Welcome to mirror list, hosted at ThFree Co, Russian Federation.

camera.c « intern « blenkernel « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 7e043df2808f747bd85f09dac5b624b6ceceeff7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
/*
 * ***** BEGIN GPL LICENSE BLOCK *****
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 *
 * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
 * All rights reserved.
 *
 * The Original Code is: all of this file.
 *
 * Contributor(s): none yet.
 *
 * ***** END GPL LICENSE BLOCK *****
 */

/** \file blender/blenkernel/intern/camera.c
 *  \ingroup bke
 */

#include <stdlib.h>
#include <stddef.h>

#include "DNA_camera_types.h"
#include "DNA_lamp_types.h"
#include "DNA_object_types.h"
#include "DNA_scene_types.h"
#include "DNA_view3d_types.h"
#include "DNA_ID.h"

#include "BLI_math.h"
#include "BLI_rect.h"
#include "BLI_string.h"
#include "BLI_utildefines.h"

#include "BKE_animsys.h"
#include "BKE_camera.h"
#include "BKE_object.h"
#include "BKE_global.h"
#include "BKE_library.h"
#include "BKE_main.h"
#include "BKE_scene.h"
#include "BKE_screen.h"

#include "GPU_compositing.h"

/****************************** Camera Datablock *****************************/

void *BKE_camera_add(Main *bmain, const char *name)
{
	Camera *cam;
	
	cam =  BKE_libblock_alloc(bmain, ID_CA, name);

	cam->lens = 35.0f;
	cam->sensor_x = DEFAULT_SENSOR_WIDTH;
	cam->sensor_y = DEFAULT_SENSOR_HEIGHT;
	cam->clipsta = 0.1f;
	cam->clipend = 100.0f;
	cam->drawsize = 0.5f;
	cam->ortho_scale = 6.0;
	cam->flag |= CAM_SHOWPASSEPARTOUT;
	cam->passepartalpha = 0.5f;

	GPU_fx_compositor_init_dof_settings(&cam->gpu_dof);

	/* stereoscopy 3d */
	cam->stereo.interocular_distance = 0.065f;
	cam->stereo.convergence_distance = 30.f * 0.065f;

	return cam;
}

Camera *BKE_camera_copy(Camera *cam)
{
	Camera *camn;
	
	camn = BKE_libblock_copy(&cam->id);

	id_lib_extern((ID *)camn->dof_ob);

	if (cam->id.lib) {
		BKE_id_lib_local_paths(G.main, cam->id.lib, &camn->id);
	}

	return camn;
}

void BKE_camera_make_local(Camera *cam)
{
	Main *bmain = G.main;
	Object *ob;
	bool is_local = false, is_lib = false;

	/* - only lib users: do nothing
	 * - only local users: set flag
	 * - mixed: make copy
	 */
	
	if (cam->id.lib == NULL) return;
	if (cam->id.us == 1) {
		id_clear_lib_data(bmain, &cam->id);
		return;
	}
	
	for (ob = bmain->object.first; ob && ELEM(0, is_lib, is_local); ob = ob->id.next) {
		if (ob->data == cam) {
			if (ob->id.lib) is_lib = true;
			else is_local = true;
		}
	}
	
	if (is_local && is_lib == false) {
		id_clear_lib_data(bmain, &cam->id);
	}
	else if (is_local && is_lib) {
		Camera *cam_new = BKE_camera_copy(cam);

		cam_new->id.us = 0;

		/* Remap paths of new ID using old library as base. */
		BKE_id_lib_local_paths(bmain, cam->id.lib, &cam_new->id);

		for (ob = bmain->object.first; ob; ob = ob->id.next) {
			if (ob->data == cam) {
				if (ob->id.lib == NULL) {
					ob->data = cam_new;
					cam_new->id.us++;
					cam->id.us--;
				}
			}
		}
	}
}

void BKE_camera_free(Camera *ca)
{
	BKE_animdata_free((ID *)ca);
}

/******************************** Camera Usage *******************************/

void BKE_camera_object_mode(RenderData *rd, Object *cam_ob)
{
	rd->mode &= ~(R_ORTHO | R_PANORAMA);

	if (cam_ob && cam_ob->type == OB_CAMERA) {
		Camera *cam = cam_ob->data;
		if (cam->type == CAM_ORTHO) rd->mode |= R_ORTHO;
		if (cam->type == CAM_PANO) rd->mode |= R_PANORAMA;
	}
}

/* get the camera's dof value, takes the dof object into account */
float BKE_camera_object_dof_distance(Object *ob)
{
	Camera *cam = (Camera *)ob->data; 
	if (ob->type != OB_CAMERA)
		return 0.0f;
	if (cam->dof_ob) {
#if 0
		/* too simple, better to return the distance on the view axis only */
		return len_v3v3(ob->obmat[3], cam->dof_ob->obmat[3]);
#else
		float view_dir[3], dof_dir[3];
		normalize_v3_v3(view_dir, ob->obmat[2]);
		sub_v3_v3v3(dof_dir, ob->obmat[3], cam->dof_ob->obmat[3]);
		return fabsf(dot_v3v3(view_dir, dof_dir));
#endif
	}
	return cam->YF_dofdist;
}

float BKE_camera_sensor_size(int sensor_fit, float sensor_x, float sensor_y)
{
	/* sensor size used to fit to. for auto, sensor_x is both x and y. */
	if (sensor_fit == CAMERA_SENSOR_FIT_VERT)
		return sensor_y;

	return sensor_x;
}

int BKE_camera_sensor_fit(int sensor_fit, float sizex, float sizey)
{
	if (sensor_fit == CAMERA_SENSOR_FIT_AUTO) {
		if (sizex >= sizey)
			return CAMERA_SENSOR_FIT_HOR;
		else
			return CAMERA_SENSOR_FIT_VERT;
	}

	return sensor_fit;
}

/******************************** Camera Params *******************************/

void BKE_camera_params_init(CameraParams *params)
{
	memset(params, 0, sizeof(CameraParams));

	/* defaults */
	params->sensor_x = DEFAULT_SENSOR_WIDTH;
	params->sensor_y = DEFAULT_SENSOR_HEIGHT;
	params->sensor_fit = CAMERA_SENSOR_FIT_AUTO;

	params->zoom = 1.0f;

	/* fallback for non camera objects */
	params->clipsta = 0.1f;
	params->clipend = 100.0f;
}

void BKE_camera_params_from_object(CameraParams *params, const Object *ob)
{
	if (!ob)
		return;

	if (ob->type == OB_CAMERA) {
		/* camera object */
		Camera *cam = ob->data;

		if (cam->type == CAM_ORTHO)
			params->is_ortho = true;
		params->lens = cam->lens;
		params->ortho_scale = cam->ortho_scale;

		params->shiftx = cam->shiftx;
		params->shifty = cam->shifty;

		params->sensor_x = cam->sensor_x;
		params->sensor_y = cam->sensor_y;
		params->sensor_fit = cam->sensor_fit;

		params->clipsta = cam->clipsta;
		params->clipend = cam->clipend;
	}
	else if (ob->type == OB_LAMP) {
		/* lamp object */
		Lamp *la = ob->data;
		float fac = cosf(la->spotsize * 0.5f);
		float phi = acosf(fac);

		params->lens = 16.0f * fac / sinf(phi);
		if (params->lens == 0.0f)
			params->lens = 35.0f;

		params->clipsta = la->clipsta;
		params->clipend = la->clipend;
	}
	else {
		params->lens = 35.0f;
	}
}

void BKE_camera_params_from_view3d(CameraParams *params, const View3D *v3d, const RegionView3D *rv3d)
{
	/* common */
	params->lens = v3d->lens;
	params->clipsta = v3d->near;
	params->clipend = v3d->far;

	if (rv3d->persp == RV3D_CAMOB) {
		/* camera view */
		BKE_camera_params_from_object(params, v3d->camera);

		params->zoom = BKE_screen_view3d_zoom_to_fac(rv3d->camzoom);

		params->offsetx = 2.0f * rv3d->camdx * params->zoom;
		params->offsety = 2.0f * rv3d->camdy * params->zoom;

		params->shiftx *= params->zoom;
		params->shifty *= params->zoom;

		params->zoom = CAMERA_PARAM_ZOOM_INIT_CAMOB / params->zoom;
	}
	else if (rv3d->persp == RV3D_ORTHO) {
		/* orthographic view */
		int sensor_size = BKE_camera_sensor_size(params->sensor_fit, params->sensor_x, params->sensor_y);
		params->clipend *= 0.5f;    // otherwise too extreme low zbuffer quality
		params->clipsta = -params->clipend;

		params->is_ortho = true;
		/* make sure any changes to this match ED_view3d_radius_to_dist_ortho() */
		params->ortho_scale = rv3d->dist * sensor_size / v3d->lens;
		params->zoom = CAMERA_PARAM_ZOOM_INIT_PERSP;
	}
	else {
		/* perspective view */
		params->zoom = CAMERA_PARAM_ZOOM_INIT_PERSP;
	}
}

void BKE_camera_params_compute_viewplane(CameraParams *params, int winx, int winy, float xasp, float yasp)
{
	rctf viewplane;
	float pixsize, viewfac, sensor_size, dx, dy;
	int sensor_fit;

	/* fields rendering */
	params->ycor = yasp / xasp;
	if (params->use_fields)
		params->ycor *= 2.0f;

	if (params->is_ortho) {
		/* orthographic camera */
		/* scale == 1.0 means exact 1 to 1 mapping */
		pixsize = params->ortho_scale;
	}
	else {
		/* perspective camera */
		sensor_size = BKE_camera_sensor_size(params->sensor_fit, params->sensor_x, params->sensor_y);
		pixsize = (sensor_size * params->clipsta) / params->lens;
	}

	/* determine sensor fit */
	sensor_fit = BKE_camera_sensor_fit(params->sensor_fit, xasp * winx, yasp * winy);

	if (sensor_fit == CAMERA_SENSOR_FIT_HOR)
		viewfac = winx;
	else
		viewfac = params->ycor * winy;

	pixsize /= viewfac;

	/* extra zoom factor */
	pixsize *= params->zoom;

	/* compute view plane:
	 * fully centered, zbuffer fills in jittered between -.5 and +.5 */
	viewplane.xmin = -0.5f * (float)winx;
	viewplane.ymin = -0.5f * params->ycor * (float)winy;
	viewplane.xmax =  0.5f * (float)winx;
	viewplane.ymax =  0.5f * params->ycor * (float)winy;

	/* lens shift and offset */
	dx = params->shiftx * viewfac + winx * params->offsetx;
	dy = params->shifty * viewfac + winy * params->offsety;

	viewplane.xmin += dx;
	viewplane.ymin += dy;
	viewplane.xmax += dx;
	viewplane.ymax += dy;

	/* fields offset */
	if (params->field_second) {
		if (params->field_odd) {
			viewplane.ymin -= 0.5f * params->ycor;
			viewplane.ymax -= 0.5f * params->ycor;
		}
		else {
			viewplane.ymin += 0.5f * params->ycor;
			viewplane.ymax += 0.5f * params->ycor;
		}
	}

	/* the window matrix is used for clipping, and not changed during OSA steps */
	/* using an offset of +0.5 here would give clip errors on edges */
	viewplane.xmin *= pixsize;
	viewplane.xmax *= pixsize;
	viewplane.ymin *= pixsize;
	viewplane.ymax *= pixsize;

	params->viewdx = pixsize;
	params->viewdy = params->ycor * pixsize;
	params->viewplane = viewplane;
}

/* viewplane is assumed to be already computed */
void BKE_camera_params_compute_matrix(CameraParams *params)
{
	rctf viewplane = params->viewplane;

	/* compute projection matrix */
	if (params->is_ortho)
		orthographic_m4(params->winmat, viewplane.xmin, viewplane.xmax,
		                viewplane.ymin, viewplane.ymax, params->clipsta, params->clipend);
	else
		perspective_m4(params->winmat, viewplane.xmin, viewplane.xmax,
		               viewplane.ymin, viewplane.ymax, params->clipsta, params->clipend);
}

/***************************** Camera View Frame *****************************/

void BKE_camera_view_frame_ex(
        const Scene *scene, const Camera *camera,
        const float drawsize, const bool do_clip, const float scale[3],
        float r_asp[2], float r_shift[2], float *r_drawsize, float r_vec[4][3])
{
	float facx, facy;
	float depth;

	/* aspect correcton */
	if (scene) {
		float aspx = (float) scene->r.xsch * scene->r.xasp;
		float aspy = (float) scene->r.ysch * scene->r.yasp;
		int sensor_fit = BKE_camera_sensor_fit(camera->sensor_fit, aspx, aspy);

		if (sensor_fit == CAMERA_SENSOR_FIT_HOR) {
			r_asp[0] = 1.0;
			r_asp[1] = aspy / aspx;
		}
		else {
			r_asp[0] = aspx / aspy;
			r_asp[1] = 1.0;
		}
	}
	else {
		r_asp[0] = 1.0f;
		r_asp[1] = 1.0f;
	}

	if (camera->type == CAM_ORTHO) {
		facx = 0.5f * camera->ortho_scale * r_asp[0] * scale[0];
		facy = 0.5f * camera->ortho_scale * r_asp[1] * scale[1];
		r_shift[0] = camera->shiftx * camera->ortho_scale * scale[0];
		r_shift[1] = camera->shifty * camera->ortho_scale * scale[1];
		depth = do_clip ? -((camera->clipsta * scale[2]) + 0.1f) : -drawsize * camera->ortho_scale * scale[2];

		*r_drawsize = 0.5f * camera->ortho_scale;
	}
	else {
		/* that way it's always visible - clipsta+0.1 */
		float fac, scale_x, scale_y;
		float half_sensor = 0.5f * ((camera->sensor_fit == CAMERA_SENSOR_FIT_VERT) ?
		                            (camera->sensor_y) : (camera->sensor_x));


		if (do_clip) {
			/* fixed depth, variable size (avoids exceeding clipping range) */
			/* r_drawsize shouldn't be used in this case, set to dummy value */
			*r_drawsize = 1.0f;
			depth = -(camera->clipsta + 0.1f) * scale[2];
			fac = depth / (camera->lens / (-half_sensor));
			scale_x = scale[0] / scale[2];
			scale_y = scale[1] / scale[2];
		}
		else {
			/* fixed size, variable depth (stays a reasonable size in the 3D view) */
			*r_drawsize = drawsize / ((scale[0] + scale[1] + scale[2]) / 3.0f);
			depth = *r_drawsize * camera->lens / (-half_sensor) * scale[2];
			fac = *r_drawsize;
			scale_x = scale[0];
			scale_y = scale[1];
		}

		facx = fac * r_asp[0] * scale_x;
		facy = fac * r_asp[1] * scale_y;
		r_shift[0] = camera->shiftx * fac * 2.0f * scale_x;
		r_shift[1] = camera->shifty * fac * 2.0f * scale_y;
	}

	r_vec[0][0] = r_shift[0] + facx; r_vec[0][1] = r_shift[1] + facy; r_vec[0][2] = depth;
	r_vec[1][0] = r_shift[0] + facx; r_vec[1][1] = r_shift[1] - facy; r_vec[1][2] = depth;
	r_vec[2][0] = r_shift[0] - facx; r_vec[2][1] = r_shift[1] - facy; r_vec[2][2] = depth;
	r_vec[3][0] = r_shift[0] - facx; r_vec[3][1] = r_shift[1] + facy; r_vec[3][2] = depth;
}

void BKE_camera_view_frame(const Scene *scene, const Camera *camera, float r_vec[4][3])
{
	float dummy_asp[2];
	float dummy_shift[2];
	float dummy_drawsize;
	const float dummy_scale[3] = {1.0f, 1.0f, 1.0f};

	BKE_camera_view_frame_ex(scene, camera, 0.0, true, dummy_scale,
	                         dummy_asp, dummy_shift, &dummy_drawsize, r_vec);
}

#define CAMERA_VIEWFRAME_NUM_PLANES 4

typedef struct CameraViewFrameData {
	float plane_tx[CAMERA_VIEWFRAME_NUM_PLANES][4];  /* 4 planes */
	float normal_tx[CAMERA_VIEWFRAME_NUM_PLANES][3];
	float dist_vals_sq[CAMERA_VIEWFRAME_NUM_PLANES];  /* distance squared (signed) */
	unsigned int tot;

	/* Ortho camera only. */
	bool is_ortho;
	float camera_no[3];
	float dist_to_cam;

	/* Not used by callbacks... */
	float camera_rotmat[3][3];
} CameraViewFrameData;

static void camera_to_frame_view_cb(const float co[3], void *user_data)
{
	CameraViewFrameData *data = (CameraViewFrameData *)user_data;
	unsigned int i;

	for (i = 0; i < CAMERA_VIEWFRAME_NUM_PLANES; i++) {
		const float nd = dist_signed_squared_to_plane_v3(co, data->plane_tx[i]);
		CLAMP_MAX(data->dist_vals_sq[i], nd);
	}

	if (data->is_ortho) {
		const float d = dot_v3v3(data->camera_no, co);
		CLAMP_MAX(data->dist_to_cam, d);
	}

	data->tot++;
}

static void camera_frame_fit_data_init(
        const Scene *scene, const Object *ob,
        CameraParams *params, CameraViewFrameData *data)
{
	float camera_rotmat_transposed_inversed[4][4];
	unsigned int i;

	/* setup parameters */
	BKE_camera_params_init(params);
	BKE_camera_params_from_object(params, ob);

	/* compute matrix, viewplane, .. */
	if (scene) {
		BKE_camera_params_compute_viewplane(params, scene->r.xsch, scene->r.ysch, scene->r.xasp, scene->r.yasp);
	}
	else {
		BKE_camera_params_compute_viewplane(params, 1, 1, 1.0f, 1.0f);
	}
	BKE_camera_params_compute_matrix(params);

	/* initialize callback data */
	copy_m3_m4(data->camera_rotmat, (float (*)[4])ob->obmat);
	normalize_m3(data->camera_rotmat);
	/* To transform a plane which is in its homogeneous representation (4d vector),
	 * we need the inverse of the transpose of the transform matrix... */
	copy_m4_m3(camera_rotmat_transposed_inversed, data->camera_rotmat);
	transpose_m4(camera_rotmat_transposed_inversed);
	invert_m4(camera_rotmat_transposed_inversed);

	/* Extract frustum planes from projection matrix. */
	planes_from_projmat(params->winmat,
	                    /*   left              right                 top              bottom        near  far */
	                    data->plane_tx[2], data->plane_tx[0], data->plane_tx[3], data->plane_tx[1], NULL, NULL);

	/* Rotate planes and get normals from them */
	for (i = 0; i < CAMERA_VIEWFRAME_NUM_PLANES; i++) {
		mul_m4_v4(camera_rotmat_transposed_inversed, data->plane_tx[i]);
		normalize_v3_v3(data->normal_tx[i], data->plane_tx[i]);
	}

	copy_v4_fl(data->dist_vals_sq, FLT_MAX);
	data->tot = 0;
	data->is_ortho = params->is_ortho;
	if (params->is_ortho) {
		/* we want (0, 0, -1) transformed by camera_rotmat, this is a quicker shortcut. */
		negate_v3_v3(data->camera_no, data->camera_rotmat[2]);
		data->dist_to_cam = FLT_MAX;
	}
}

static bool camera_frame_fit_calc_from_data(
        CameraParams *params, CameraViewFrameData *data, float r_co[3], float *r_scale)
{
	float plane_tx[CAMERA_VIEWFRAME_NUM_PLANES][4];
	unsigned int i;

	if (data->tot <= 1) {
		return false;
	}

	if (params->is_ortho) {
		const float *cam_axis_x = data->camera_rotmat[0];
		const float *cam_axis_y = data->camera_rotmat[1];
		const float *cam_axis_z = data->camera_rotmat[2];
		float dists[CAMERA_VIEWFRAME_NUM_PLANES];
		float scale_diff;

		/* apply the dist-from-plane's to the transformed plane points */
		for (i = 0; i < CAMERA_VIEWFRAME_NUM_PLANES; i++) {
			dists[i] = sqrtf_signed(data->dist_vals_sq[i]);
		}

		if ((dists[0] + dists[2]) > (dists[1] + dists[3])) {
			scale_diff = (dists[1] + dists[3]) *
			             (BLI_rctf_size_x(&params->viewplane) / BLI_rctf_size_y(&params->viewplane));
		}
		else {
			scale_diff = (dists[0] + dists[2]) *
			             (BLI_rctf_size_y(&params->viewplane) / BLI_rctf_size_x(&params->viewplane));
		}
		*r_scale = params->ortho_scale - scale_diff;

		zero_v3(r_co);
		madd_v3_v3fl(r_co, cam_axis_x, (dists[2] - dists[0]) * 0.5f + params->shiftx * scale_diff);
		madd_v3_v3fl(r_co, cam_axis_y, (dists[1] - dists[3]) * 0.5f + params->shifty * scale_diff);
		madd_v3_v3fl(r_co, cam_axis_z, -(data->dist_to_cam - 1.0f - params->clipsta));

		return true;
	}
	else {
		float plane_isect_1[3], plane_isect_1_no[3], plane_isect_1_other[3];
		float plane_isect_2[3], plane_isect_2_no[3], plane_isect_2_other[3];

		float plane_isect_pt_1[3], plane_isect_pt_2[3];

		/* apply the dist-from-plane's to the transformed plane points */
		for (i = 0; i < CAMERA_VIEWFRAME_NUM_PLANES; i++) {
			float co[3];
			mul_v3_v3fl(co, data->normal_tx[i], sqrtf_signed(data->dist_vals_sq[i]));
			plane_from_point_normal_v3(plane_tx[i], co, data->normal_tx[i]);
		}

		if ((!isect_plane_plane_v3(plane_tx[0], plane_tx[2], plane_isect_1, plane_isect_1_no)) ||
		    (!isect_plane_plane_v3(plane_tx[1], plane_tx[3], plane_isect_2, plane_isect_2_no)))
		{
			return false;
		}

		add_v3_v3v3(plane_isect_1_other, plane_isect_1, plane_isect_1_no);
		add_v3_v3v3(plane_isect_2_other, plane_isect_2, plane_isect_2_no);

		if (isect_line_line_v3(plane_isect_1, plane_isect_1_other,
		                       plane_isect_2, plane_isect_2_other,
		                       plane_isect_pt_1, plane_isect_pt_2) != 0)
		{
			float cam_plane_no[3];
			float plane_isect_delta[3];
			float plane_isect_delta_len;

			float shift_fac = BKE_camera_sensor_size(params->sensor_fit, params->sensor_x, params->sensor_y) /
			                  params->lens;

			/* we want (0, 0, -1) transformed by camera_rotmat, this is a quicker shortcut. */
			negate_v3_v3(cam_plane_no, data->camera_rotmat[2]);

			sub_v3_v3v3(plane_isect_delta, plane_isect_pt_2, plane_isect_pt_1);
			plane_isect_delta_len = len_v3(plane_isect_delta);

			if (dot_v3v3(plane_isect_delta, cam_plane_no) > 0.0f) {
				copy_v3_v3(r_co, plane_isect_pt_1);

				/* offset shift */
				normalize_v3(plane_isect_1_no);
				madd_v3_v3fl(r_co, plane_isect_1_no, params->shifty * plane_isect_delta_len * shift_fac);
			}
			else {
				copy_v3_v3(r_co, plane_isect_pt_2);

				/* offset shift */
				normalize_v3(plane_isect_2_no);
				madd_v3_v3fl(r_co, plane_isect_2_no, params->shiftx * plane_isect_delta_len * shift_fac);
			}

			return true;
		}
	}

	return false;
}

/* don't move the camera, just yield the fit location */
/* r_scale only valid/useful for ortho cameras */
bool BKE_camera_view_frame_fit_to_scene(
        Scene *scene, struct View3D *v3d, Object *camera_ob, float r_co[3], float *r_scale)
{
	CameraParams params;
	CameraViewFrameData data_cb;

	/* just in case */
	*r_scale = 1.0f;

	camera_frame_fit_data_init(scene, camera_ob, &params, &data_cb);

	/* run callback on all visible points */
	BKE_scene_foreach_display_point(scene, v3d, BA_SELECT, camera_to_frame_view_cb, &data_cb);

	return camera_frame_fit_calc_from_data(&params, &data_cb, r_co, r_scale);
}

bool BKE_camera_view_frame_fit_to_coords(
        const Scene *scene, const float (*cos)[3], int num_cos, const Object *camera_ob,
        float r_co[3], float *r_scale)
{
	CameraParams params;
	CameraViewFrameData data_cb;

	/* just in case */
	*r_scale = 1.0f;

	camera_frame_fit_data_init(scene, camera_ob, &params, &data_cb);

	/* run callback on all given coordinates */
	while (num_cos--) {
		camera_to_frame_view_cb(cos[num_cos], &data_cb);
	}

	return camera_frame_fit_calc_from_data(&params, &data_cb, r_co, r_scale);
}

/******************* multiview matrix functions ***********************/

static void camera_model_matrix(Object *camera, float r_modelmat[4][4])
{
	copy_m4_m4(r_modelmat, camera->obmat);
}

static void camera_stereo3d_model_matrix(Object *camera, const bool is_left, float r_modelmat[4][4])
{
	Camera *data = (Camera *)camera->data;
	float interocular_distance, convergence_distance;
	short convergence_mode, pivot;
	float sizemat[4][4];

	float fac = 1.0f;
	float fac_signed;

	interocular_distance = data->stereo.interocular_distance;
	convergence_distance = data->stereo.convergence_distance;
	convergence_mode = data->stereo.convergence_mode;
	pivot = data->stereo.pivot;

	if (((pivot == CAM_S3D_PIVOT_LEFT) && is_left) ||
	    ((pivot == CAM_S3D_PIVOT_RIGHT) && !is_left))
	{
		camera_model_matrix(camera, r_modelmat);
		return;
	}
	else {
		float size[3];
		mat4_to_size(size, camera->obmat);
		size_to_mat4(sizemat, size);
	}

	if (pivot == CAM_S3D_PIVOT_CENTER)
		fac = 0.5f;

	fac_signed = is_left ? fac : -fac;

	/* rotation */
	if (convergence_mode == CAM_S3D_TOE) {
		float angle;
		float angle_sin, angle_cos;
		float toeinmat[4][4];
		float rotmat[4][4];

		unit_m4(rotmat);

		if (pivot == CAM_S3D_PIVOT_CENTER) {
			fac = -fac;
			fac_signed = -fac_signed;
		}

		angle = atanf((interocular_distance * 0.5f) / convergence_distance) / fac;

		angle_cos = cosf(angle * fac_signed);
		angle_sin = sinf(angle * fac_signed);

		rotmat[0][0] =  angle_cos;
		rotmat[2][0] = -angle_sin;
		rotmat[0][2] =  angle_sin;
		rotmat[2][2] =  angle_cos;

		if (pivot == CAM_S3D_PIVOT_CENTER) {
			/* set the rotation */
			copy_m4_m4(toeinmat, rotmat);
			/* set the translation */
			toeinmat[3][0] = interocular_distance * fac_signed;

			/* transform */
			normalize_m4_m4(r_modelmat, camera->obmat);
			mul_m4_m4m4(r_modelmat, r_modelmat, toeinmat);

			/* scale back to the original size */
			mul_m4_m4m4(r_modelmat, r_modelmat, sizemat);
		}
		else { /* CAM_S3D_PIVOT_LEFT, CAM_S3D_PIVOT_RIGHT */
			/* rotate perpendicular to the interocular line */
			normalize_m4_m4(r_modelmat, camera->obmat);
			mul_m4_m4m4(r_modelmat, r_modelmat, rotmat);

			/* translate along the interocular line */
			unit_m4(toeinmat);
			toeinmat[3][0] = -interocular_distance * fac_signed;
			mul_m4_m4m4(r_modelmat, r_modelmat, toeinmat);

			/* rotate to toe-in angle */
			mul_m4_m4m4(r_modelmat, r_modelmat, rotmat);

			/* scale back to the original size */
			mul_m4_m4m4(r_modelmat, r_modelmat, sizemat);
		}
	}
	else {
		normalize_m4_m4(r_modelmat, camera->obmat);

		/* translate - no rotation in CAM_S3D_OFFAXIS, CAM_S3D_PARALLEL */
		translate_m4(r_modelmat, -interocular_distance * fac_signed, 0.0f, 0.0f);

		/* scale back to the original size */
		mul_m4_m4m4(r_modelmat, r_modelmat, sizemat);
	}
}

/* the view matrix is used by the viewport drawing, it is basically the inverted model matrix */
void BKE_camera_multiview_view_matrix(RenderData *rd, Object *camera, const bool is_left, float r_viewmat[4][4])
{
	BKE_camera_multiview_model_matrix(rd, camera, is_left ? STEREO_LEFT_NAME : STEREO_RIGHT_NAME, r_viewmat);
	invert_m4(r_viewmat);
}

/* left is the default */
static bool camera_is_left(const char *viewname)
{
	if (viewname && viewname[0] != '\0') {
		return !STREQ(viewname, STEREO_RIGHT_NAME);
	}
	return true;
}

void BKE_camera_multiview_model_matrix(RenderData *rd, Object *camera, const char *viewname, float r_modelmat[4][4])
{
	const bool is_multiview = (rd && rd->scemode & R_MULTIVIEW) != 0;

	if (!is_multiview) {
		camera_model_matrix(camera, r_modelmat);
	}
	else if (rd->views_format == SCE_VIEWS_FORMAT_MULTIVIEW) {
		camera_model_matrix(camera, r_modelmat);
	}
	else { /* SCE_VIEWS_SETUP_BASIC */
		const bool is_left = camera_is_left(viewname);
		camera_stereo3d_model_matrix(camera, is_left, r_modelmat);
	}
	normalize_m4(r_modelmat);
}

static Object *camera_multiview_advanced(Scene *scene, Object *camera, const char *suffix)
{
	SceneRenderView *srv;
	char name[MAX_NAME];
	const char *camera_name = camera->id.name + 2;
	const int len_name = strlen(camera_name);
	int len_suffix_max = -1;

	name[0] = '\0';

	/* we need to take the better match, thus the len_suffix_max test */
	for (srv = scene->r.views.first; srv; srv = srv->next) {
		const int len_suffix = strlen(srv->suffix);

		if ((len_suffix < len_suffix_max) || (len_name < len_suffix))
			continue;

		if (STREQ(camera_name + (len_name - len_suffix), srv->suffix)) {
			BLI_snprintf(name, sizeof(name), "%.*s%s", (len_name - len_suffix), camera_name, suffix);
			len_suffix_max = len_suffix;
		}
	}

	if (name[0] != '\0') {
		Base *base = BKE_scene_base_find_by_name(scene, name);
		if (base) {
			return base->object;
		}
	}

	return camera;
}

/* returns the camera to be used for render */
Object *BKE_camera_multiview_render(Scene *scene, Object *camera, const char *viewname)
{
	const bool is_multiview = (scene->r.scemode & R_MULTIVIEW) != 0;

	if (!is_multiview) {
		return camera;
	}
	else if (scene->r.views_format == SCE_VIEWS_FORMAT_STEREO_3D) {
		return camera;
	}
	else { /* SCE_VIEWS_FORMAT_MULTIVIEW */
		const char *suffix = BKE_scene_multiview_view_suffix_get(&scene->r, viewname);
		return camera_multiview_advanced(scene, camera, suffix);
	}
}

static float camera_stereo3d_shift_x(Object *camera, const char *viewname)
{
	Camera *data = camera->data;
	float shift = data->shiftx;
	float interocular_distance, convergence_distance;
	short convergence_mode, pivot;
	bool is_left = true;

	float fac = 1.0f;
	float fac_signed;

	if (viewname && viewname[0]) {
		is_left = STREQ(viewname, STEREO_LEFT_NAME);
	}

	interocular_distance = data->stereo.interocular_distance;
	convergence_distance = data->stereo.convergence_distance;
	convergence_mode = data->stereo.convergence_mode;
	pivot = data->stereo.pivot;

	if (convergence_mode != CAM_S3D_OFFAXIS)
		return shift;

	if (((pivot == CAM_S3D_PIVOT_LEFT) && is_left) ||
	    ((pivot == CAM_S3D_PIVOT_RIGHT) && !is_left))
	{
		return shift;
	}

	if (pivot == CAM_S3D_PIVOT_CENTER)
		fac = 0.5f;

	fac_signed = is_left ? fac : -fac;
	shift += ((interocular_distance / data->sensor_x) * (data->lens / convergence_distance)) * fac_signed;

	return shift;
}

float BKE_camera_multiview_shift_x(RenderData *rd, Object *camera, const char *viewname)
{
	const bool is_multiview = (rd && rd->scemode & R_MULTIVIEW) != 0;
	Camera *data = camera->data;

	BLI_assert(camera->type == OB_CAMERA);

	if (!is_multiview) {
		return data->shiftx;
	}
	else if (rd->views_format == SCE_VIEWS_FORMAT_MULTIVIEW) {
		return data->shiftx;
	}
	else { /* SCE_VIEWS_SETUP_BASIC */
		return camera_stereo3d_shift_x(camera, viewname);
	}
}

void BKE_camera_multiview_params(RenderData *rd, CameraParams *params, Object *camera, const char *viewname)
{
	if (camera->type == OB_CAMERA) {
		params->shiftx = BKE_camera_multiview_shift_x(rd, camera, viewname);
	}
}

void BKE_camera_to_gpu_dof(struct Object *camera, struct GPUFXSettings *r_fx_settings)
{
	if (camera->type == OB_CAMERA) {
		Camera *cam = camera->data;
		r_fx_settings->dof = &cam->gpu_dof;
		r_fx_settings->dof->focal_length = cam->lens;
		r_fx_settings->dof->sensor = BKE_camera_sensor_size(cam->sensor_fit, cam->sensor_x, cam->sensor_y);
		r_fx_settings->dof->focus_distance = BKE_camera_object_dof_distance(camera);
	}
}