<bone->segments; a++, fp+=4) {
		sub_v3_v3v3(h1, fp+4, fp);
		vec_roll_to_mat3(h1, fp[3], mat3);		// fp[3] is roll

		copy_m4_m3(result_array[a].mat, mat3);
		VECCOPY(result_array[a].mat[3], fp);

		if(doscale) {
			/* correct for scaling when this matrix is used in scaled space */
			mul_serie_m4(result_array[a].mat, iscalemat, result_array[a].mat,
				scalemat, NULL, NULL, NULL, NULL, NULL);
		}
	}
	
	return result_array;
}

/* ************ Armature Deform ******************* */

typedef struct bPoseChanDeform {
	Mat4		*b_bone_mats;	
	DualQuat	*dual_quat;
	DualQuat	*b_bone_dual_quats;
} bPoseChanDeform;

static void pchan_b_bone_defmats(bPoseChannel *pchan, bPoseChanDeform *pdef_info, int use_quaternion)
{
	Bone *bone= pchan->bone;
	Mat4 *b_bone= b_bone_spline_setup(pchan, 0);
	Mat4 *b_bone_rest= b_bone_spline_setup(pchan, 1);
	Mat4 *b_bone_mats;
	DualQuat *b_bone_dual_quats= NULL;
	float tmat[4][4]= MAT4_UNITY;
	int a;
	
	/* allocate b_bone matrices and dual quats */
	b_bone_mats= MEM_mallocN((1+bone->segments)*sizeof(Mat4), "BBone defmats");
	pdef_info->b_bone_mats= b_bone_mats;

	if(use_quaternion) {
		b_bone_dual_quats= MEM_mallocN((bone->segments)*sizeof(DualQuat), "BBone dqs");
		pdef_info->b_bone_dual_quats= b_bone_dual_quats;
	}
	
	/* first matrix is the inverse arm_mat, to bring points in local bone space
	   for finding out which segment it belongs to */
	invert_m4_m4(b_bone_mats[0].mat, bone->arm_mat);

	/* then we make the b_bone_mats:
		- first transform to local bone space
		- translate over the curve to the bbone mat space
		- transform with b_bone matrix
		- transform back into global space */

	for(a=0; a<bone->segments; a++) {
		invert_m4_m4(tmat, b_bone_rest[a].mat);

		mul_serie_m4(b_bone_mats[a+1].mat, pchan->chan_mat, bone->arm_mat,
			b_bone[a].mat, tmat, b_bone_mats[0].mat, NULL, NULL, NULL);

		if(use_quaternion)
			mat4_to_dquat( &b_bone_dual_quats[a],bone->arm_mat, b_bone_mats[a+1].mat);
	}
}

static void b_bone_deform(bPoseChanDeform *pdef_info, Bone *bone, float *co, DualQuat *dq, float defmat[][3])
{
	Mat4 *b_bone= pdef_info->b_bone_mats;
	float (*mat)[4]= b_bone[0].mat;
	float segment, y;
	int a;
	
	/* need to transform co back to bonespace, only need y */
	y= mat[0][1]*co[0] + mat[1][1]*co[1] + mat[2][1]*co[2] + mat[3][1];
	
	/* now calculate which of the b_bones are deforming this */
	segment= bone->length/((float)bone->segments);
	a= (int)(y/segment);
	
	/* note; by clamping it extends deform at endpoints, goes best with
	   straight joints in restpos. */
	CLAMP(a, 0, bone->segments-1);

	if(dq) {
		copy_dq_dq(dq, &(pdef_info->b_bone_dual_quats)[a]);
	}
	else {
		mul_m4_v3(b_bone[a+1].mat, co);

		if(defmat)
			copy_m3_m4(defmat, b_bone[a+1].mat);
	}
}

/* using vec with dist to bone b1 - b2 */
float distfactor_to_bone (float vec[3], float b1[3], float b2[3], float rad1, float rad2, float rdist)
{
	float dist=0.0f; 
	float bdelta[3];
	float pdelta[3];
	float hsqr, a, l, rad;
	
	sub_v3_v3v3(bdelta, b2, b1);
	l = normalize_v3(bdelta);
	
	sub_v3_v3v3(pdelta, vec, b1);
	
	a = bdelta[0]*pdelta[0] + bdelta[1]*pdelta[1] + bdelta[2]*pdelta[2];
	hsqr = ((pdelta[0]*pdelta[0]) + (pdelta[1]*pdelta[1]) + (pdelta[2]*pdelta[2]));
	
	if (a < 0.0F){
		/* If we're past the end of the bone, do a spherical field attenuation thing */
		dist= ((b1[0]-vec[0])*(b1[0]-vec[0]) +(b1[1]-vec[1])*(b1[1]-vec[1]) +(b1[2]-vec[2])*(b1[2]-vec[2])) ;
		rad= rad1;
	}
	else if (a > l){
		/* If we're past the end of the bone, do a spherical field attenuation thing */
		dist= ((b2[0]-vec[0])*(b2[0]-vec[0]) +(b2[1]-vec[1])*(b2[1]-vec[1]) +(b2[2]-vec[2])*(b2[2]-vec[2])) ;
		rad= rad2;
	}
	else {
		dist= (hsqr - (a*a));
		
		if(l!=0.0f) {
			rad= a/l;
			rad= rad*rad2 + (1.0f-rad)*rad1;
		}
		else rad= rad1;
	}
	
	a= rad*rad;
	if(dist < a) 
		return 1.0f;
	else {
		l= rad+rdist;
		l*= l;
		if(rdist==0.0f || dist >= l) 
			return 0.0f;
		else {
			a= (float)sqrt(dist)-rad;
			return 1.0f-( a*a )/( rdist*rdist );
		}
	}
}

static void pchan_deform_mat_add(bPoseChannel *pchan, float weight, float bbonemat[][3], float mat[][3])
{
	float wmat[3][3];

	if(pchan->bone->segments>1)
		copy_m3_m3(wmat, bbonemat);
	else
		copy_m3_m4(wmat, pchan->chan_mat);

	mul_m3_fl(wmat, weight);
	add_m3_m3m3(mat, mat, wmat);
}

static float dist_bone_deform(bPoseChannel *pchan, bPoseChanDeform *pdef_info, float *vec, DualQuat *dq, float mat[][3], float *co)
{
	Bone *bone= pchan->bone;
	float fac, contrib=0.0;
	float cop[3], bbonemat[3][3];
	DualQuat bbonedq;

	if(bone==NULL) return 0.0f;
	
	VECCOPY (cop, co);

	fac= distfactor_to_bone(cop, bone->arm_head, bone->arm_tail, bone->rad_head, bone->rad_tail, bone->dist);
	
	if (fac > 0.0f) {
		
		fac*=bone->weight;
		contrib= fac;
		if(contrib > 0.0f) {
			if(vec) {
				if(bone->segments>1)
					// applies on cop and bbonemat
					b_bone_deform(pdef_info, bone, cop, NULL, (mat)?bbonemat:NULL);
				else
					mul_m4_v3(pchan->chan_mat, cop);

				//	Make this a delta from the base position
				sub_v3_v3(cop, co);
				madd_v3_v3fl(vec, cop, fac);

				if(mat)
					pchan_deform_mat_add(pchan, fac, bbonemat, mat);
			}
			else {
				if(bone->segments>1) {
					b_bone_deform(pdef_info, bone, cop, &bbonedq, NULL);
					add_weighted_dq_dq(dq, &bbonedq, fac);
				}
				else
					add_weighted_dq_dq(dq, pdef_info->dual_quat, fac);
			}
		}
	}
	
	return contrib;
}

static void pchan_bone_deform(bPoseChannel *pchan, bPoseChanDeform *pdef_info, float weight, float *vec, DualQuat *dq, float mat[][3], float *co, float *contrib)
{
	float cop[3], bbonemat[3][3];
	DualQuat bbonedq;

	if (!weight)
		return;

	VECCOPY(cop, co);

	if(vec) {
		if(pchan->bone->segments>1)
			// applies on cop and bbonemat
			b_bone_deform(pdef_info, pchan->bone, cop, NULL, (mat)?bbonemat:NULL);
		else
			mul_m4_v3(pchan->chan_mat, cop);
		
		vec[0]+=(cop[0]-co[0])*weight;
		vec[1]+=(cop[1]-co[1])*weight;
		vec[2]+=(cop[2]-co[2])*weight;

		if(mat)
			pchan_deform_mat_add(pchan, weight, bbonemat, mat);
	}
	else {
		if(pchan->bone->segments>1) {
			b_bone_deform(pdef_info, pchan->bone, cop, &bbonedq, NULL);
			add_weighted_dq_dq(dq, &bbonedq, weight);
		}
		else
			add_weighted_dq_dq(dq, pdef_info->dual_quat, weight);
	}

	(*contrib)+=weight;
}

void armature_deform_verts(Object *armOb, Object *target, DerivedMesh *dm,
						   float (*vertexCos)[3], float (*defMats)[3][3],
						   int numVerts, int deformflag, 
						   float (*prevCos)[3], const char *defgrp_name)
{
	bPoseChanDeform *pdef_info_array;
	bPoseChanDeform *pdef_info= NULL;
	bArmature *arm= armOb->data;
	bPoseChannel *pchan, **defnrToPC = NULL;
	int *defnrToPCIndex= NULL;
	MDeformVert *dverts = NULL;
	bDeformGroup *dg;
	DualQuat *dualquats= NULL;
	float obinv[4][4], premat[4][4], postmat[4][4];
	const short use_envelope = deformflag & ARM_DEF_ENVELOPE;
	const short use_quaternion = deformflag & ARM_DEF_QUATERNION;
	const short invert_vgroup= deformflag & ARM_DEF_INVERT_VGROUP;
	int numGroups = 0;		/* safety for vertexgroup index overflow */
	int i, target_totvert = 0;	/* safety for vertexgroup overflow */
	int use_dverts = 0;
	int armature_def_nr;
	int totchan;

	if(arm->edbo) return;
	
	invert_m4_m4(obinv, target->obmat);
	copy_m4_m4(premat, target->obmat);
	mul_m4_m4m4(postmat, armOb->obmat, obinv);
	invert_m4_m4(premat, postmat);

	/* bone defmats are already in the channels, chan_mat */
	
	/* initialize B_bone matrices and dual quaternions */
	totchan= BLI_countlist(&armOb->pose->chanbase);

	if(use_quaternion) {
		dualquats= MEM_callocN(sizeof(DualQuat)*totchan, "dualquats");
	}
	
	pdef_info_array= MEM_callocN(sizeof(bPoseChanDeform)*totchan, "bPoseChanDeform");

	totchan= 0;
	pdef_info= pdef_info_array;
	for(pchan= armOb->pose->chanbase.first; pchan; pchan= pchan->next, pdef_info++) {
		if(!(pchan->bone->flag & BONE_NO_DEFORM)) {
			if(pchan->bone->segments > 1)
				pchan_b_bone_defmats(pchan, pdef_info, use_quaternion);

			if(use_quaternion) {
				pdef_info->dual_quat= &dualquats[totchan++];
				mat4_to_dquat( pdef_info->dual_quat,pchan->bone->arm_mat, pchan->chan_mat);
			}
		}
	}

	/* get the def_nr for the overall armature vertex group if present */
	armature_def_nr= defgroup_name_index(target, defgrp_name);
	
	if(ELEM(target->type, OB_MESH, OB_LATTICE)) {
		numGroups = BLI_countlist(&target->defbase);
		
		if(target->type==OB_MESH) {
			Mesh *me= target->data;
			dverts = me->dvert;
			if(dverts)
				target_totvert = me->totvert;
		}
		else {
			Lattice *lt= target->data;
			dverts = lt->dvert;
			if(dverts)
				target_totvert = lt->pntsu*lt->pntsv*lt->pntsw;
		}
	}
	
	/* get a vertex-deform-index to posechannel array */
	if(deformflag & ARM_DEF_VGROUP) {
		if(ELEM(target->type, OB_MESH, OB_LATTICE)) {
			/* if we have a DerivedMesh, only use dverts if it has them */
			if(dm)
				if(dm->getVertData(dm, 0, CD_MDEFORMVERT))
					use_dverts = 1;
				else use_dverts = 0;
			else if(dverts) use_dverts = 1;

			if(use_dverts) {
				defnrToPC = MEM_callocN(sizeof(*defnrToPC) * numGroups, "defnrToBone");
				defnrToPCIndex = MEM_callocN(sizeof(*defnrToPCIndex) * numGroups, "defnrToIndex");
				for(i = 0, dg = target->defbase.first; dg;
					i++, dg = dg->next) {
					defnrToPC[i] = get_pose_channel(armOb->pose, dg->name);
					/* exclude non-deforming bones */
					if(defnrToPC[i]) {
						if(defnrToPC[i]->bone->flag & BONE_NO_DEFORM) {
							defnrToPC[i]= NULL;
						}
						else {
							defnrToPCIndex[i]= BLI_findindex(&armOb->pose->chanbase, defnrToPC[i]);
						}
					}
				}
			}
		}
	}

	for(i = 0; i < numVerts; i++) {
		MDeformVert *dvert;
		DualQuat sumdq, *dq = NULL;
		float *co, dco[3];
		float sumvec[3], summat[3][3];
		float *vec = NULL, (*smat)[3] = NULL;
		float contrib = 0.0f;
		float armature_weight = 1.0f;	/* default to 1 if no overall def group */
		float prevco_weight = 1.0f;		/* weight for optional cached vertexcos */
		int	  j;

		if(use_quaternion) {
			memset(&sumdq, 0, sizeof(DualQuat));
			dq= &sumdq;
		}
		else {
			sumvec[0] = sumvec[1] = sumvec[2] = 0.0f;
			vec= sumvec;

			if(defMats) {
				zero_m3(summat);
				smat = summat;
			}
		}

		if(use_dverts || armature_def_nr >= 0) {
			if(dm) dvert = dm->getVertData(dm, i, CD_MDEFORMVERT);
			else if(dverts && i < target_totvert) dvert = dverts + i;
			else dvert = NULL;
		} else
			dvert = NULL;

		if(armature_def_nr >= 0 && dvert) {
			armature_weight= defvert_find_weight(dvert, armature_def_nr);

			if(invert_vgroup) {
				armature_weight= 1.0f-armature_weight;
			}

			/* hackish: the blending factor can be used for blending with prevCos too */
			if(prevCos) {
				prevco_weight= armature_weight;
				armature_weight= 1.0f;
			}
		}

		/* check if there's any  point in calculating for this vert */
		if(armature_weight == 0.0f) continue;
		
		/* get the coord we work on */
		co= prevCos?prevCos[i]:vertexCos[i];
		
		/* Apply the object's matrix */
		mul_m4_v3(premat, co);
		
		if(use_dverts && dvert && dvert->totweight) { // use weight groups ?
			int deformed = 0;
			
			for(j = 0; j < dvert->totweight; j++){
				int index = dvert->dw[j].def_nr;
				if(index < numGroups && (pchan= defnrToPC[index])) {
					float weight = dvert->dw[j].weight;
					Bone *bone= pchan->bone;
					pdef_info= pdef_info_array + defnrToPCIndex[index];

					deformed = 1;
					
					if(bone && bone->flag & BONE_MULT_VG_ENV) {
						weight *= distfactor_to_bone(co, bone->arm_head,
													 bone->arm_tail,
													 bone->rad_head,
													 bone->rad_tail,
													 bone->dist);
					}
					pchan_bone_deform(pchan, pdef_info, weight, vec, dq, smat, co, &contrib);
				}
			}
			/* if there are vertexgroups but not groups with bones
			 * (like for softbody groups)
			 */
			if(deformed == 0 && use_envelope) {
				pdef_info= pdef_info_array;
				for(pchan= armOb->pose->chanbase.first; pchan;
					pchan= pchan->next, pdef_info++) {
					if(!(pchan->bone->flag & BONE_NO_DEFORM))
						contrib += dist_bone_deform(pchan, pdef_info, vec, dq, smat, co);
				}
			}
		}
		else if(use_envelope) {
			pdef_info= pdef_info_array;
			for(pchan = armOb->pose->chanbase.first; pchan;
				pchan = pchan->next, pdef_info++) {
				if(!(pchan->bone->flag & BONE_NO_DEFORM))
					contrib += dist_bone_deform(pchan, pdef_info, vec, dq, smat, co);
			}
		}

		/* actually should be EPSILON? weight values and contrib can be like 10e-39 small */
		if(contrib > 0.0001f) {
			if(use_quaternion) {
				normalize_dq(dq, contrib);

				if(armature_weight != 1.0f) {
					VECCOPY(dco, co);
					mul_v3m3_dq( dco, (defMats)? summat: NULL,dq);
					sub_v3_v3(dco, co);
					mul_v3_fl(dco, armature_weight);
					add_v3_v3(co, dco);
				}
				else
					mul_v3m3_dq( co, (defMats)? summat: NULL,dq);

				smat = summat;
			}
			else {
				mul_v3_fl(vec, armature_weight/contrib);
				add_v3_v3v3(co, vec, co);
			}

			if(defMats) {
				float pre[3][3], post[3][3], tmpmat[3][3];

				copy_m3_m4(pre, premat);
				copy_m3_m4(post, postmat);
				copy_m3_m3(tmpmat, defMats[i]);

				if(!use_quaternion) /* quaternion already is scale corrected */
					mul_m3_fl(smat, armature_weight/contrib);

				mul_serie_m3(defMats[i], tmpmat, pre, smat, post,
					NULL, NULL, NULL, NULL);
			}
		}
		
		/* always, check above code */
		mul_m4_v3(postmat, co);
		
		
		/* interpolate with previous modifier position using weight group */
		if(prevCos) {
			float mw= 1.0f - prevco_weight;
			vertexCos[i][0]= prevco_weight*vertexCos[i][0] + mw*co[0];
			vertexCos[i][1]= prevco_weight*vertexCos[i][1] + mw*co[1];
			vertexCos[i][2]= prevco_weight*vertexCos[i][2] + mw*co[2];
		}
	}

	if(dualquats) MEM_freeN(dualquats);
	if(defnrToPC) MEM_freeN(defnrToPC);
	if(defnrToPCIndex) MEM_freeN(defnrToPCIndex);

	/* free B_bone matrices */
	pdef_info= pdef_info_array;
	for(pchan = armOb->pose->chanbase.first; pchan; pchan = pchan->next, pdef_info++) {
		if(pdef_info->b_bone_mats) {
			MEM_freeN(pdef_info->b_bone_mats);
		}
		if(pdef_info->b_bone_dual_quats) {
			MEM_freeN(pdef_info->b_bone_dual_quats);
		}
	}

	MEM_freeN(pdef_info_array);
}

/* ************ END Armature Deform ******************* */

void get_objectspace_bone_matrix (struct Bone* bone, float M_accumulatedMatrix[][4], int UNUSED(root), int UNUSED(posed))
{
	copy_m4_m4(M_accumulatedMatrix, bone->arm_mat);
}

/* **************** Space to Space API ****************** */

/* Convert World-Space Matrix to Pose-Space Matrix */
void armature_mat_world_to_pose(Object *ob, float inmat[][4], float outmat[][4]) 
{
	float obmat[4][4];
	
	/* prevent crashes */
	if (ob==NULL) return;
	
	/* get inverse of (armature) object's matrix  */
	invert_m4_m4(obmat, ob->obmat);
	
	/* multiply given matrix by object's-inverse to find pose-space matrix */
	mul_m4_m4m4(outmat, obmat, inmat);
}

/* Convert Wolrd-Space Location to Pose-Space Location
 * NOTE: this cannot be used to convert to pose-space location of the supplied
 * 		pose-channel into its local space (i.e. 'visual'-keyframing) 
 */
void armature_loc_world_to_pose(Object *ob, float *inloc, float *outloc) 
{
	float xLocMat[4][4]= MAT4_UNITY;
	float nLocMat[4][4];
	
	/* build matrix for location */
	VECCOPY(xLocMat[3], inloc);

	/* get bone-space cursor matrix and extract location */
	armature_mat_world_to_pose(ob, xLocMat, nLocMat);
	VECCOPY(outloc, nLocMat[3]);
}

/* Convert Pose-Space Matrix to Bone-Space Matrix 
 * NOTE: this cannot be used to convert to pose-space transforms of the supplied
 * 		pose-channel into its local space (i.e. 'visual'-keyframing)
 */
void armature_mat_pose_to_bone(bPoseChannel *pchan, float inmat[][4], float outmat[][4])
{
	float pc_trans[4][4], inv_trans[4][4];
	float pc_posemat[4][4], inv_posemat[4][4];
	float pose_mat[4][4];

	/* paranoia: prevent crashes with no pose-channel supplied */
	if (pchan==NULL) return;

	/* default flag */
	if((pchan->bone->flag & BONE_NO_LOCAL_LOCATION)==0) {
		/* get the inverse matrix of the pchan's transforms */
		switch(pchan->rotmode) {
		case ROT_MODE_QUAT:
			loc_quat_size_to_mat4(pc_trans, pchan->loc, pchan->quat, pchan->size);
			break;
		case ROT_MODE_AXISANGLE:
			loc_axisangle_size_to_mat4(pc_trans, pchan->loc, pchan->rotAxis, pchan->rotAngle, pchan->size);
			break;
		default: /* euler */
			loc_eul_size_to_mat4(pc_trans, pchan->loc, pchan->eul, pchan->size);
		}

		copy_m4_m4(pose_mat, pchan->pose_mat);
	}
	else {
		/* local location, this is not default, different calculation
		 * note: only tested for location with pose bone snapping.
		 * If this is not useful in other cases the BONE_NO_LOCAL_LOCATION
		 * case may have to be split into its own function. */
		unit_m4(pc_trans);
		copy_v3_v3(pc_trans[3], pchan->loc);

		/* use parents rotation/scale space + own absolute position */
		if(pchan->parent)	copy_m4_m4(pose_mat, pchan->parent->pose_mat);
		else				unit_m4(pose_mat);

		copy_v3_v3(pose_mat[3], pchan->pose_mat[3]);
	}


	invert_m4_m4(inv_trans, pc_trans);
	
	/* Remove the pchan's transforms from it's pose_mat.
	 * This should leave behind the effects of restpose + 
	 * parenting + constraints
	 */
	mul_m4_m4m4(pc_posemat, inv_trans, pose_mat);
	
	/* get the inverse of the leftovers so that we can remove 
	 * that component from the supplied matrix
	 */
	invert_m4_m4(inv_posemat, pc_posemat);
	
	/* get the new matrix */
	mul_m4_m4m4(outmat, inmat, inv_posemat);
}

/* Convert Pose-Space Location to Bone-Space Location
 * NOTE: this cannot be used to convert to pose-space location of the supplied
 * 		pose-channel into its local space (i.e. 'visual'-keyframing) 
 */
void armature_loc_pose_to_bone(bPoseChannel *pchan, float *inloc, float *outloc) 
{
	float xLocMat[4][4]= MAT4_UNITY;
	float nLocMat[4][4];
	
	/* build matrix for location */
	VECCOPY(xLocMat[3], inloc);

	/* get bone-space cursor matrix and extract location */
	armature_mat_pose_to_bone(pchan, xLocMat, nLocMat);
	VECCOPY(outloc, nLocMat[3]);
}

/* same as object_mat3_to_rot() */
void pchan_mat3_to_rot(bPoseChannel *pchan, float mat[][3], short use_compat)
{
	switch(pchan->rotmode) {
	case ROT_MODE_QUAT:
		mat3_to_quat(pchan->quat, mat);
		break;
	case ROT_MODE_AXISANGLE:
		mat3_to_axis_angle(pchan->rotAxis, &pchan->rotAngle, mat);
		break;
	default: /* euler */
		if(use_compat)	mat3_to_compatible_eulO(pchan->eul, pchan->eul, pchan->rotmode, mat);
		else			mat3_to_eulO(pchan->eul, pchan->rotmode, mat);
	}
}

/* Apply a 4x4 matrix to the pose bone,
 * similar to object_apply_mat4()
 */
void pchan_apply_mat4(bPoseChannel *pchan, float mat[][4], short use_compat)
{
	float rot[3][3];
	mat4_to_loc_rot_size(pchan->loc, rot, pchan->size, mat);
	pchan_mat3_to_rot(pchan, rot, use_compat);
}

/* Remove rest-position effects from pose-transform for obtaining
 * 'visual' transformation of pose-channel.
 * (used by the Visual-Keyframing stuff)
 */
void armature_mat_pose_to_delta(float delta_mat[][4], float pose_mat[][4], float arm_mat[][4])
{
	float imat[4][4];
	
	invert_m4_m4(imat, arm_mat);
	mul_m4_m4m4(delta_mat, pose_mat, imat);
}

/* **************** Rotation Mode Conversions ****************************** */
/* Used for Objects and Pose Channels, since both can have multiple rotation representations */

/* Called from RNA when rotation mode changes 
 *	- the result should be that the rotations given in the provided pointers have had conversions 
 *	  applied (as appropriate), such that the rotation of the element hasn't 'visually' changed 
 */
void BKE_rotMode_change_values (float quat[4], float eul[3], float axis[3], float *angle, short oldMode, short newMode)
{
	/* check if any change - if so, need to convert data */
	if (newMode > 0) { /* to euler */
		if (oldMode == ROT_MODE_AXISANGLE) {
			/* axis-angle to euler */
			axis_angle_to_eulO( eul, newMode,axis, *angle);
		}
		else if (oldMode == ROT_MODE_QUAT) {
			/* quat to euler */
			normalize_qt(quat);
			quat_to_eulO( eul, newMode,quat);
		}
		/* else { no conversion needed } */
	}
	else if (newMode == ROT_MODE_QUAT) { /* to quat */
		if (oldMode == ROT_MODE_AXISANGLE) {
			/* axis angle to quat */
			axis_angle_to_quat(quat, axis, *angle);
		}
		else if (oldMode > 0) {
			/* euler to quat */
			eulO_to_quat( quat,eul, oldMode);
		}
		/* else { no conversion needed } */
	}
	else if (newMode == ROT_MODE_AXISANGLE) { /* to axis-angle */
		if (oldMode > 0) {
			/* euler to axis angle */
			eulO_to_axis_angle( axis, angle,eul, oldMode);
		}
		else if (oldMode == ROT_MODE_QUAT) {
			/* quat to axis angle */
			normalize_qt(quat);
			quat_to_axis_angle( axis, angle,quat);
		}
		
		/* when converting to axis-angle, we need a special exception for the case when there is no axis */
		if (IS_EQF(axis[0], axis[1]) && IS_EQF(axis[1], axis[2])) {
			/* for now, rotate around y-axis then (so that it simply becomes the roll) */
			axis[1]= 1.0f;
		}
	}
}

/* **************** The new & simple (but OK!) armature evaluation ********* */ 

/*  ****************** And how it works! ****************************************

  This is the bone transformation trick; they're hierarchical so each bone(b)
  is in the coord system of bone(b-1):

  arm_mat(b)= arm_mat(b-1) * yoffs(b-1) * d_root(b) * bone_mat(b) 
  
  -> yoffs is just the y axis translation in parent's coord system
  -> d_root is the translation of the bone root, also in parent's coord system

  pose_mat(b)= pose_mat(b-1) * yoffs(b-1) * d_root(b) * bone_mat(b) * chan_mat(b)

  we then - in init deform - store the deform in chan_mat, such that:

  pose_mat(b)= arm_mat(b) * chan_mat(b)
  
  *************************************************************************** */
/*  Computes vector and roll based on a rotation. "mat" must
	 contain only a rotation, and no scaling. */ 
void mat3_to_vec_roll(float mat[][3], float *vec, float *roll) 
{
	if (vec)
		copy_v3_v3(vec, mat[1]);

	if (roll) {
		float vecmat[3][3], vecmatinv[3][3], rollmat[3][3];

		vec_roll_to_mat3(mat[1], 0.0f, vecmat);
		invert_m3_m3(vecmatinv, vecmat);
		mul_m3_m3m3(rollmat, vecmatinv, mat);

		*roll= (float)atan2(rollmat[2][0], rollmat[2][2]);
	}
}

/*	Calculates the rest matrix of a bone based
	On its vector and a roll around that vector */
void vec_roll_to_mat3(float *vec, float roll, float mat[][3])
{
	float	nor[3], axis[3], target[3]={0,1,0};
	float	theta;
	float	rMatrix[3][3], bMatrix[3][3];

	normalize_v3_v3(nor, vec);
	
	/*	Find Axis & Amount for bone matrix*/
	cross_v3_v3v3(axis,target,nor);

	/* was 0.0000000000001, caused bug [#23954], smaller values give unstable
	 * roll when toggling editmode.
	 *
	 * was 0.00001, causes bug [#27675], with 0.00000495,
	 * so a value inbetween these is needed.
	 */
	if (dot_v3v3(axis,axis) > 0.000001f) {
		/* if nor is *not* a multiple of target ... */
		normalize_v3(axis);
		
		theta= angle_normalized_v3v3(target, nor);
		
		/*	Make Bone matrix*/
		vec_rot_to_mat3( bMatrix,axis, theta);
	}
	else {
		/* if nor is a multiple of target ... */
		float updown;
		
		/* point same direction, or opposite? */
		updown = ( dot_v3v3(target,nor) > 0 ) ? 1.0f : -1.0f;
		
		/* I think this should work ... */
		bMatrix[0][0]=updown; bMatrix[0][1]=0.0;    bMatrix[0][2]=0.0;
		bMatrix[1][0]=0.0;    bMatrix[1][1]=updown; bMatrix[1][2]=0.0;
		bMatrix[2][0]=0.0;    bMatrix[2][1]=0.0;    bMatrix[2][2]=1.0;
	}
	
	/*	Make Roll matrix*/
	vec_rot_to_mat3( rMatrix,nor, roll);
	
	/*	Combine and output result*/
	mul_m3_m3m3(mat, rMatrix, bMatrix);
}


/* recursive part, calculates restposition of entire tree of children */
/* used by exiting editmode too */
void where_is_armature_bone(Bone *bone, Bone *prevbone)
{
	float vec[3];
	
	/* Bone Space */
	sub_v3_v3v3(vec, bone->tail, bone->head);
	vec_roll_to_mat3(vec, bone->roll, bone->bone_mat);

	bone->length= len_v3v3(bone->head, bone->tail);
	
	/* this is called on old file reading too... */
	if(bone->xwidth==0.0f) {
		bone->xwidth= 0.1f;
		bone->zwidth= 0.1f;
		bone->segments= 1;
	}
	
	if(prevbone) {
		float offs_bone[4][4];  // yoffs(b-1) + root(b) + bonemat(b)
		
		/* bone transform itself */
		copy_m4_m3(offs_bone, bone->bone_mat);
				
		/* The bone's root offset (is in the parent's coordinate system) */
		VECCOPY(offs_bone[3], bone->head);

		/* Get the length translation of parent (length along y axis) */
		offs_bone[3][1]+= prevbone->length;
		
		/* Compose the matrix for this bone  */
		mul_m4_m4m4(bone->arm_mat, offs_bone, prevbone->arm_mat);
	}
	else {
		copy_m4_m3(bone->arm_mat, bone->bone_mat);
		VECCOPY(bone->arm_mat[3], bone->head);
	}
	
	/* and the kiddies */
	prevbone= bone;
	for(bone= bone->childbase.first; bone; bone= bone->next) {
		where_is_armature_bone(bone, prevbone);
	}
}

/* updates vectors and matrices on rest-position level, only needed 
   after editing armature itself, now only on reading file */
void where_is_armature (bArmature *arm)
{
	Bone *bone;
	
	/* hierarchical from root to children */
	for(bone= arm->bonebase.first; bone; bone= bone->next) {
		where_is_armature_bone(bone, NULL);
	}
}

/* if bone layer is protected, copy the data from from->pose
 * when used with linked libraries this copies from the linked pose into the local pose */
static void pose_proxy_synchronize(Object *ob, Object *from, int layer_protected)
{
	bPose *pose= ob->pose, *frompose= from->pose;
	bPoseChannel *pchan, *pchanp, pchanw;
	bConstraint *con;
	int error = 0;
	
	if (frompose==NULL) return;

	/* in some cases when rigs change, we cant synchronize
	 * to avoid crashing check for possible errors here */
	for (pchan= pose->chanbase.first; pchan; pchan= pchan->next) {
		if (pchan->bone->layer & layer_protected) {
			if(get_pose_channel(frompose, pchan->name) == NULL) {
				printf("failed to sync proxy armature because '%s' is missing pose channel '%s'\n", from->id.name, pchan->name);
				error = 1;
			}
		}
	}

	if(error)
		return;
	
	/* clear all transformation values from library */
	rest_pose(frompose);
	
	/* copy over all of the proxy's bone groups */
		/* TODO for later - implement 'local' bone groups as for constraints
		 *	Note: this isn't trivial, as bones reference groups by index not by pointer, 
		 *		 so syncing things correctly needs careful attention
		 */
	BLI_freelistN(&pose->agroups);
	BLI_duplicatelist(&pose->agroups, &frompose->agroups);
	pose->active_group= frompose->active_group;
	
	for (pchan= pose->chanbase.first; pchan; pchan= pchan->next) {
		pchanp= get_pose_channel(frompose, pchan->name);

		if (pchan->bone->layer & layer_protected) {
			ListBase proxylocal_constraints = {NULL, NULL};
			
			/* copy posechannel to temp, but restore important pointers */
			pchanw= *pchanp;
			pchanw.prev= pchan->prev;
			pchanw.next= pchan->next;
			pchanw.parent= pchan->parent;
			pchanw.child= pchan->child;
			
			/* this is freed so copy a copy, else undo crashes */
			if(pchanw.prop) {
				pchanw.prop= IDP_CopyProperty(pchanw.prop);

				/* use the values from the the existing props */
				if(pchan->prop) {
					IDP_SyncGroupValues(pchanw.prop, pchan->prop);
				}
			}

			/* constraints - proxy constraints are flushed... local ones are added after 
			 *	1. extract constraints not from proxy (CONSTRAINT_PROXY_LOCAL) from pchan's constraints
			 *	2. copy proxy-pchan's constraints on-to new
			 *	3. add extracted local constraints back on top 
			 *
			 *  note for copy_constraints: when copying constraints, disable 'do_extern' otherwise we get the libs direct linked in this blend.
			 */
			extract_proxylocal_constraints(&proxylocal_constraints, &pchan->constraints);
			copy_constraints(&pchanw.constraints, &pchanp->constraints, FALSE);
			BLI_movelisttolist(&pchanw.constraints, &proxylocal_constraints);
			
			/* constraints - set target ob pointer to own object */
			for (con= pchanw.constraints.first; con; con= con->next) {
				bConstraintTypeInfo *cti= constraint_get_typeinfo(con);
				ListBase targets = {NULL, NULL};
				bConstraintTarget *ct;
				
				if (cti && cti->get_constraint_targets) {
					cti->get_constraint_targets(con, &targets);
					
					for (ct= targets.first; ct; ct= ct->next) {
						if (ct->tar == from)
							ct->tar = ob;
					}
					
					if (cti->flush_constraint_targets)
						cti->flush_constraint_targets(con, &targets, 0);
				}
			}
			
			/* free stuff from current channel */
			free_pose_channel(pchan);
			
			/* the final copy */
			*pchan= pchanw;
		}
		else {
			/* always copy custom shape */
			pchan->custom= pchanp->custom;
			pchan->custom_tx= pchanp->custom_tx;

			/* ID-Property Syncing */
			{
				IDProperty *prop_orig= pchan->prop;
				if(pchanp->prop) {
					pchan->prop= IDP_CopyProperty(pchanp->prop);
					if(prop_orig) {
						/* copy existing values across when types match */
						IDP_SyncGroupValues(pchan->prop, prop_orig);
					}
				}
				else {
					pchan->prop= NULL;
				}
				if (prop_orig) {
					IDP_FreeProperty(prop_orig);
					MEM_freeN(prop_orig);
				}
			}
		}
	}
}

static int rebuild_pose_bone(bPose *pose, Bone *bone, bPoseChannel *parchan, int counter)
{
	bPoseChannel *pchan = verify_pose_channel (pose, bone->name);   // verify checks and/or adds

	pchan->bone= bone;
	pchan->parent= parchan;
	
	counter++;
	
	for(bone= bone->childbase.first; bone; bone= bone->next) {
		counter= rebuild_pose_bone(pose, bone, pchan, counter);
		/* for quick detecting of next bone in chain, only b-bone uses it now */
		if(bone->flag & BONE_CONNECTED)
			pchan->child= get_pose_channel(pose, bone->name);
	}
	
	return counter;
}

/* only after leave editmode, duplicating, validating older files, library syncing */
/* NOTE: pose->flag is set for it */
void armature_rebuild_pose(Object *ob, bArmature *arm)
{
	Bone *bone;
	bPose *pose;
	bPoseChannel *pchan, *next;
	int counter=0;
		
	/* only done here */
	if(ob->pose==NULL) {
		/* create new pose */
		ob->pose= MEM_callocN(sizeof(bPose), "new pose");
		
		/* set default settings for animviz */
		animviz_settings_init(&ob->pose->avs);
	}
	pose= ob->pose;
	
	/* clear */
	for(pchan= pose->chanbase.first; pchan; pchan= pchan->next) {
		pchan->bone= NULL;
		pchan->child= NULL;
	}
	
	/* first step, check if all channels are there */
	for(bone= arm->bonebase.first; bone; bone= bone->next) {
		counter= rebuild_pose_bone(pose, bone, NULL, counter);
	}

	/* and a check for garbage */
	for(pchan= pose->chanbase.first; pchan; pchan= next) {
		next= pchan->next;
		if(pchan->bone==NULL) {
			free_pose_channel(pchan);
			free_pose_channels_hash(pose);
			BLI_freelinkN(&pose->chanbase, pchan);
		}
	}
	// printf("rebuild pose %s, %d bones\n", ob->id.name, counter);
	
	/* synchronize protected layers with proxy */
	if(ob->proxy) {
		object_copy_proxy_drivers(ob, ob->proxy);
		pose_proxy_synchronize(ob, ob->proxy, arm->layer_protected);
	}
	
	update_pose_constraint_flags(ob->pose); // for IK detection for example
	
	/* the sorting */
	if(counter>1)
		DAG_pose_sort(ob);
	
	ob->pose->flag &= ~POSE_RECALC;
	ob->pose->flag |= POSE_WAS_REBUILT;

	make_pose_channels_hash(ob->pose);
}


/* ********************** SPLINE IK SOLVER ******************* */

/* Temporary evaluation tree data used for Spline IK */
typedef struct tSplineIK_Tree {
	struct tSplineIK_Tree *next, *prev;
	
	int 	type;					/* type of IK that this serves (CONSTRAINT_TYPE_KINEMATIC or ..._SPLINEIK) */
	
	short free_points;				/* free the point positions array */
	short chainlen;					/* number of bones in the chain */
	
	float *points;					/* parametric positions for the joints along the curve */
	bPoseChannel **chain;			/* chain of bones to affect using Spline IK (ordered from the tip) */
	
	bPoseChannel *root;				/* bone that is the root node of the chain */
	
	bConstraint *con;				/* constraint for this chain */
	bSplineIKConstraint *ikData;	/* constraint settings for this chain */
} tSplineIK_Tree;

/* ----------- */

/* Tag the bones in the chain formed by the given bone for IK */
static void splineik_init_tree_from_pchan(Scene *scene, Object *UNUSED(ob), bPoseChannel *pchan_tip)
{
	bPoseChannel *pchan, *pchanRoot=NULL;
	bPoseChannel *pchanChain[255];
	bConstraint *con = NULL;
	bSplineIKConstraint *ikData = NULL;
	float boneLengths[255], *jointPoints;
	float totLength = 0.0f;
	short free_joints = 0;
	int segcount = 0;
	
	/* find the SplineIK constraint */
	for (con= pchan_tip->constraints.first; con; con= con->next) {
		if (con->type == CONSTRAINT_TYPE_SPLINEIK) {
			ikData= con->data;
			
			/* target can only be curve */
			if ((ikData->tar == NULL) || (ikData->tar->type != OB_CURVE))  
				continue;
			/* skip if disabled */
			if ( (con->enforce == 0.0f) || (con->flag & (CONSTRAINT_DISABLE|CONSTRAINT_OFF)) )
				continue;
			
			/* otherwise, constraint is ok... */
			break;
		}
	}
	if (con == NULL)
		return;
		
	/* make sure that the constraint targets are ok 
	 *	- this is a workaround for a depsgraph bug...
	 */
	if (ikData->tar) {
		Curve *cu= ikData->tar->data;
		
		/* note: when creating constraints that follow path, the curve gets the CU_PATH set now,
		 *		currently for paths to work it needs to go through the bevlist/displist system (ton) 
		 */
		
		/* only happens on reload file, but violates depsgraph still... fix! */
		if ((cu->path==NULL) || (cu->path->data==NULL))
			makeDispListCurveTypes(scene, ikData->tar, 0);
	}
	
	/* find the root bone and the chain of bones from the root to the tip 
	 * NOTE: this assumes that the bones are connected, but that may not be true...
	 */
	for (pchan= pchan_tip; pchan && (segcount < ikData->chainlen); pchan= pchan->parent, segcount++) {
		/* store this segment in the chain */
		pchanChain[segcount]= pchan;
		
		/* if performing rebinding, calculate the length of the bone */
		boneLengths[segcount]= pchan->bone->length;
		totLength += boneLengths[segcount];
	}
	
	if (segcount == 0)
		return;
	else
		pchanRoot= pchanChain[segcount-1];
	
	/* perform binding step if required */
	if ((ikData->flag & CONSTRAINT_SPLINEIK_BOUND) == 0) {
		float segmentLen= (1.0f / (float)segcount);
		int i;
		
		/* setup new empty array for the points list */
		if (ikData->points) 
			MEM_freeN(ikData->points);
		ikData->numpoints= ikData->chainlen+1; 
		ikData->points= MEM_callocN(sizeof(float)*ikData->numpoints, "Spline IK Binding");
		
		/* bind 'tip' of chain (i.e. first joint = tip of bone with the Spline IK Constraint) */
		ikData->points[0] = 1.0f;
		
		/* perform binding of the joints to parametric positions along the curve based 
		 * proportion of the total length that each bone occupies
		 */
		for (i = 0; i < segcount; i++) {
			/* 'head' joints, travelling towards the root of the chain
			 * 	- 2 methods; the one chosen depends on whether we've got usable lengths
			 */
			if ((ikData->flag & CONSTRAINT_SPLINEIK_EVENSPLITS) || (totLength == 0.0f)) {
				/* 1) equi-spaced joints */
				ikData->points[i+1]= ikData->points[i] - segmentLen;
			}
			else {
				/*	2) to find this point on the curve, we take a step from the previous joint
				 *	  a distance given by the proportion that this bone takes
				 */
				ikData->points[i+1]= ikData->points[i] - (boneLengths[i] / totLength);
			}
		}
		
		/* spline has now been bound */
		ikData->flag |= CONSTRAINT_SPLINEIK_BOUND;
	}
	
	/* apply corrections for sensitivity to scaling on a copy of the bind points,
	 * since it's easier to determine the positions of all the joints beforehand this way
	 */
	if ((ikData->flag & CONSTRAINT_SPLINEIK_SCALE_LIMITED) && (totLength != 0.0f)) {
		Curve *cu= (Curve *)ikData->tar->data;
		float splineLen, maxScale;
		int i;
		
		/* make a copy of the points array, that we'll store in the tree 
		 *	- although we could just multiply the points on the fly, this approach means that
		 * 	  we can introduce per-segment stretchiness later if it is necessary
		 */
		jointPoints= MEM_dupallocN(ikData->points);
		free_joints= 1;
		
		/* get the current length of the curve */
		// NOTE: this is assumed to be correct even after the curve was resized
		splineLen= cu->path->totdist;
		
		/* calculate the scale factor to multiply all the path values by so that the 
		 * bone chain retains its current length, such that
		 *	maxScale * splineLen = totLength
		 */
		maxScale = totLength / splineLen;
		
		/* apply scaling correction to all of the temporary points */
		// TODO: this is really not adequate enough on really short chains
		for (i = 0; i < segcount; i++)
			jointPoints[i] *= maxScale;
	}
	else {
		/* just use the existing points array */
		jointPoints= ikData->points;
		free_joints= 0;
	}
	
	/* make a new Spline-IK chain, and store it in the IK chains */
	// TODO: we should check if there is already an IK chain on this, since that would take presidence...
	{
		/* make new tree */
		tSplineIK_Tree *tree= MEM_callocN(sizeof(tSplineIK_Tree), "SplineIK Tree");
		tree->type= CONSTRAINT_TYPE_SPLINEIK;
		
		tree->chainlen= segcount;
		
		/* copy over the array of links to bones in the chain (from tip to root) */
		tree->chain= MEM_callocN(sizeof(bPoseChannel*)*segcount, "SplineIK Chain");
		memcpy(tree->chain, pchanChain, sizeof(bPoseChannel*)*segcount);
		
		/* store reference to joint position array */
		tree->points= jointPoints;
		tree->free_points= free_joints;
		
		/* store references to different parts of the chain */
		tree->root= pchanRoot;
		tree->con= con;
		tree->ikData= ikData;
		
		/* AND! link the tree to the root */
		BLI_addtail(&pchanRoot->iktree, tree);
	}
	
	/* mark root channel having an IK tree */
	pchanRoot->flag |= POSE_IKSPLINE;
}

/* Tag which bones are members of Spline IK chains */
static void splineik_init_tree(Scene *scene, Object *ob, float UNUSED(ctime))
{
	bPoseChannel *pchan;
	
	/* find the tips of Spline IK chains, which are simply the bones which have been tagged as such */
	for (pchan= ob->pose->chanbase.first; pchan; pchan= pchan->next) {
		if (pchan->constflag & PCHAN_HAS_SPLINEIK)
			splineik_init_tree_from_pchan(scene, ob, pchan);
	}
}

/* ----------- */

/* Evaluate spline IK for a given bone */
static void splineik_evaluate_bone(tSplineIK_Tree *tree, Scene *scene, Object *ob, bPoseChannel *pchan, int index, float ctime)
{
	bSplineIKConstraint *ikData= tree->ikData;
	float poseHead[3], poseTail[3], poseMat[4][4]; 
	float splineVec[3], scaleFac, radius=1.0f;
	
	/* firstly, calculate the bone matrix the standard way, since this is needed for roll control */
	where_is_pose_bone(scene, ob, pchan, ctime, 1);
	
	VECCOPY(poseHead, pchan->pose_head);
	VECCOPY(poseTail, pchan->pose_tail);
	
	/* step 1: determine the positions for the endpoints of the bone */
	{
		float vec[4], dir[3], rad;
		float tailBlendFac= 1.0f;
		
		/* determine if the bone should still be affected by SplineIK */
		if (tree->points[index+1] >= 1.0f) {
			/* spline doesn't affect the bone anymore, so done... */
			pchan->flag |= POSE_DONE;
			return;
		}
		else if ((tree->points[index] >= 1.0f) && (tree->points[index+1] < 1.0f)) {
			/* blending factor depends on the amount of the bone still left on the chain */
			tailBlendFac= (1.0f - tree->points[index+1]) / (tree->points[index] - tree->points[index+1]);
		}
		
		/* tail endpoint */
		if ( where_on_path(ikData->tar, tree->points[index], vec, dir, NULL, &rad, NULL) ) {
			/* apply curve's object-mode transforms to the position 
			 * unless the option to allow curve to be positioned elsewhere is activated (i.e. no root)
			 */
			if ((ikData->flag & CONSTRAINT_SPLINEIK_NO_ROOT) == 0)
				mul_m4_v3(ikData->tar->obmat, vec);
			
			/* convert the position to pose-space, then store it */
			mul_m4_v3(ob->imat, vec);
			interp_v3_v3v3(poseTail, pchan->pose_tail, vec, tailBlendFac);
			
			/* set the new radius */
			radius= rad;
		}
		
		/* head endpoint */
		if ( where_on_path(ikData->tar, tree->points[index+1], vec, dir, NULL, &rad, NULL) ) {
			/* apply curve's object-mode transforms to the position 
			 * unless the option to allow curve to be positioned elsewhere is activated (i.e. no root)
			 */
			if ((ikData->flag & CONSTRAINT_SPLINEIK_NO_ROOT) == 0)
				mul_m4_v3(ikData->tar->obmat, vec);
			
			/* store the position, and convert it to pose space */
			mul_m4_v3(ob->imat, vec);
			VECCOPY(poseHead, vec);
			
			/* set the new radius (it should be the average value) */
			radius = (radius+rad) / 2;
		}
	}
	
	/* step 2: determine the implied transform from these endpoints 
	 *	- splineVec: the vector direction that the spline applies on the bone
	 *	- scaleFac: the factor that the bone length is scaled by to get the desired amount
	 */
	sub_v3_v3v3(splineVec, poseTail, poseHead);
	scaleFac= len_v3(splineVec) / pchan->bone->length;
	
	/* step 3: compute the shortest rotation needed to map from the bone rotation to the current axis 
	 * 	- this uses the same method as is used for the Damped Track Constraint (see the code there for details)
	 */
	{
		float dmat[3][3], rmat[3][3], tmat[3][3];
		float raxis[3], rangle;
		
		/* compute the raw rotation matrix from the bone's current matrix by extracting only the
		 * orientation-relevant axes, and normalising them
		 */
		VECCOPY(rmat[0], pchan->pose_mat[0]);
		VECCOPY(rmat[1], pchan->pose_mat[1]);
		VECCOPY(rmat[2], pchan->pose_mat[2]);
		normalize_m3(rmat);
		
		/* also, normalise the orientation imposed by the bone, now that we've extracted the scale factor */
		normalize_v3(splineVec);
		
		/* calculate smallest axis-angle rotation necessary for getting from the
		 * current orientation of the bone, to the spline-imposed direction
		 */
		cross_v3_v3v3(raxis, rmat[1], splineVec);
		
		rangle= dot_v3v3(rmat[1], splineVec);
		rangle= acos( MAX2(-1.0f, MIN2(1.0f, rangle)) );
		
		/* multiply the magnitude of the angle by the influence of the constraint to 
		 * control the influence of the SplineIK effect 
		 */
		rangle *= tree->con->enforce;
		
		/* construct rotation matrix from the axis-angle rotation found above 
		 *	- this call takes care to make sure that the axis provided is a unit vector first
		 */
		axis_angle_to_mat3(dmat, raxis, rangle);
		
		/* combine these rotations so that the y-axis of the bone is now aligned as the spline dictates,
		 * while still maintaining roll control from the existing bone animation
		 */
		mul_m3_m3m3(tmat, dmat, rmat); // m1, m3, m2
		normalize_m3(tmat); /* attempt to reduce shearing, though I doubt this'll really help too much now... */
		copy_m4_m3(poseMat, tmat);
	}
	
	/* step 4: set the scaling factors for the axes */
	{
		/* only multiply the y-axis by the scaling factor to get nice volume-preservation */
		mul_v3_fl(poseMat[1], scaleFac);
		
		/* set the scaling factors of the x and z axes from... */
		switch (ikData->xzScaleMode) {
			case CONSTRAINT_SPLINEIK_XZS_ORIGINAL:
			{
				/* original scales get used */
				float scale;
				
				/* x-axis scale */
				scale= len_v3(pchan->pose_mat[0]);
				mul_v3_fl(poseMat[0], scale);
				/* z-axis scale */
				scale= len_v3(pchan->pose_mat[2]);
				mul_v3_fl(poseMat[2], scale);
			}
				break;
			case CONSTRAINT_SPLINEIK_XZS_VOLUMETRIC:
			{
				/* 'volume preservation' */
				float scale;
				
				/* calculate volume preservation factor which is 
				 * basically the inverse of the y-scaling factor 
				 */
				if (fabsf(scaleFac) != 0.0f) {
					scale= 1.0f / fabsf(scaleFac);
					
					/* we need to clamp this within sensible values */
					// NOTE: these should be fine for now, but should get sanitised in future
					CLAMP(scale, 0.0001f, 100000.0f);
				}
				else
					scale= 1.0f;
				
				/* apply the scaling */
				mul_v3_fl(poseMat[0], scale);
				mul_v3_fl(poseMat[2], scale);
			}
				break;
		}
		
		/* finally, multiply the x and z scaling by the radius of the curve too, 
		 * to allow automatic scales to get tweaked still
		 */
		if ((ikData->flag & CONSTRAINT_SPLINEIK_NO_CURVERAD) == 0) {
			mul_v3_fl(poseMat[0], radius);
			mul_v3_fl(poseMat[2], radius);
		}
	}
	
	/* step 5: set the location of the bone in the matrix */
	if (ikData->flag & CONSTRAINT_SPLINEIK_NO_ROOT) {
		/* when the 'no-root' option is affected, the chain can retain
		 * the shape but be moved elsewhere
		 */
		VECCOPY(poseHead, pchan->pose_head);
	}
	else if (tree->con->enforce < 1.0f) {
		/* when the influence is too low
		 *	- blend the positions for the 'root' bone
		 *	- stick to the parent for any other
		 */
		if (pchan->parent) {
			VECCOPY(poseHead, pchan->pose_head);
		}
		else {
			// FIXME: this introduces popping artifacts when we reach 0.0
			interp_v3_v3v3(poseHead, pchan->pose_head, poseHead, tree->con->enforce);
		}
	}
	VECCOPY(poseMat[3], poseHead);
	
	/* finally, store the new transform */
	copy_m4_m4(pchan->pose_mat, poseMat);
	VECCOPY(pchan->pose_head, poseHead);
	
	/* recalculate tail, as it's now outdated after the head gets adjusted above! */
	where_is_pose_bone_tail(pchan);
	
	/* done! */
	pchan->flag |= POSE_DONE;
}

/* Evaluate the chain starting from the nominated bone */
static void splineik_execute_tree(Scene *scene, Object *ob, bPoseChannel *pchan_root, float ctime)
{
	tSplineIK_Tree *tree;
	
	/* for each pose-tree, execute it if it is spline, otherwise just free it */
	for (tree= pchan_root->iktree.first; tree; tree= pchan_root->iktree.first) {
		/* only evaluate if tagged for Spline IK */
		if (tree->type == CONSTRAINT_TYPE_SPLINEIK) {
			int i;
			
			/* walk over each bone in the chain, calculating the effects of spline IK
			 * 	- the chain is traversed in the opposite order to storage order (i.e. parent to children)
			 *	  so that dependencies are correct
			 */
			for (i= tree->chainlen-1; i >= 0; i--) {
				bPoseChannel *pchan= tree->chain[i];
				splineik_evaluate_bone(tree, scene, ob, pchan, i, ctime);
			}
			
			/* free the tree info specific to SplineIK trees now */
			if (tree->chain) MEM_freeN(tree->chain);
			if (tree->free_points) MEM_freeN(tree->points);
		}
		
		/* free this tree */
		BLI_freelinkN(&pchan_root->iktree, tree);
	}
}

/* ********************** THE POSE SOLVER ******************* */

/* loc/rot/size to given mat4 */
void pchan_to_mat4(bPoseChannel *pchan, float chan_mat[4][4])
{
	float smat[3][3];
	float rmat[3][3];
	float tmat[3][3];
	
	/* get scaling matrix */
	size_to_mat3(smat, pchan->size);
	
	/* rotations may either be quats, eulers (with various rotation orders), or axis-angle */
	if (pchan->rotmode > 0) {
		/* euler rotations (will cause gimble lock, but this can be alleviated a bit with rotation orders) */
		eulO_to_mat3(rmat, pchan->eul, pchan->rotmode);
	}
	else if (pchan->rotmode == ROT_MODE_AXISANGLE) {
		/* axis-angle - not really that great for 3D-changing orientations */
		axis_angle_to_mat3(rmat, pchan->rotAxis, pchan->rotAngle);
	}
	else {
		/* quats are normalised before use to eliminate scaling issues */
		float quat[4];
		
		/* NOTE: we now don't normalise the stored values anymore, since this was kindof evil in some cases
		 * but if this proves to be too problematic, switch back to the old system of operating directly on 
		 * the stored copy
		 */
		normalize_qt_qt(quat, pchan->quat);
		quat_to_mat3(rmat, quat);
	}
	
	/* calculate matrix of bone (as 3x3 matrix, but then copy the 4x4) */
	mul_m3_m3m3(tmat, rmat, smat);
	copy_m4_m3(chan_mat, tmat);
	
	/* prevent action channels breaking chains */
	/* need to check for bone here, CONSTRAINT_TYPE_ACTION uses this call */
	if ((pchan->bone==NULL) || !(pchan->bone->flag & BONE_CONNECTED)) {
		VECCOPY(chan_mat[3], pchan->loc);
	}
}

/* loc/rot/size to mat4 */
/* used in constraint.c too */
void pchan_calc_mat(bPoseChannel *pchan)
{
	/* this is just a wrapper around the copy of this function which calculates the matrix 
	 * and stores the result in any given channel
	 */
	pchan_to_mat4(pchan, pchan->chan_mat);
}

/* NLA strip modifiers */
static void do_strip_modifiers(Scene *scene, Object *armob, Bone *bone, bPoseChannel *pchan)
{
	bActionModifier *amod;
	bActionStrip *strip, *strip2;
	float scene_cfra= (float)scene->r.cfra;
	int do_modif;

	for (strip=armob->nlastrips.first; strip; strip=strip->next) {
		do_modif=0;
		
		if (scene_cfra>=strip->start && scene_cfra<=strip->end)
			do_modif=1;
		
		if ((scene_cfra > strip->end) && (strip->flag & ACTSTRIP_HOLDLASTFRAME)) {
			do_modif=1;
			
			/* if there are any other strips active, ignore modifiers for this strip - 
			 * 'hold' option should only hold action modifiers if there are 
			 * no other active strips */
			for (strip2=strip->next; strip2; strip2=strip2->next) {
				if (strip2 == strip) continue;
				
				if (scene_cfra>=strip2->start && scene_cfra<=strip2->end) {
					if (!(strip2->flag & ACTSTRIP_MUTE))
						do_modif=0;
				}
			}
			
			/* if there are any later, activated, strips with 'hold' set, they take precedence, 
			 * so ignore modifiers for this strip */
			for (strip2=strip->next; strip2; strip2=strip2->next) {
				if (scene_cfra < strip2->start) continue;
				if ((strip2->flag & ACTSTRIP_HOLDLASTFRAME) && !(strip2->flag & ACTSTRIP_MUTE)) {
					do_modif=0;
				}
			}
		}
		
		if (do_modif) {
			/* temporal solution to prevent 2 strips accumulating */
			if(scene_cfra==strip->end && strip->next && strip->next->start==scene_cfra)
				continue;
			
			for(amod= strip->modifiers.first; amod; amod= amod->next) {
				switch (amod->type) {
				case ACTSTRIP_MOD_DEFORM:
				{
					/* validate first */
					if(amod->ob && amod->ob->type==OB_CURVE && amod->channel[0]) {
						
						if( strcmp(pchan->name, amod->channel)==0 ) {
							float mat4[4][4], mat3[3][3];
							
							curve_deform_vector(scene, amod->ob, armob, bone->arm_mat[3], pchan->pose_mat[3], mat3, amod->no_rot_axis);
							copy_m4_m4(mat4, pchan->pose_mat);
							mul_m4_m3m4(pchan->pose_mat, mat3, mat4);
							
						}
					}
				}
					break;
				case ACTSTRIP_MOD_NOISE:	
				{
					if( strcmp(pchan->name, amod->channel)==0 ) {
						float nor[3], loc[3], ofs;
						float eul[3], size[3], eulo[3], sizeo[3];
						
						/* calculate turbulance */
						ofs = amod->turbul / 200.0f;
						
						/* make a copy of starting conditions */
						VECCOPY(loc, pchan->pose_mat[3]);
						mat4_to_eul( eul,pchan->pose_mat);
						mat4_to_size( size,pchan->pose_mat);
						VECCOPY(eulo, eul);
						VECCOPY(sizeo, size);
						
						/* apply noise to each set of channels */
						if (amod->channels & 4) {
							/* for scaling */
							nor[0] = BLI_gNoise(amod->noisesize, size[0]+ofs, size[1], size[2], 0, 0) - ofs;
							nor[1] = BLI_gNoise(amod->noisesize, size[0], size[1]+ofs, size[2], 0, 0) - ofs;	
							nor[2] = BLI_gNoise(amod->noisesize, size[0], size[1], size[2]+ofs, 0, 0) - ofs;
							add_v3_v3(size, nor);
							
							if (sizeo[0] != 0)
								mul_v3_fl(pchan->pose_mat[0], size[0] / sizeo[0]);
							if (sizeo[1] != 0)
								mul_v3_fl(pchan->pose_mat[1], size[1] / sizeo[1]);
							if (sizeo[2] != 0)
								mul_v3_fl(pchan->pose_mat[2], size[2] / sizeo[2]);
						}
						if (amod->channels & 2) {
							/* for rotation */
							nor[0] = BLI_gNoise(amod->noisesize, eul[0]+ofs, eul[1], eul[2], 0, 0) - ofs;
							nor[1] = BLI_gNoise(amod->noisesize, eul[0], eul[1]+ofs, eul[2], 0, 0) - ofs;	
							nor[2] = BLI_gNoise(amod->noisesize, eul[0], eul[1], eul[2]+ofs, 0, 0) - ofs;
							
							compatible_eul(nor, eulo);
							add_v3_v3(eul, nor);
							compatible_eul(eul, eulo);
							
							loc_eul_size_to_mat4(pchan->pose_mat, loc, eul, size);
						}
						if (amod->channels & 1) {
							/* for location */
							nor[0] = BLI_gNoise(amod->noisesize, loc[0]+ofs, loc[1], loc[2], 0, 0) - ofs;
							nor[1] = BLI_gNoise(amod->noisesize, loc[0], loc[1]+ofs, loc[2], 0, 0) - ofs;	
							nor[2] = BLI_gNoise(amod->noisesize, loc[0], loc[1], loc[2]+ofs, 0, 0) - ofs;
							
							add_v3_v3v3(pchan->pose_mat[3], loc, nor);
						}
					}
				}
					break;
				}
			}
		}
	}
}

/* calculate tail of posechannel */
void where_is_pose_bone_tail(bPoseChannel *pchan)
{
	float vec[3];
	
	VECCOPY(vec, pchan->pose_mat[1]);
	mul_v3_fl(vec, pchan->bone->length);
	add_v3_v3v3(pchan->pose_tail, pchan->pose_head, vec);
}

/* The main armature solver, does all constraints excluding IK */
/* pchan is validated, as having bone and parent pointer
 * 'do_extra': when zero skips loc/size/rot, constraints and strip modifiers.
 */
void where_is_pose_bone(Scene *scene, Object *ob, bPoseChannel *pchan, float ctime, int do_extra)
{
	Bone *bone, *parbone;
	bPoseChannel *parchan;
	float vec[3];
	
	/* set up variables for quicker access below */
	bone= pchan->bone;
	parbone= bone->parent;
	parchan= pchan->parent;
	
	/* this gives a chan_mat with actions (ipos) results */
	if(do_extra)	pchan_calc_mat(pchan);
	else			unit_m4(pchan->chan_mat);

	/* construct the posemat based on PoseChannels, that we do before applying constraints */
	/* pose_mat(b)= pose_mat(b-1) * yoffs(b-1) * d_root(b) * bone_mat(b) * chan_mat(b) */
	
	if(parchan) {
		float offs_bone[4][4];  // yoffs(b-1) + root(b) + bonemat(b)
		
		/* bone transform itself */
		copy_m4_m3(offs_bone, bone->bone_mat);
		
		/* The bone's root offset (is in the parent's coordinate system) */
		VECCOPY(offs_bone[3], bone->head);
		
		/* Get the length translation of parent (length along y axis) */
		offs_bone[3][1]+= parbone->length;
		
		/* Compose the matrix for this bone  */
		if((bone->flag & BONE_HINGE) && (bone->flag & BONE_NO_SCALE)) {	// uses restposition rotation, but actual position
			float tmat[4][4];
			/* the rotation of the parent restposition */
			copy_m4_m4(tmat, parbone->arm_mat);
			mul_serie_m4(pchan->pose_mat, tmat, offs_bone, pchan->chan_mat, NULL, NULL, NULL, NULL, NULL);
		}
		else if(bone->flag & BONE_HINGE) {	// same as above but apply parent scale
			float tmat[4][4];

			/* apply the parent matrix scale */
			float tsmat[4][4], tscale[3];

			/* the rotation of the parent restposition */
			copy_m4_m4(tmat, parbone->arm_mat);

			/* extract the scale of the parent matrix */
			mat4_to_size(tscale, parchan->pose_mat);
			size_to_mat4(tsmat, tscale);
			mul_m4_m4m4(tmat, tmat, tsmat);

			mul_serie_m4(pchan->pose_mat, tmat, offs_bone, pchan->chan_mat, NULL, NULL, NULL, NULL, NULL);
		}
		else if(bone->flag & BONE_NO_SCALE) {
			float orthmat[4][4];
			
			/* do transform, with an ortho-parent matrix */
			copy_m4_m4(orthmat, parchan->pose_mat);
			normalize_m4(orthmat);
			mul_serie_m4(pchan->pose_mat, orthmat, offs_bone, pchan->chan_mat, NULL, NULL, NULL, NULL, NULL);
		}
		else
			mul_serie_m4(pchan->pose_mat, parchan->pose_mat, offs_bone, pchan->chan_mat, NULL, NULL, NULL, NULL, NULL);
		
		/* in these cases we need to compute location separately */
		if(bone->flag & (BONE_HINGE|BONE_NO_SCALE|BONE_NO_LOCAL_LOCATION)) {
			float bone_loc[3], chan_loc[3];

			mul_v3_m4v3(bone_loc, parchan->pose_mat, offs_bone[3]);
			copy_v3_v3(chan_loc, pchan->chan_mat[3]);

			/* no local location is not transformed by bone matrix */
			if(!(bone->flag & BONE_NO_LOCAL_LOCATION))
				mul_mat3_m4_v3(offs_bone, chan_loc);

			/* for hinge we use armature instead of pose mat */
			if(bone->flag & BONE_HINGE) mul_mat3_m4_v3(parbone->arm_mat, chan_loc);
			else mul_mat3_m4_v3(parchan->pose_mat, chan_loc);

			add_v3_v3v3(pchan->pose_mat[3], bone_loc, chan_loc);
		}
	}
	else {
		mul_m4_m4m4(pchan->pose_mat, pchan->chan_mat, bone->arm_mat);

		/* optional location without arm_mat rotation */
		if(bone->flag & BONE_NO_LOCAL_LOCATION)
			add_v3_v3v3(pchan->pose_mat[3], bone->arm_mat[3], pchan->chan_mat[3]);
		
		/* only rootbones get the cyclic offset (unless user doesn't want that) */
		if ((bone->flag & BONE_NO_CYCLICOFFSET) == 0)
			add_v3_v3(pchan->pose_mat[3], ob->pose->cyclic_offset);
	}
	
	if(do_extra) {
		/* do NLA strip modifiers - i.e. curve follow */
		do_strip_modifiers(scene, ob, bone, pchan);
		
		/* Do constraints */
		if (pchan->constraints.first) {
			bConstraintOb *cob;

			/* make a copy of location of PoseChannel for later */
			VECCOPY(vec, pchan->pose_mat[3]);

			/* prepare PoseChannel for Constraint solving
			 * - makes a copy of matrix, and creates temporary struct to use
			 */
			cob= constraints_make_evalob(scene, ob, pchan, CONSTRAINT_OBTYPE_BONE);

			/* Solve PoseChannel's Constraints */
			solve_constraints(&pchan->constraints, cob, ctime);	// ctime doesnt alter objects

			/* cleanup after Constraint Solving
			 * - applies matrix back to pchan, and frees temporary struct used
			 */
			constraints_clear_evalob(cob);

			/* prevent constraints breaking a chain */
			if(pchan->bone->flag & BONE_CONNECTED) {
				VECCOPY(pchan->pose_mat[3], vec);
			}
		}
	}
	
	/* calculate head */
	VECCOPY(pchan->pose_head, pchan->pose_mat[3]);
	/* calculate tail */
	where_is_pose_bone_tail(pchan);
}

/* This only reads anim data from channels, and writes to channels */
/* This is the only function adding poses */
void where_is_pose (Scene *scene, Object *ob)
{
	bArmature *arm;
	Bone *bone;
	bPoseChannel *pchan;
	float imat[4][4];
	float ctime;
	
	if(ob->type!=OB_ARMATURE) return;
	arm = ob->data;
	
	if(ELEM(NULL, arm, scene)) return;
	if((ob->pose==NULL) || (ob->pose->flag & POSE_RECALC)) 
		armature_rebuild_pose(ob, arm);
	   
	ctime= bsystem_time(scene, ob, (float)scene->r.cfra, 0.0);	/* not accurate... */
	
	/* In editmode or restposition we read the data from the bones */
	if(arm->edbo || (arm->flag & ARM_RESTPOS)) {
		
		for(pchan= ob->pose->chanbase.first; pchan; pchan= pchan->next) {
			bone= pchan->bone;
			if(bone) {
				copy_m4_m4(pchan->pose_mat, bone->arm_mat);
				VECCOPY(pchan->pose_head, bone->arm_head);
				VECCOPY(pchan->pose_tail, bone->arm_tail);
			}
		}
	}
	else {
		invert_m4_m4(ob->imat, ob->obmat);	// imat is needed 
		
		/* 1. clear flags */
		for(pchan= ob->pose->chanbase.first; pchan; pchan= pchan->next) {
			pchan->flag &= ~(POSE_DONE|POSE_CHAIN|POSE_IKTREE|POSE_IKSPLINE);
		}
		
		/* 2a. construct the IK tree (standard IK) */
		BIK_initialize_tree(scene, ob, ctime);
		
		/* 2b. construct the Spline IK trees 
		 *  - this is not integrated as an IK plugin, since it should be able
		 *	  to function in conjunction with standard IK
		 */
		splineik_init_tree(scene, ob, ctime);
		
		/* 3. the main loop, channels are already hierarchical sorted from root to children */
		for(pchan= ob->pose->chanbase.first; pchan; pchan= pchan->next) {
			/* 4a. if we find an IK root, we handle it separated */
			if(pchan->flag & POSE_IKTREE) {
				BIK_execute_tree(scene, ob, pchan, ctime);
			}
			/* 4b. if we find a Spline IK root, we handle it separated too */
			else if(pchan->flag & POSE_IKSPLINE) {
				splineik_execute_tree(scene, ob, pchan, ctime);
			}
			/* 5. otherwise just call the normal solver */
			else if(!(pchan->flag & POSE_DONE)) {
				where_is_pose_bone(scene, ob, pchan, ctime, 1);
			}
		}
		/* 6. release the IK tree */
		BIK_release_tree(scene, ob, ctime);
	}
		
	/* calculating deform matrices */
	for(pchan= ob->pose->chanbase.first; pchan; pchan= pchan->next) {
		if(pchan->bone) {
			invert_m4_m4(imat, pchan->bone->arm_mat);
			mul_m4_m4m4(pchan->chan_mat, imat, pchan->pose_mat);
		}
	}
}


/* Returns total selected vgroups,
 * wpi.defbase_sel is assumed malloc'd, all values are set */
int get_selected_defgroups(Object *ob, char *dg_selection, int defbase_len)
{
	bDeformGroup *defgroup;
	unsigned int i;
	Object *armob= object_pose_armature_get(ob);
	int dg_flags_sel_tot= 0;

	if(armob) {
		bPose *pose= armob->pose;
		for (i= 0, defgroup= ob->defbase.first; i < defbase_len && defgroup; defgroup = defgroup->next, i++) {
			bPoseChannel *pchan= get_pose_channel(pose, defgroup->name);
			if(pchan && (pchan->bone->flag & BONE_SELECTED)) {
				dg_selection[i]= TRUE;
				dg_flags_sel_tot++;
			}
			else {
				dg_selection[i]= FALSE;
			}
		}
	}
	else {
		memset(dg_selection, FALSE, sizeof(char) * defbase_len);
	}

	return dg_flags_sel_tot;
}