Welcome to mirror list, hosted at ThFree Co, Russian Federation.

armature_update.c « intern « blenkernel « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 0f8956a1a9167a05bcf621ac2edfd201d6ce36e1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
/*
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 *
 * The Original Code is Copyright (C) 2015 Blender Foundation.
 * All rights reserved.
 *
 * Defines and code for core node types
 */

/** \file
 * \ingroup bke
 */

#include "MEM_guardedalloc.h"

#include "BLI_listbase.h"
#include "BLI_math.h"
#include "BLI_utildefines.h"

#include "DNA_armature_types.h"
#include "DNA_constraint_types.h"
#include "DNA_object_types.h"
#include "DNA_scene_types.h"

#include "BKE_action.h"
#include "BKE_anim_path.h"
#include "BKE_armature.h"
#include "BKE_curve.h"
#include "BKE_displist.h"
#include "BKE_fcurve.h"
#include "BKE_object.h"
#include "BKE_scene.h"

#include "BIK_api.h"

#include "DEG_depsgraph.h"

/* ********************** SPLINE IK SOLVER ******************* */

/* Temporary evaluation tree data used for Spline IK */
typedef struct tSplineIK_Tree {
  struct tSplineIK_Tree *next, *prev;

  int type; /* type of IK that this serves (CONSTRAINT_TYPE_KINEMATIC or ..._SPLINEIK) */

  short chainlen;  /* number of bones in the chain */
  float totlength; /* total length of bones in the chain */

  const float *points;  /* parametric positions for the joints along the curve */
  bPoseChannel **chain; /* chain of bones to affect using Spline IK (ordered from the tip) */

  bPoseChannel *root; /* bone that is the root node of the chain */

  bConstraint *con;             /* constraint for this chain */
  bSplineIKConstraint *ik_data; /* constraint settings for this chain */
} tSplineIK_Tree;

/* ----------- */

/* Tag the bones in the chain formed by the given bone for IK. */
static void splineik_init_tree_from_pchan(Scene *UNUSED(scene),
                                          Object *UNUSED(ob),
                                          bPoseChannel *pchan_tip)
{
  bPoseChannel *pchan, *pchan_root = NULL;
  bPoseChannel *pchan_chain[255];
  bConstraint *con = NULL;
  bSplineIKConstraint *ik_data = NULL;
  float bone_lengths[255];
  float totlength = 0.0f;
  int segcount = 0;

  /* Find the SplineIK constraint. */
  for (con = pchan_tip->constraints.first; con; con = con->next) {
    if (con->type == CONSTRAINT_TYPE_SPLINEIK) {
      ik_data = con->data;

      /* Target can only be a curve. */
      if ((ik_data->tar == NULL) || (ik_data->tar->type != OB_CURVE)) {
        continue;
      }
      /* Skip if disabled. */
      if ((con->enforce == 0.0f) || (con->flag & (CONSTRAINT_DISABLE | CONSTRAINT_OFF))) {
        continue;
      }

      /* Otherwise, constraint is ok... */
      break;
    }
  }
  if (con == NULL) {
    return;
  }

  /* Find the root bone and the chain of bones from the root to the tip.
   * NOTE: this assumes that the bones are connected, but that may not be true... */
  for (pchan = pchan_tip; pchan && (segcount < ik_data->chainlen);
       pchan = pchan->parent, segcount++) {
    /* Store this segment in the chain. */
    pchan_chain[segcount] = pchan;

    /* If performing rebinding, calculate the length of the bone. */
    bone_lengths[segcount] = pchan->bone->length;
    totlength += bone_lengths[segcount];
  }

  if (segcount == 0) {
    return;
  }

  pchan_root = pchan_chain[segcount - 1];

  /* Perform binding step if required. */
  if ((ik_data->flag & CONSTRAINT_SPLINEIK_BOUND) == 0) {
    float segmentLen = (1.0f / (float)segcount);

    /* Setup new empty array for the points list. */
    if (ik_data->points) {
      MEM_freeN(ik_data->points);
    }
    ik_data->numpoints = ik_data->chainlen + 1;
    ik_data->points = MEM_mallocN(sizeof(float) * ik_data->numpoints, "Spline IK Binding");

    /* Bind 'tip' of chain (i.e. first joint = tip of bone with the Spline IK Constraint). */
    ik_data->points[0] = 1.0f;

    /* Perform binding of the joints to parametric positions along the curve based
     * proportion of the total length that each bone occupies.
     */
    for (int i = 0; i < segcount; i++) {
      /* 'head' joints, traveling towards the root of the chain.
       * - 2 methods; the one chosen depends on whether we've got usable lengths.
       */
      if ((ik_data->flag & CONSTRAINT_SPLINEIK_EVENSPLITS) || (totlength == 0.0f)) {
        /* 1) Equi-spaced joints. */
        ik_data->points[i + 1] = ik_data->points[i] - segmentLen;
      }
      else {
        /* 2) To find this point on the curve, we take a step from the previous joint
         *    a distance given by the proportion that this bone takes.
         */
        ik_data->points[i + 1] = ik_data->points[i] - (bone_lengths[i] / totlength);
      }
    }

    /* Spline has now been bound. */
    ik_data->flag |= CONSTRAINT_SPLINEIK_BOUND;
  }

  /* Disallow negative values (happens with float precision). */
  CLAMP_MIN(ik_data->points[segcount], 0.0f);

  /* Make a new Spline-IK chain, and store it in the IK chains. */
  /* TODO: we should check if there is already an IK chain on this,
   * since that would take precedence... */
  {
    /* Make a new tree. */
    tSplineIK_Tree *tree = MEM_callocN(sizeof(tSplineIK_Tree), "SplineIK Tree");
    tree->type = CONSTRAINT_TYPE_SPLINEIK;

    tree->chainlen = segcount;
    tree->totlength = totlength;

    /* Copy over the array of links to bones in the chain (from tip to root). */
    tree->chain = MEM_mallocN(sizeof(bPoseChannel *) * segcount, "SplineIK Chain");
    memcpy(tree->chain, pchan_chain, sizeof(bPoseChannel *) * segcount);

    /* Store reference to joint position array. */
    tree->points = ik_data->points;

    /* Store references to different parts of the chain. */
    tree->root = pchan_root;
    tree->con = con;
    tree->ik_data = ik_data;

    /* AND! Link the tree to the root. */
    BLI_addtail(&pchan_root->siktree, tree);
  }

  /* Mark root channel having an IK tree. */
  pchan_root->flag |= POSE_IKSPLINE;
}

/* Tag which bones are members of Spline IK chains. */
static void splineik_init_tree(Scene *scene, Object *ob, float UNUSED(ctime))
{
  bPoseChannel *pchan;

  /* Find the tips of Spline IK chains,
   * which are simply the bones which have been tagged as such. */
  for (pchan = ob->pose->chanbase.first; pchan; pchan = pchan->next) {
    if (pchan->constflag & PCHAN_HAS_SPLINEIK) {
      splineik_init_tree_from_pchan(scene, ob, pchan);
    }
  }
}

/* ----------- */

typedef struct tSplineIk_EvalState {
  float curve_position;      /* Current position along the curve. */
  float curve_scale;         /* Global scale to apply to curve positions. */
  float locrot_offset[4][4]; /* Bone rotation and location offset inherited from parent. */
  float prev_tail_loc[3];    /* Tail location of the previous bone. */
  float prev_tail_radius;    /* Tail curve radius of the previous bone. */
  int prev_tail_seg_idx;     /* Curve segment the previous tail bone belongs to. */
} tSplineIk_EvalState;

/* Prepare data to evaluate spline IK. */
static bool splineik_evaluate_init(tSplineIK_Tree *tree, tSplineIk_EvalState *state)
{
  bSplineIKConstraint *ik_data = tree->ik_data;

  /* Make sure that the constraint targets are ok, to avoid crashes
   * in case of a depsgraph bug or dependency cycle.
   */
  if (ik_data->tar == NULL) {
    return false;
  }

  CurveCache *cache = ik_data->tar->runtime.curve_cache;

  if (ELEM(NULL, cache, cache->anim_path_accum_length)) {
    return false;
  }

  /* Initialize the evaluation state. */
  state->curve_position = 0.0f;
  state->curve_scale = 1.0f;
  unit_m4(state->locrot_offset);
  zero_v3(state->prev_tail_loc);
  state->prev_tail_radius = 1.0f;
  state->prev_tail_seg_idx = 0;

  /* Apply corrections for sensitivity to scaling. */
  if ((ik_data->yScaleMode != CONSTRAINT_SPLINEIK_YS_FIT_CURVE) && (tree->totlength != 0.0f)) {
    /* Get the current length of the curve. */
    /* NOTE: This is assumed to be correct even after the curve was resized. */
    const float spline_len = BKE_anim_path_get_length(cache);

    /* Calculate the scale factor to multiply all the path values by so that the
     * bone chain retains its current length, such that:
     *     maxScale * splineLen = totLength
     */
    state->curve_scale = tree->totlength / spline_len;
  }

  return true;
}

static void apply_curve_transform(
    bSplineIKConstraint *ik_data, Object *ob, float radius, float r_vec[3], float *r_radius)
{
  /* Apply the curve's object-mode transforms to the position
   * unless the option to allow curve to be positioned elsewhere is activated (i.e. no root).
   */
  if ((ik_data->flag & CONSTRAINT_SPLINEIK_NO_ROOT) == 0) {
    mul_m4_v3(ik_data->tar->obmat, r_vec);
  }

  /* Convert the position to pose-space. */
  mul_m4_v3(ob->imat, r_vec);

  /* Set the new radius (it should be the average value). */
  *r_radius = (radius + *r_radius) / 2;
}

/* This function positions the tail of the bone so that it preserves the length of it.
 * The length of the bone can be seen as a sphere radius.
 */
static int position_tail_on_spline(bSplineIKConstraint *ik_data,
                                   const float head_pos[3],
                                   const float sphere_radius,
                                   const int prev_seg_idx,
                                   float r_tail_pos[3],
                                   float *r_new_curve_pos,
                                   float *r_radius)
{
  /* This is using the tessellated curve data.
   * So we are working with piece-wise linear curve segments.
   * The same method is use in #BKE_where_on_path to get curve location data. */
  const CurveCache *cache = ik_data->tar->runtime.curve_cache;
  const BevList *bl = cache->bev.first;
  BevPoint *bp = bl->bevpoints;
  const float spline_len = BKE_anim_path_get_length(cache);
  const float *seg_accum_len = cache->anim_path_accum_length;

  int max_seg_idx = BKE_anim_path_get_array_size(cache) - 1;

  /* Convert our initial intersection point guess to a point index.
   * If the curve was a straight line, then pointEnd would be the correct location.
   * So make it our first initial guess.
   */
  const float guessed_len = *r_new_curve_pos * spline_len;

  BLI_assert(prev_seg_idx >= 0);

  int cur_seg_idx = prev_seg_idx;
  while (cur_seg_idx < max_seg_idx && guessed_len > seg_accum_len[cur_seg_idx]) {
    cur_seg_idx++;
  }

  int bp_idx = cur_seg_idx + 1;

  bp = bp + bp_idx;
  bool is_cyclic = bl->poly >= 0;
  BevPoint *prev_bp = bp - 1;

  /* Go to the next tessellated curve point until we cross to outside of the sphere. */
  while (len_v3v3(head_pos, bp->vec) < sphere_radius) {
    if (bp_idx > max_seg_idx) {
      /* We are outside the defined curve. We will now extrapolate the intersection point. */
      break;
    }
    prev_bp = bp;
    if (is_cyclic && bp_idx == max_seg_idx) {
      /* Wrap around to the start point.
       * Don't set the bp_idx to zero here as we use it to get the segment index later.
       */
      bp = bl->bevpoints;
    }
    else {
      bp++;
    }
    bp_idx++;
  }

  float isect_1[3], isect_2[3];

  /* Calculate the intersection point. */
  int ret = isect_line_sphere_v3(prev_bp->vec, bp->vec, head_pos, sphere_radius, isect_1, isect_2);

  if (ret > 0) {
    /* Because of how `isect_line_sphere_v3` works, we know that `isect_1` contains the
     * intersection point we want. And it will always intersect as we go from inside to outside
     * of the sphere.
     */
    copy_v3_v3(r_tail_pos, isect_1);
  }
  else {
    /* Couldn't find an intersection point. This means that the floating point
     * values are too small and thus the intersection check fails.
     * So assume that the distance is so small that tail_pos == head_pos.
     */
    copy_v3_v3(r_tail_pos, head_pos);
  }

  cur_seg_idx = bp_idx - 2;
  float prev_seg_len = 0;

  if (cur_seg_idx < 0) {
    cur_seg_idx = 0;
    prev_seg_len = 0;
  }
  else {
    prev_seg_len = seg_accum_len[cur_seg_idx];
  }

  /* Convert the point back into the 0-1 interpolation range. */
  const float isect_seg_len = len_v3v3(prev_bp->vec, r_tail_pos);
  const float frac = isect_seg_len / len_v3v3(prev_bp->vec, bp->vec);
  *r_new_curve_pos = (prev_seg_len + isect_seg_len) / spline_len;

  if (*r_new_curve_pos > 1.0f) {
    *r_radius = bp->radius;
  }
  else {
    *r_radius = (1.0f - frac) * prev_bp->radius + frac * bp->radius;
  }

  return cur_seg_idx;
}

/* Evaluate spline IK for a given bone. */
static void splineik_evaluate_bone(
    tSplineIK_Tree *tree, Object *ob, bPoseChannel *pchan, int index, tSplineIk_EvalState *state)
{
  bSplineIKConstraint *ik_data = tree->ik_data;

  if (pchan->bone->length < FLT_EPSILON) {
    /* Only move the bone position with zero length bones. */
    float bone_pos[4], dir[3], rad;
    BKE_where_on_path(ik_data->tar, state->curve_position, bone_pos, dir, NULL, &rad, NULL);

    apply_curve_transform(ik_data, ob, rad, bone_pos, &rad);

    copy_v3_v3(pchan->pose_mat[3], bone_pos);
    copy_v3_v3(pchan->pose_head, bone_pos);
    copy_v3_v3(pchan->pose_tail, bone_pos);
    pchan->flag |= POSE_DONE;
    return;
  }

  float orig_head[3], orig_tail[3], pose_head[3], pose_tail[3];
  float base_pose_mat[3][3], pose_mat[3][3];
  float spline_vec[3], scale_fac, radius = 1.0f;
  float tail_blend_fac = 0.0f;

  mul_v3_m4v3(pose_head, state->locrot_offset, pchan->pose_head);
  mul_v3_m4v3(pose_tail, state->locrot_offset, pchan->pose_tail);

  copy_v3_v3(orig_head, pose_head);

  /* First, adjust the point positions on the curve. */
  float curveLen = tree->points[index] - tree->points[index + 1];
  float bone_len = len_v3v3(pose_head, pose_tail);
  float point_start = state->curve_position;
  float pose_scale = bone_len / pchan->bone->length;
  float base_scale = 1.0f;

  if (ik_data->yScaleMode == CONSTRAINT_SPLINEIK_YS_ORIGINAL) {
    /* Carry over the bone Y scale to the curve range. */
    base_scale = pose_scale;
  }

  float point_end = point_start + curveLen * base_scale * state->curve_scale;

  state->curve_position = point_end;

  /* Step 1: determine the positions for the endpoints of the bone. */
  if (point_start < 1.0f) {
    float vec[4], dir[3], rad;
    radius = 0.0f;

    /* Calculate head position. */
    if (point_start == 0.0f) {
      /* Start of the path. We have no previous tail position to copy. */
      BKE_where_on_path(ik_data->tar, point_start, vec, dir, NULL, &rad, NULL);
    }
    else {
      copy_v3_v3(vec, state->prev_tail_loc);
      rad = state->prev_tail_radius;
    }

    radius = rad;
    copy_v3_v3(pose_head, vec);
    apply_curve_transform(ik_data, ob, rad, pose_head, &radius);

    /* Calculate tail position. */
    if (ik_data->yScaleMode != CONSTRAINT_SPLINEIK_YS_FIT_CURVE) {
      float sphere_radius;

      if (ik_data->yScaleMode == CONSTRAINT_SPLINEIK_YS_ORIGINAL) {
        sphere_radius = bone_len;
      }
      else {
        /* Don't take bone scale into account. */
        sphere_radius = pchan->bone->length;
      }

      /* Calculate the tail position with sphere curve intersection. */
      state->prev_tail_seg_idx = position_tail_on_spline(
          ik_data, vec, sphere_radius, state->prev_tail_seg_idx, pose_tail, &point_end, &rad);

      state->prev_tail_radius = rad;
      copy_v3_v3(state->prev_tail_loc, pose_tail);

      apply_curve_transform(ik_data, ob, rad, pose_tail, &radius);
      state->curve_position = point_end;
    }
    else {
      /* Scale to fit curve end position. */
      if (BKE_where_on_path(ik_data->tar, point_end, vec, dir, NULL, &rad, NULL)) {
        state->prev_tail_radius = rad;
        copy_v3_v3(state->prev_tail_loc, vec);
        copy_v3_v3(pose_tail, vec);
        apply_curve_transform(ik_data, ob, rad, pose_tail, &radius);
      }
    }

    /* Determine if the bone should still be affected by SplineIK.
     * This makes it so that the bone slowly becomes poseable again the further it rolls off the
     * curve. When the whole bone has rolled off the curve, the IK constraint will not influence it
     * anymore.
     */
    if (point_end >= 1.0f) {
      /* Blending factor depends on the amount of the bone still left on the chain. */
      tail_blend_fac = (1.0f - point_start) / (point_end - point_start);
    }
    else {
      tail_blend_fac = 1.0f;
    }
  }

  /* Step 2: determine the implied transform from these endpoints.
   * - splineVec: the vector direction that the spline applies on the bone.
   * - scaleFac: the factor that the bone length is scaled by to get the desired amount.
   */
  sub_v3_v3v3(spline_vec, pose_tail, pose_head);
  scale_fac = len_v3(spline_vec) / pchan->bone->length;

  /* Step 3: compute the shortest rotation needed
   * to map from the bone rotation to the current axis.
   * - this uses the same method as is used for the Damped Track Constraint
   *   (see the code there for details).
   */
  {
    float dmat[3][3], rmat[3][3];
    float raxis[3], rangle;

    /* Compute the raw rotation matrix from the bone's current matrix by extracting only the
     * orientation-relevant axes, and normalizing them.
     */
    mul_m3_m4m4(base_pose_mat, state->locrot_offset, pchan->pose_mat);
    normalize_m3_m3(rmat, base_pose_mat);

    /* Also, normalize the orientation imposed by the bone,
     * now that we've extracted the scale factor. */
    normalize_v3(spline_vec);

    /* Calculate smallest axis-angle rotation necessary for getting from the
     * current orientation of the bone, to the spline-imposed direction.
     */
    cross_v3_v3v3(raxis, rmat[1], spline_vec);

    /* Check if the old and new bone direction is parallel to each other.
     * If they are, then 'raxis' should be near zero and we will have to get the rotation axis in
     * some other way.
     */
    float norm = normalize_v3(raxis);

    if (norm < FLT_EPSILON) {
      /* Can't use cross product! */
      int order[3] = {0, 1, 2};
      float tmp_axis[3];
      zero_v3(tmp_axis);

      axis_sort_v3(spline_vec, order);

      /* Use the second largest axis as the basis for the rotation axis. */
      tmp_axis[order[1]] = 1.0f;
      cross_v3_v3v3(raxis, tmp_axis, spline_vec);
    }

    rangle = dot_v3v3(rmat[1], spline_vec);
    CLAMP(rangle, -1.0f, 1.0f);
    rangle = acosf(rangle);

    /* Multiply the magnitude of the angle by the influence of the constraint to
     * control the influence of the SplineIK effect.
     */
    rangle *= tree->con->enforce * tail_blend_fac;

    /* Construct rotation matrix from the axis-angle rotation found above.
     * - This call takes care to make sure that the axis provided is a unit vector first.
     */
    axis_angle_to_mat3(dmat, raxis, rangle);

    /* Combine these rotations so that the y-axis of the bone is now aligned as the
     * spline dictates, while still maintaining roll control from the existing bone animation. */
    mul_m3_m3m3(pose_mat, dmat, rmat);

    /* Attempt to reduce shearing, though I doubt this'll really help too much now... */
    normalize_m3(pose_mat);

    mul_m3_m3m3(base_pose_mat, dmat, base_pose_mat);

    /* Apply rotation to the accumulated parent transform. */
    mul_m4_m3m4(state->locrot_offset, dmat, state->locrot_offset);
  }

  /* Step 4: Set the scaling factors for the axes. */

  /* Always multiply the y-axis by the scaling factor to get the correct length. */
  mul_v3_fl(pose_mat[1], scale_fac);

  /* After that, apply x/z scaling modes. */
  if (ik_data->xzScaleMode != CONSTRAINT_SPLINEIK_XZS_NONE) {
    /* First, apply the original scale if enabled. */
    if (ik_data->xzScaleMode == CONSTRAINT_SPLINEIK_XZS_ORIGINAL ||
        (ik_data->flag & CONSTRAINT_SPLINEIK_USE_ORIGINAL_SCALE) != 0) {
      float scale;

      /* X-axis scale. */
      scale = len_v3(pchan->pose_mat[0]);
      mul_v3_fl(pose_mat[0], scale);
      /* Z-axis scale. */
      scale = len_v3(pchan->pose_mat[2]);
      mul_v3_fl(pose_mat[2], scale);

      /* Adjust the scale factor used for volume preservation
       * to consider the pre-IK scaling as the initial volume. */
      scale_fac /= pose_scale;
    }

    /* Apply volume preservation. */
    switch (ik_data->xzScaleMode) {
      case CONSTRAINT_SPLINEIK_XZS_INVERSE: {
        /* Old 'volume preservation' method using the inverse scale. */
        float scale;

        /* Calculate volume preservation factor which is
         * basically the inverse of the y-scaling factor.
         */
        if (fabsf(scale_fac) != 0.0f) {
          scale = 1.0f / fabsf(scale_fac);

          /* We need to clamp this within sensible values. */
          /* NOTE: these should be fine for now, but should get sanitized in future. */
          CLAMP(scale, 0.0001f, 100000.0f);
        }
        else {
          scale = 1.0f;
        }

        /* Apply the scaling. */
        mul_v3_fl(pose_mat[0], scale);
        mul_v3_fl(pose_mat[2], scale);
        break;
      }
      case CONSTRAINT_SPLINEIK_XZS_VOLUMETRIC: {
        /* Improved volume preservation based on the Stretch To constraint. */
        float final_scale;

        /* As the basis for volume preservation, we use the inverse scale factor... */
        if (fabsf(scale_fac) != 0.0f) {
          /* NOTE: The method here is taken wholesale from the Stretch To constraint. */
          float bulge = powf(1.0f / fabsf(scale_fac), ik_data->bulge);

          if (bulge > 1.0f) {
            if (ik_data->flag & CONSTRAINT_SPLINEIK_USE_BULGE_MAX) {
              float bulge_max = max_ff(ik_data->bulge_max, 1.0f);
              float hard = min_ff(bulge, bulge_max);

              float range = bulge_max - 1.0f;
              float scale = (range > 0.0f) ? 1.0f / range : 0.0f;
              float soft = 1.0f + range * atanf((bulge - 1.0f) * scale) / (float)M_PI_2;

              bulge = interpf(soft, hard, ik_data->bulge_smooth);
            }
          }
          if (bulge < 1.0f) {
            if (ik_data->flag & CONSTRAINT_SPLINEIK_USE_BULGE_MIN) {
              float bulge_min = CLAMPIS(ik_data->bulge_min, 0.0f, 1.0f);
              float hard = max_ff(bulge, bulge_min);

              float range = 1.0f - bulge_min;
              float scale = (range > 0.0f) ? 1.0f / range : 0.0f;
              float soft = 1.0f - range * atanf((1.0f - bulge) * scale) / (float)M_PI_2;

              bulge = interpf(soft, hard, ik_data->bulge_smooth);
            }
          }

          /* Compute scale factor for xz axes from this value. */
          final_scale = sqrtf(bulge);
        }
        else {
          /* No scaling, so scale factor is simple. */
          final_scale = 1.0f;
        }

        /* Apply the scaling (assuming normalized scale). */
        mul_v3_fl(pose_mat[0], final_scale);
        mul_v3_fl(pose_mat[2], final_scale);
        break;
      }
    }
  }

  /* Finally, multiply the x and z scaling by the radius of the curve too,
   * to allow automatic scales to get tweaked still.
   */
  if ((ik_data->flag & CONSTRAINT_SPLINEIK_NO_CURVERAD) == 0) {
    mul_v3_fl(pose_mat[0], radius);
    mul_v3_fl(pose_mat[2], radius);
  }

  /* Blend the scaling of the matrix according to the influence. */
  sub_m3_m3m3(pose_mat, pose_mat, base_pose_mat);
  madd_m3_m3m3fl(pose_mat, base_pose_mat, pose_mat, tree->con->enforce * tail_blend_fac);

  /* Step 5: Set the location of the bone in the matrix. */
  if (ik_data->flag & CONSTRAINT_SPLINEIK_NO_ROOT) {
    /* When the 'no-root' option is affected, the chain can retain
     * the shape but be moved elsewhere.
     */
    copy_v3_v3(pose_head, orig_head);
  }
  else if (tree->con->enforce < 1.0f) {
    /* When the influence is too low:
     * - Blend the positions for the 'root' bone.
     * - Stick to the parent for any other.
     */
    if (index < tree->chainlen - 1) {
      copy_v3_v3(pose_head, orig_head);
    }
    else {
      interp_v3_v3v3(pose_head, orig_head, pose_head, tree->con->enforce);
    }
  }

  /* Finally, store the new transform. */
  copy_m4_m3(pchan->pose_mat, pose_mat);
  copy_v3_v3(pchan->pose_mat[3], pose_head);
  copy_v3_v3(pchan->pose_head, pose_head);

  mul_v3_mat3_m4v3(orig_tail, state->locrot_offset, pchan->pose_tail);

  /* Recalculate tail, as it's now outdated after the head gets adjusted above! */
  BKE_pose_where_is_bone_tail(pchan);

  /* Update the offset in the accumulated parent transform. */
  sub_v3_v3v3(state->locrot_offset[3], pchan->pose_tail, orig_tail);

  /* Done! */
  pchan->flag |= POSE_DONE;
}

/* Evaluate the chain starting from the nominated bone */
static void splineik_execute_tree(
    struct Depsgraph *depsgraph, Scene *scene, Object *ob, bPoseChannel *pchan_root, float ctime)
{
  tSplineIK_Tree *tree;

  /* for each pose-tree, execute it if it is spline, otherwise just free it */
  while ((tree = pchan_root->siktree.first) != NULL) {
    /* Firstly, calculate the bone matrix the standard way,
     * since this is needed for roll control. */
    for (int i = tree->chainlen - 1; i >= 0; i--) {
      BKE_pose_where_is_bone(depsgraph, scene, ob, tree->chain[i], ctime, 1);
    }

    /* After that, evaluate the actual Spline IK, unless there are missing dependencies. */
    tSplineIk_EvalState state;

    if (splineik_evaluate_init(tree, &state)) {
      /* Walk over each bone in the chain, calculating the effects of spline IK
       * - the chain is traversed in the opposite order to storage order
       *   (i.e. parent to children) so that dependencies are correct
       */
      for (int i = tree->chainlen - 1; i >= 0; i--) {
        bPoseChannel *pchan = tree->chain[i];
        splineik_evaluate_bone(tree, ob, pchan, i, &state);
      }
    }

    /* free the tree info specific to SplineIK trees now */
    if (tree->chain) {
      MEM_freeN(tree->chain);
    }

    /* free this tree */
    BLI_freelinkN(&pchan_root->siktree, tree);
  }
}

void BKE_pose_splineik_init_tree(Scene *scene, Object *ob, float ctime)
{
  splineik_init_tree(scene, ob, ctime);
}

void BKE_splineik_execute_tree(
    struct Depsgraph *depsgraph, Scene *scene, Object *ob, bPoseChannel *pchan_root, float ctime)
{
  splineik_execute_tree(depsgraph, scene, ob, pchan_root, ctime);
}

/* *************** Depsgraph evaluation callbacks ************ */

void BKE_pose_pchan_index_rebuild(bPose *pose)
{
  MEM_SAFE_FREE(pose->chan_array);
  const int num_channels = BLI_listbase_count(&pose->chanbase);
  pose->chan_array = MEM_malloc_arrayN(num_channels, sizeof(bPoseChannel *), "pose->chan_array");
  int pchan_index = 0;
  for (bPoseChannel *pchan = pose->chanbase.first; pchan != NULL; pchan = pchan->next) {
    pose->chan_array[pchan_index++] = pchan;
  }
}

BLI_INLINE bPoseChannel *pose_pchan_get_indexed(Object *ob, int pchan_index)
{
  bPose *pose = ob->pose;
  BLI_assert(pose != NULL);
  BLI_assert(pose->chan_array != NULL);
  BLI_assert(pchan_index >= 0);
  BLI_assert(pchan_index < MEM_allocN_len(pose->chan_array) / sizeof(bPoseChannel *));
  return pose->chan_array[pchan_index];
}

void BKE_pose_eval_init(struct Depsgraph *depsgraph, Scene *UNUSED(scene), Object *object)
{
  bPose *pose = object->pose;
  BLI_assert(pose != NULL);

  DEG_debug_print_eval(depsgraph, __func__, object->id.name, object);

  BLI_assert(object->type == OB_ARMATURE);

  /* We demand having proper pose. */
  BLI_assert(object->pose != NULL);
  BLI_assert((object->pose->flag & POSE_RECALC) == 0);

  /* imat is needed for solvers. */
  invert_m4_m4(object->imat, object->obmat);

  /* clear flags */
  for (bPoseChannel *pchan = pose->chanbase.first; pchan != NULL; pchan = pchan->next) {
    pchan->flag &= ~(POSE_DONE | POSE_CHAIN | POSE_IKTREE | POSE_IKSPLINE);

    /* Free B-Bone shape data cache if it's not a B-Bone. */
    if (pchan->bone == NULL || pchan->bone->segments <= 1) {
      BKE_pose_channel_free_bbone_cache(&pchan->runtime);
    }
  }

  BLI_assert(pose->chan_array != NULL || BLI_listbase_is_empty(&pose->chanbase));

  if (object->proxy != NULL) {
    object->proxy->proxy_from = object;
  }
}

void BKE_pose_eval_init_ik(struct Depsgraph *depsgraph, Scene *scene, Object *object)
{
  DEG_debug_print_eval(depsgraph, __func__, object->id.name, object);
  BLI_assert(object->type == OB_ARMATURE);
  const float ctime = BKE_scene_frame_get(scene); /* not accurate... */
  bArmature *armature = (bArmature *)object->data;
  if (armature->flag & ARM_RESTPOS) {
    return;
  }
  /* construct the IK tree (standard IK) */
  BIK_init_tree(depsgraph, scene, object, ctime);
  /* construct the Spline IK trees
   * - this is not integrated as an IK plugin, since it should be able
   *   to function in conjunction with standard IK. */
  BKE_pose_splineik_init_tree(scene, object, ctime);
}

void BKE_pose_eval_bone(struct Depsgraph *depsgraph, Scene *scene, Object *object, int pchan_index)
{
  const bArmature *armature = (bArmature *)object->data;
  if (armature->edbo != NULL) {
    return;
  }
  bPoseChannel *pchan = pose_pchan_get_indexed(object, pchan_index);
  DEG_debug_print_eval_subdata(
      depsgraph, __func__, object->id.name, object, "pchan", pchan->name, pchan);
  BLI_assert(object->type == OB_ARMATURE);
  if (armature->flag & ARM_RESTPOS) {
    Bone *bone = pchan->bone;
    if (bone) {
      copy_m4_m4(pchan->pose_mat, bone->arm_mat);
      copy_v3_v3(pchan->pose_head, bone->arm_head);
      copy_v3_v3(pchan->pose_tail, bone->arm_tail);
    }
  }
  else {
    /* TODO(sergey): Currently if there are constraints full transform is
     * being evaluated in BKE_pose_constraints_evaluate. */
    if (pchan->constraints.first == NULL) {
      if (pchan->flag & POSE_IKTREE || pchan->flag & POSE_IKSPLINE) {
        /* pass */
      }
      else {
        if ((pchan->flag & POSE_DONE) == 0) {
          /* TODO(sergey): Use time source node for time. */
          float ctime = BKE_scene_frame_get(scene); /* not accurate... */
          BKE_pose_where_is_bone(depsgraph, scene, object, pchan, ctime, 1);
        }
      }
    }
  }
}

void BKE_pose_constraints_evaluate(struct Depsgraph *depsgraph,
                                   Scene *scene,
                                   Object *object,
                                   int pchan_index)
{
  const bArmature *armature = (bArmature *)object->data;
  if (armature->edbo != NULL) {
    return;
  }
  bPoseChannel *pchan = pose_pchan_get_indexed(object, pchan_index);
  DEG_debug_print_eval_subdata(
      depsgraph, __func__, object->id.name, object, "pchan", pchan->name, pchan);
  if (armature->flag & ARM_RESTPOS) {
    return;
  }
  if (pchan->flag & POSE_IKTREE || pchan->flag & POSE_IKSPLINE) {
    /* IK are being solved separately/ */
  }
  else {
    if ((pchan->flag & POSE_DONE) == 0) {
      float ctime = BKE_scene_frame_get(scene); /* not accurate... */
      BKE_pose_where_is_bone(depsgraph, scene, object, pchan, ctime, 1);
    }
  }
}

static void pose_channel_flush_to_orig_if_needed(struct Depsgraph *depsgraph,
                                                 struct Object *object,
                                                 bPoseChannel *pchan)
{
  if (!DEG_is_active(depsgraph)) {
    return;
  }
  const bArmature *armature = (bArmature *)object->data;
  if (armature->edbo != NULL) {
    return;
  }
  bPoseChannel *pchan_orig = pchan->orig_pchan;
  /* TODO(sergey): Using BKE_pose_copy_pchan_result() introduces T70901, but why? */
  copy_m4_m4(pchan_orig->pose_mat, pchan->pose_mat);
  copy_m4_m4(pchan_orig->chan_mat, pchan->chan_mat);
  copy_v3_v3(pchan_orig->pose_head, pchan->pose_mat[3]);
  copy_m4_m4(pchan_orig->constinv, pchan->constinv);
  copy_v3_v3(pchan_orig->pose_tail, pchan->pose_tail);
}

void BKE_pose_bone_done(struct Depsgraph *depsgraph, struct Object *object, int pchan_index)
{
  const bArmature *armature = (bArmature *)object->data;
  if (armature->edbo != NULL) {
    return;
  }
  bPoseChannel *pchan = pose_pchan_get_indexed(object, pchan_index);
  float imat[4][4];
  DEG_debug_print_eval_subdata(
      depsgraph, __func__, object->id.name, object, "pchan", pchan->name, pchan);
  if (pchan->bone) {
    invert_m4_m4(imat, pchan->bone->arm_mat);
    mul_m4_m4m4(pchan->chan_mat, pchan->pose_mat, imat);
    if (!(pchan->bone->flag & BONE_NO_DEFORM)) {
      mat4_to_dquat(&pchan->runtime.deform_dual_quat, pchan->bone->arm_mat, pchan->chan_mat);
    }
  }
  pose_channel_flush_to_orig_if_needed(depsgraph, object, pchan);
  if (DEG_is_active(depsgraph)) {
    bPoseChannel *pchan_orig = pchan->orig_pchan;
    if (pchan->bone == NULL || pchan->bone->segments <= 1) {
      BKE_pose_channel_free_bbone_cache(&pchan_orig->runtime);
    }
  }
}

void BKE_pose_eval_bbone_segments(struct Depsgraph *depsgraph,
                                  struct Object *object,
                                  int pchan_index)
{
  const bArmature *armature = (bArmature *)object->data;
  if (armature->edbo != NULL) {
    return;
  }
  bPoseChannel *pchan = pose_pchan_get_indexed(object, pchan_index);
  DEG_debug_print_eval_subdata(
      depsgraph, __func__, object->id.name, object, "pchan", pchan->name, pchan);
  if (pchan->bone != NULL && pchan->bone->segments > 1) {
    BKE_pchan_bbone_segments_cache_compute(pchan);
    if (DEG_is_active(depsgraph)) {
      BKE_pchan_bbone_segments_cache_copy(pchan->orig_pchan, pchan);
    }
  }
}

void BKE_pose_iktree_evaluate(struct Depsgraph *depsgraph,
                              Scene *scene,
                              Object *object,
                              int rootchan_index)
{
  const bArmature *armature = (bArmature *)object->data;
  if (armature->edbo != NULL) {
    return;
  }
  bPoseChannel *rootchan = pose_pchan_get_indexed(object, rootchan_index);
  DEG_debug_print_eval_subdata(
      depsgraph, __func__, object->id.name, object, "rootchan", rootchan->name, rootchan);
  BLI_assert(object->type == OB_ARMATURE);
  const float ctime = BKE_scene_frame_get(scene); /* not accurate... */
  if (armature->flag & ARM_RESTPOS) {
    return;
  }
  BIK_execute_tree(depsgraph, scene, object, rootchan, ctime);
}

void BKE_pose_splineik_evaluate(struct Depsgraph *depsgraph,
                                Scene *scene,
                                Object *object,
                                int rootchan_index)

{
  const bArmature *armature = (bArmature *)object->data;
  if (armature->edbo != NULL) {
    return;
  }
  bPoseChannel *rootchan = pose_pchan_get_indexed(object, rootchan_index);
  DEG_debug_print_eval_subdata(
      depsgraph, __func__, object->id.name, object, "rootchan", rootchan->name, rootchan);
  BLI_assert(object->type == OB_ARMATURE);
  const float ctime = BKE_scene_frame_get(scene); /* not accurate... */
  if (armature->flag & ARM_RESTPOS) {
    return;
  }
  BKE_splineik_execute_tree(depsgraph, scene, object, rootchan, ctime);
}

static void pose_eval_cleanup_common(Object *object)
{
  bPose *pose = object->pose;
  BLI_assert(pose != NULL);
  BLI_assert(pose->chan_array != NULL || BLI_listbase_is_empty(&pose->chanbase));
  UNUSED_VARS_NDEBUG(pose);
}

void BKE_pose_eval_done(struct Depsgraph *depsgraph, Object *object)
{
  bPose *pose = object->pose;
  BLI_assert(pose != NULL);
  UNUSED_VARS_NDEBUG(pose);
  DEG_debug_print_eval(depsgraph, __func__, object->id.name, object);
  BLI_assert(object->type == OB_ARMATURE);
}

void BKE_pose_eval_cleanup(struct Depsgraph *depsgraph, Scene *scene, Object *object)
{
  bPose *pose = object->pose;
  BLI_assert(pose != NULL);
  UNUSED_VARS_NDEBUG(pose);
  const float ctime = BKE_scene_frame_get(scene); /* not accurate... */
  DEG_debug_print_eval(depsgraph, __func__, object->id.name, object);
  BLI_assert(object->type == OB_ARMATURE);
  /* Release the IK tree. */
  BIK_release_tree(scene, object, ctime);
  pose_eval_cleanup_common(object);
}

void BKE_pose_eval_proxy_init(struct Depsgraph *depsgraph, Object *object)
{
  BLI_assert(ID_IS_LINKED(object) && object->proxy_from != NULL);
  DEG_debug_print_eval(depsgraph, __func__, object->id.name, object);

  BLI_assert(object->pose->chan_array != NULL || BLI_listbase_is_empty(&object->pose->chanbase));
}

void BKE_pose_eval_proxy_done(struct Depsgraph *depsgraph, Object *object)
{
  BLI_assert(ID_IS_LINKED(object) && object->proxy_from != NULL);
  DEG_debug_print_eval(depsgraph, __func__, object->id.name, object);
}

void BKE_pose_eval_proxy_cleanup(struct Depsgraph *depsgraph, Object *object)
{
  BLI_assert(ID_IS_LINKED(object) && object->proxy_from != NULL);
  DEG_debug_print_eval(depsgraph, __func__, object->id.name, object);
  pose_eval_cleanup_common(object);
}

void BKE_pose_eval_proxy_copy_bone(struct Depsgraph *depsgraph, Object *object, int pchan_index)
{
  const bArmature *armature = (bArmature *)object->data;
  if (armature->edbo != NULL) {
    return;
  }
  BLI_assert(ID_IS_LINKED(object) && object->proxy_from != NULL);
  bPoseChannel *pchan = pose_pchan_get_indexed(object, pchan_index);
  BLI_assert(pchan != NULL);
  DEG_debug_print_eval_subdata(
      depsgraph, __func__, object->id.name, object, "pchan", pchan->name, pchan);
  /* TODO(sergey): Use indexed lookup, once it's guaranteed to be kept
   * around for the time while proxies are evaluating.
   */
#if 0
  bPoseChannel *pchan_from = pose_pchan_get_indexed(object->proxy_from, pchan_index);
#else
  bPoseChannel *pchan_from = BKE_pose_channel_find_name(object->proxy_from->pose, pchan->name);
#endif
  if (pchan_from == NULL) {
    printf(
        "WARNING: Could not find bone %s in linked ID anymore... "
        "You should delete and re-generate your proxy.\n",
        pchan->name);
    return;
  }
  BKE_pose_copy_pchan_result(pchan, pchan_from);
  copy_dq_dq(&pchan->runtime.deform_dual_quat, &pchan_from->runtime.deform_dual_quat);
  BKE_pchan_bbone_segments_cache_copy(pchan, pchan_from);

  pose_channel_flush_to_orig_if_needed(depsgraph, object, pchan);
}