Welcome to mirror list, hosted at ThFree Co, Russian Federation.

curveprofile.c « intern « blenkernel « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 0a41529aac1f7316cc783a361dcae1ee5bb8a986 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
/*
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 *
 * Copyright (C) 2019 Blender Foundation.
 * All rights reserved.
 */

/** \file
 * \ingroup bke
 */

#include <float.h>
#include <math.h>
#include <stdlib.h>
#include <string.h>

#include "MEM_guardedalloc.h"

#include "DNA_curve_types.h"
#include "DNA_curveprofile_types.h"

#include "BLI_blenlib.h"
#include "BLI_math.h"
#include "BLI_task.h"
#include "BLI_threads.h"
#include "BLI_utildefines.h"

#include "BKE_curve.h"
#include "BKE_curveprofile.h"
#include "BKE_fcurve.h"

#include "BLO_read_write.h"

void BKE_curveprofile_free_data(CurveProfile *profile)
{
  MEM_SAFE_FREE(profile->path);
  MEM_SAFE_FREE(profile->table);
  MEM_SAFE_FREE(profile->segments);
}

void BKE_curveprofile_free(CurveProfile *profile)
{
  if (profile) {
    BKE_curveprofile_free_data(profile);
    MEM_freeN(profile);
  }
}

void BKE_curveprofile_copy_data(CurveProfile *target, const CurveProfile *profile)
{
  *target = *profile;

  target->path = MEM_dupallocN(profile->path);
  target->table = MEM_dupallocN(profile->table);
  target->segments = MEM_dupallocN(profile->segments);

  /* Update the reference the points have to the profile. */
  for (int i = 0; i < target->path_len; i++) {
    target->path[i].profile = target;
  }
}

CurveProfile *BKE_curveprofile_copy(const CurveProfile *profile)
{
  if (profile) {
    CurveProfile *new_prdgt = MEM_dupallocN(profile);
    BKE_curveprofile_copy_data(new_prdgt, profile);
    return new_prdgt;
  }
  return NULL;
}

/**
 * Move a point's handle, accounting for the alignment of handles with the #HD_ALIGN type.
 *
 * \param handle_1: Whether to move the 1st or 2nd control point.
 * \param delta: The *relative* change in the handle's position.
 * \note Requires #BKE_curveprofile_update call after.
 * \return Whether the handle moved from its start position.
 */
bool BKE_curveprofile_move_handle(struct CurveProfilePoint *point,
                                  const bool handle_1,
                                  const bool snap,
                                  const float delta[2])
{
  short handle_type = (handle_1) ? point->h1 : point->h2;
  float *handle_location = (handle_1) ? &point->h1_loc[0] : &point->h2_loc[0];

  float start_position[2];
  copy_v2_v2(start_position, handle_location);

  /* Don't move the handle if it's not a free handle type. */
  if (!ELEM(handle_type, HD_FREE, HD_ALIGN)) {
    return false;
  }

  /* Move the handle. */
  handle_location[0] += delta ? delta[0] : 0.0f;
  handle_location[1] += delta ? delta[1] : 0.0f;
  if (snap) {
    handle_location[0] = 0.125f * roundf(8.0f * handle_location[0]);
    handle_location[1] = 0.125f * roundf(8.0f * handle_location[1]);
  }

  /* Move the other handle if they are aligned. */
  if (handle_type == HD_ALIGN) {
    short other_handle_type = (handle_1) ? point->h2 : point->h1;
    if (other_handle_type == HD_ALIGN) {
      float *other_handle_location = (handle_1) ? &point->h2_loc[0] : &point->h1_loc[0];
      other_handle_location[0] = 2.0f * point->x - handle_location[0];
      other_handle_location[1] = 2.0f * point->y - handle_location[1];
    }
  }

  if (!equals_v2v2(handle_location, start_position)) {
    return true;
  }
  return false;
}

/**
 * Moves a control point, accounting for clipping and snapping, and moving free handles.
 *
 * \param snap: Whether to snap the point to the grid
 * \param delta: The *relative* change of the point's location.
 * \return Whether the point moved from its start position.
 * \note Requires #BKE_curveprofile_update call after.
 */
bool BKE_curveprofile_move_point(struct CurveProfile *profile,
                                 struct CurveProfilePoint *point,
                                 const bool snap,
                                 const float delta[2])
{
  float origx = point->x;
  float origy = point->y;

  point->x += delta[0];
  point->y += delta[1];
  if (snap) {
    point->x = 0.125f * roundf(8.0f * point->x);
    point->y = 0.125f * roundf(8.0f * point->y);
  }

  /* Clip here instead to test clipping here to stop handles from moving too. */
  if (profile->flag & PROF_USE_CLIP) {
    point->x = max_ff(point->x, profile->clip_rect.xmin);
    point->x = min_ff(point->x, profile->clip_rect.xmax);
    point->y = max_ff(point->y, profile->clip_rect.ymin);
    point->y = min_ff(point->y, profile->clip_rect.ymax);
  }

  /* Also move free handles even when they aren't selected. */
  if (ELEM(point->h1, HD_FREE, HD_ALIGN)) {
    point->h1_loc[0] += point->x - origx;
    point->h1_loc[1] += point->y - origy;
  }
  if (ELEM(point->h2, HD_FREE, HD_ALIGN)) {
    point->h2_loc[0] += point->x - origx;
    point->h2_loc[1] += point->y - origy;
  }

  if (point->x != origx || point->y != origy) {
    return true;
  }
  return false;
}

/**
 * Removes a specific point from the path of control points.
 * \note Requires #BKE_curveprofile_update call after.
 */
bool BKE_curveprofile_remove_point(CurveProfile *profile, CurveProfilePoint *point)
{
  CurveProfilePoint *pts;

  /* Must have 2 points minimum. */
  if (profile->path_len <= 2) {
    return false;
  }

  /* Input point must be within the array. */
  if (!(point > profile->path && point < profile->path + profile->path_len)) {
    return false;
  }

  pts = MEM_mallocN(sizeof(CurveProfilePoint) * profile->path_len, "path points");

  uint i_delete = (uint)(point - profile->path);

  /* Copy the before and after the deleted point. */
  memcpy(pts, profile->path, sizeof(CurveProfilePoint) * i_delete);
  memcpy(pts + i_delete,
         profile->path + i_delete + 1,
         sizeof(CurveProfilePoint) * (profile->path_len - i_delete - 1));

  MEM_freeN(profile->path);
  profile->path = pts;
  profile->path_len -= 1;
  return true;
}

/**
 * Removes every point in the widget with the supplied flag set, except for the first and last.
 *
 * \param flag: #CurveProfilePoint.flag.
 *
 * \note Requires #BKE_curveprofile_update call after.
 */
void BKE_curveprofile_remove_by_flag(CurveProfile *profile, const short flag)
{
  int i_old, i_new, n_removed = 0;

  /* Copy every point without the flag into the new path. */
  CurveProfilePoint *new_pts = MEM_mallocN(sizeof(CurveProfilePoint) * profile->path_len,
                                           "profile path");

  /* Build the new list without any of the points with the flag. Keep the first and last points. */
  new_pts[0] = profile->path[0];
  for (i_old = 1, i_new = 1; i_old < profile->path_len - 1; i_old++) {
    if (!(profile->path[i_old].flag & flag)) {
      new_pts[i_new] = profile->path[i_old];
      i_new++;
    }
    else {
      n_removed++;
    }
  }
  new_pts[i_new] = profile->path[i_old];

  MEM_freeN(profile->path);
  profile->path = new_pts;
  profile->path_len -= n_removed;
}

/**
 * Adds a new point at the specified location. The choice for which points to place the new vertex
 * between is made by checking which control point line segment is closest to the new point and
 * placing the new vertex in between that segment's points.
 *
 * \note Requires #BKE_curveprofile_update call after.
 */
CurveProfilePoint *BKE_curveprofile_insert(CurveProfile *profile, float x, float y)
{
  CurveProfilePoint *new_pt = NULL;
  float new_loc[2] = {x, y};

  /* Don't add more control points  than the maximum size of the higher resolution table. */
  if (profile->path_len == PROF_TABLE_MAX - 1) {
    return NULL;
  }

  /* Find the index at the line segment that's closest to the new position. */
  float distance;
  float min_distance = FLT_MAX;
  int i_insert = 0;
  for (int i = 0; i < profile->path_len - 1; i++) {
    float loc1[2] = {profile->path[i].x, profile->path[i].y};
    float loc2[2] = {profile->path[i + 1].x, profile->path[i + 1].y};

    distance = dist_squared_to_line_segment_v2(new_loc, loc1, loc2);
    if (distance < min_distance) {
      min_distance = distance;
      i_insert = i + 1;
    }
  }

  /* Insert the new point at the location we found and copy all of the old points in as well. */
  profile->path_len++;
  CurveProfilePoint *new_pts = MEM_mallocN(sizeof(CurveProfilePoint) * profile->path_len,
                                           "profile path");
  for (int i_new = 0, i_old = 0; i_new < profile->path_len; i_new++) {
    if (i_new != i_insert) {
      /* Insert old points. */
      memcpy(&new_pts[i_new], &profile->path[i_old], sizeof(CurveProfilePoint));
      new_pts[i_new].flag &= ~PROF_SELECT; /* Deselect old points. */
      i_old++;
    }
    else {
      /* Insert new point. */
      new_pts[i_new].x = x;
      new_pts[i_new].y = y;
      new_pts[i_new].flag = PROF_SELECT;
      new_pt = &new_pts[i_new];
      /* Set handles of new point based on its neighbors. */
      if (new_pts[i_new - 1].h2 == HD_VECT && profile->path[i_insert].h1 == HD_VECT) {
        new_pt->h1 = new_pt->h2 = HD_VECT;
      }
      else {
        new_pt->h1 = new_pt->h2 = HD_AUTO;
      }
      /* Give new point a reference to the profile. */
      new_pt->profile = profile;
    }
  }

  /* Free the old path and use the new one. */
  MEM_freeN(profile->path);
  profile->path = new_pts;
  return new_pt;
}

/**
 * Sets the handle type of the selected control points.
 * \param type_1, type_2: Handle type for the first handle. HD_VECT, HD_AUTO, HD_FREE, or HD_ALIGN.
 * \note Requires #BKE_curveprofile_update call after.
 */
void BKE_curveprofile_selected_handle_set(CurveProfile *profile, int type_1, int type_2)
{
  for (int i = 0; i < profile->path_len; i++) {
    if (ELEM(profile->path[i].flag, PROF_SELECT, PROF_H1_SELECT, PROF_H2_SELECT)) {
      profile->path[i].h1 = type_1;
      profile->path[i].h2 = type_2;

      if (type_1 == HD_ALIGN && type_2 == HD_ALIGN) {
        /* Align the handles. */
        BKE_curveprofile_move_handle(&profile->path[i], true, false, NULL);
      }
    }
  }
}

/**
 * Flips the profile across the diagonal so that its orientation is reversed.
 *
 * \note Requires #BKE_curveprofile_update call after.
 */
void BKE_curveprofile_reverse(CurveProfile *profile)
{
  /* When there are only two points, reversing shouldn't do anything. */
  if (profile->path_len == 2) {
    return;
  }
  CurveProfilePoint *new_pts = MEM_mallocN(sizeof(CurveProfilePoint) * profile->path_len,
                                           "profile path");
  /* Mirror the new points across the y = x line */
  for (int i = 0; i < profile->path_len; i++) {
    int i_reversed = profile->path_len - i - 1;
    BLI_assert(i_reversed >= 0);
    new_pts[i_reversed].x = profile->path[i].y;
    new_pts[i_reversed].y = profile->path[i].x;
    new_pts[i_reversed].flag = profile->path[i].flag;
    new_pts[i_reversed].h1 = profile->path[i].h2;
    new_pts[i_reversed].h2 = profile->path[i].h1;
    new_pts[i_reversed].profile = profile;

    /* Mirror free handles, they can't be recalculated. */
    if (ELEM(profile->path[i].h1, HD_FREE, HD_ALIGN)) {
      new_pts[i_reversed].h1_loc[0] = profile->path[i].h2_loc[1];
      new_pts[i_reversed].h1_loc[1] = profile->path[i].h2_loc[0];
    }
    if (ELEM(profile->path[i].h2, HD_FREE, HD_ALIGN)) {
      new_pts[i_reversed].h2_loc[0] = profile->path[i].h1_loc[1];
      new_pts[i_reversed].h2_loc[1] = profile->path[i].h1_loc[0];
    }
  }

  /* Free the old points and use the new ones */
  MEM_freeN(profile->path);
  profile->path = new_pts;
}

/**
 * Builds a quarter circle profile with space on each side for 'support loops.'
 */
static void CurveProfile_build_supports(CurveProfile *profile)
{
  int n = profile->path_len;

  profile->path[0].x = 1.0;
  profile->path[0].y = 0.0;
  profile->path[0].flag = 0;
  profile->path[0].h1 = HD_VECT;
  profile->path[0].h2 = HD_VECT;
  profile->path[1].x = 1.0;
  profile->path[1].y = 0.5;
  profile->path[1].flag = 0;
  profile->path[1].h1 = HD_VECT;
  profile->path[1].h2 = HD_VECT;
  for (int i = 1; i < n - 2; i++) {
    profile->path[i + 1].x = 1.0f - (0.5f * (1.0f - cosf((float)((i / (float)(n - 3))) * M_PI_2)));
    profile->path[i + 1].y = 0.5f + 0.5f * sinf((float)((i / (float)(n - 3)) * M_PI_2));
    profile->path[i + 1].flag = 0;
    profile->path[i + 1].h1 = HD_AUTO;
    profile->path[i + 1].h2 = HD_AUTO;
  }
  profile->path[n - 2].x = 0.5;
  profile->path[n - 2].y = 1.0;
  profile->path[n - 2].flag = 0;
  profile->path[n - 2].h1 = HD_VECT;
  profile->path[n - 2].h2 = HD_VECT;
  profile->path[n - 1].x = 0.0;
  profile->path[n - 1].y = 1.0;
  profile->path[n - 1].flag = 0;
  profile->path[n - 1].h1 = HD_VECT;
  profile->path[n - 1].h2 = HD_VECT;
}

/**
 * Puts the widgets control points in a step pattern.
 * Uses vector handles for each point.
 */
static void CurveProfile_build_steps(CurveProfile *profile)
{
  int n, step_x, step_y;
  float n_steps_x, n_steps_y;

  n = profile->path_len;

  /* Special case for two points to avoid dividing by zero later. */
  if (n == 2) {
    profile->path[0].x = 1.0f;
    profile->path[0].y = 0.0f;
    profile->path[0].flag = 0;
    profile->path[0].h1 = HD_VECT;
    profile->path[0].h2 = HD_VECT;
    profile->path[1].x = 0.0f;
    profile->path[1].y = 1.0f;
    profile->path[1].flag = 0;
    profile->path[1].h1 = HD_VECT;
    profile->path[1].h2 = HD_VECT;
    return;
  }

  n_steps_x = (n % 2 == 0) ? n : (n - 1);
  n_steps_y = (n % 2 == 0) ? (n - 2) : (n - 1);

  for (int i = 0; i < n; i++) {
    step_x = (i + 1) / 2;
    step_y = i / 2;
    profile->path[i].x = 1.0f - ((float)(2 * step_x) / n_steps_x);
    profile->path[i].y = (float)(2 * step_y) / n_steps_y;
    profile->path[i].flag = 0;
    profile->path[i].h1 = HD_VECT;
    profile->path[i].h2 = HD_VECT;
  }
}

/**
 * Shorthand helper function for setting location and interpolation of a point.
 */
static void point_init(CurveProfilePoint *point, float x, float y, short flag, char h1, char h2)
{
  point->x = x;
  point->y = y;
  point->flag = flag;
  point->h1 = h1;
  point->h2 = h2;
}

/**
 * Resets the profile to the current preset.
 *
 * \note Requires #BKE_curveprofile_update call after.
 */
void BKE_curveprofile_reset(CurveProfile *profile)
{
  if (profile->path) {
    MEM_freeN(profile->path);
  }

  int preset = profile->preset;
  switch (preset) {
    case PROF_PRESET_LINE:
      profile->path_len = 2;
      break;
    case PROF_PRESET_SUPPORTS:
      /* Use a dynamic number of control points for the widget's profile. */
      if (profile->segments_len < 4) {
        /* But always use enough points to at least build the support points. */
        profile->path_len = 5;
      }
      else {
        profile->path_len = profile->segments_len + 1;
      }
      break;
    case PROF_PRESET_CORNICE:
      profile->path_len = 13;
      break;
    case PROF_PRESET_CROWN:
      profile->path_len = 11;
      break;
    case PROF_PRESET_STEPS:
      /* Also use dynamic number of control points based on the set number of segments. */
      if (profile->segments_len == 0) {
        /* totsegments hasn't been set-- use the number of control points for 8 steps. */
        profile->path_len = 17;
      }
      else {
        profile->path_len = profile->segments_len + 1;
      }
      break;
  }

  profile->path = MEM_callocN(sizeof(CurveProfilePoint) * profile->path_len, "profile path");

  switch (preset) {
    case PROF_PRESET_LINE:
      point_init(&profile->path[0], 1.0f, 0.0f, 0, HD_AUTO, HD_AUTO);
      point_init(&profile->path[1], 0.0f, 1.0f, 0, HD_AUTO, HD_AUTO);
      break;
    case PROF_PRESET_SUPPORTS:
      CurveProfile_build_supports(profile);
      break;
    case PROF_PRESET_CORNICE:
      point_init(&profile->path[0], 1.0f, 0.0f, 0, HD_VECT, HD_VECT);
      point_init(&profile->path[1], 1.0f, 0.125f, 0, HD_VECT, HD_VECT);
      point_init(&profile->path[2], 0.92f, 0.16f, 0, HD_AUTO, HD_AUTO);
      point_init(&profile->path[3], 0.875f, 0.25f, 0, HD_VECT, HD_VECT);
      point_init(&profile->path[4], 0.8f, 0.25f, 0, HD_VECT, HD_VECT);
      point_init(&profile->path[5], 0.733f, 0.433f, 0, HD_AUTO, HD_AUTO);
      point_init(&profile->path[6], 0.582f, 0.522f, 0, HD_AUTO, HD_AUTO);
      point_init(&profile->path[7], 0.4f, 0.6f, 0, HD_AUTO, HD_AUTO);
      point_init(&profile->path[8], 0.289f, 0.727f, 0, HD_AUTO, HD_AUTO);
      point_init(&profile->path[9], 0.25f, 0.925f, 0, HD_VECT, HD_VECT);
      point_init(&profile->path[10], 0.175f, 0.925f, 0, HD_VECT, HD_VECT);
      point_init(&profile->path[11], 0.175f, 1.0f, 0, HD_VECT, HD_VECT);
      point_init(&profile->path[12], 0.0f, 1.0f, 0, HD_VECT, HD_VECT);
      break;
    case PROF_PRESET_CROWN:
      point_init(&profile->path[0], 1.0f, 0.0f, 0, HD_VECT, HD_VECT);
      point_init(&profile->path[1], 1.0f, 0.25f, 0, HD_VECT, HD_VECT);
      point_init(&profile->path[2], 0.75f, 0.25f, 0, HD_VECT, HD_VECT);
      point_init(&profile->path[3], 0.75f, 0.325f, 0, HD_VECT, HD_VECT);
      point_init(&profile->path[4], 0.925f, 0.4f, 0, HD_AUTO, HD_AUTO);
      point_init(&profile->path[5], 0.975f, 0.5f, 0, HD_AUTO, HD_AUTO);
      point_init(&profile->path[6], 0.94f, 0.65f, 0, HD_AUTO, HD_AUTO);
      point_init(&profile->path[7], 0.85f, 0.75f, 0, HD_AUTO, HD_AUTO);
      point_init(&profile->path[8], 0.75f, 0.875f, 0, HD_AUTO, HD_AUTO);
      point_init(&profile->path[9], 0.7f, 1.0f, 0, HD_VECT, HD_VECT);
      point_init(&profile->path[10], 0.0f, 1.0f, 0, HD_VECT, HD_VECT);
      break;
    case PROF_PRESET_STEPS:
      CurveProfile_build_steps(profile);
      break;
  }

  profile->flag &= ~PROF_DIRTY_PRESET;

  /* Ensure each point has a reference to the profile. */
  for (int i = 0; i < profile->path_len; i++) {
    profile->path[i].profile = profile;
  }

  if (profile->table) {
    MEM_freeN(profile->table);
    profile->table = NULL;
  }
}

/**
 * Helper for 'curve_profile_create' samples.
 * Returns whether both handles that make up the edge are vector handles.
 */
static bool is_curved_edge(BezTriple *bezt, int i)
{
  return (bezt[i].h2 != HD_VECT || bezt[i + 1].h1 != HD_VECT);
}

/**
 * Used to set bezier handle locations in the sample creation process. Reduced copy of
 * #calchandleNurb_intern code in curve.c, mostly changed by removing the third dimension.
 */
static void calchandle_profile(BezTriple *bezt, const BezTriple *prev, const BezTriple *next)
{
#define point_handle1 ((point_loc)-3)
#define point_handle2 ((point_loc) + 3)

  const float *prev_loc, *next_loc;
  float *point_loc;
  float pt[3];
  float len, len_a, len_b;
  float dvec_a[2], dvec_b[2];

  if (bezt->h1 == 0 && bezt->h2 == 0) {
    return;
  }

  point_loc = bezt->vec[1];

  if (prev == NULL) {
    next_loc = next->vec[1];
    pt[0] = 2.0f * point_loc[0] - next_loc[0];
    pt[1] = 2.0f * point_loc[1] - next_loc[1];
    prev_loc = pt;
  }
  else {
    prev_loc = prev->vec[1];
  }

  if (next == NULL) {
    prev_loc = prev->vec[1];
    pt[0] = 2.0f * point_loc[0] - prev_loc[0];
    pt[1] = 2.0f * point_loc[1] - prev_loc[1];
    next_loc = pt;
  }
  else {
    next_loc = next->vec[1];
  }

  sub_v2_v2v2(dvec_a, point_loc, prev_loc);
  sub_v2_v2v2(dvec_b, next_loc, point_loc);

  len_a = len_v2(dvec_a);
  len_b = len_v2(dvec_b);

  if (len_a == 0.0f) {
    len_a = 1.0f;
  }
  if (len_b == 0.0f) {
    len_b = 1.0f;
  }

  if (bezt->h1 == HD_AUTO || bezt->h2 == HD_AUTO) { /* auto */
    float tvec[2];
    tvec[0] = dvec_b[0] / len_b + dvec_a[0] / len_a;
    tvec[1] = dvec_b[1] / len_b + dvec_a[1] / len_a;

    len = len_v2(tvec) * 2.5614f;
    if (len != 0.0f) {

      if (bezt->h1 == HD_AUTO) {
        len_a /= len;
        madd_v2_v2v2fl(point_handle1, point_loc, tvec, -len_a);
      }
      if (bezt->h2 == HD_AUTO) {
        len_b /= len;
        madd_v2_v2v2fl(point_handle2, point_loc, tvec, len_b);
      }
    }
  }

  if (bezt->h1 == HD_VECT) { /* vector */
    madd_v2_v2v2fl(point_handle1, point_loc, dvec_a, -1.0f / 3.0f);
  }
  if (bezt->h2 == HD_VECT) {
    madd_v2_v2v2fl(point_handle2, point_loc, dvec_b, 1.0f / 3.0f);
  }
#undef point_handle1
#undef point_handle2
}

/**
 * Helper function for 'BKE_CurveProfile_create_samples.' Calculates the angle between the
 * handles on the inside of the edge starting at index i. A larger angle means the edge is
 * more curved.
 * \param i_edge: The start index of the edge to calculate the angle for.
 */
static float bezt_edge_handle_angle(const BezTriple *bezt, int i_edge)
{
  /* Find the direction of the handles that define this edge along the direction of the path. */
  float start_handle_direction[2], end_handle_direction[2];
  /* Handle 2 - point location. */
  sub_v2_v2v2(start_handle_direction, bezt[i_edge].vec[2], bezt[i_edge].vec[1]);
  /* Point location - handle 1. */
  sub_v2_v2v2(end_handle_direction, bezt[i_edge + 1].vec[1], bezt[i_edge + 1].vec[0]);

  float angle = angle_v2v2(start_handle_direction, end_handle_direction);
  return angle;
}

/** Struct to sort curvature of control point edges. */
typedef struct {
  /** The index of the corresponding bezier point. */
  int bezt_index;
  /** The curvature of the edge with the above index. */
  float bezt_curvature;
} CurvatureSortPoint;

/**
 * Helper function for 'BKE_curveprofile_create_samples' for sorting edges based on curvature.
 */
static int sort_points_curvature(const void *in_a, const void *in_b)
{
  const CurvatureSortPoint *a = (const CurvatureSortPoint *)in_a;
  const CurvatureSortPoint *b = (const CurvatureSortPoint *)in_b;

  if (a->bezt_curvature > b->bezt_curvature) {
    return 0;
  }
  else {
    return 1;
  }
}

/**
 * Used for sampling curves along the profile's path. Any points more than the number of
 * user-defined points will be evenly distributed among the curved edges.
 * Then the remainders will be distributed to the most curved edges.
 *
 * \param n_segments: The number of segments to sample along the path. It must be higher than the
 * number of points used to define the profile (profile->path_len).
 * \param sample_straight_edges: Whether to sample points between vector handle control points. If
 * this is true and there are only vector edges the straight edges will still be sampled.
 * \param r_samples: An array of points to put the sampled positions. Must have length n_segments.
 * \return r_samples: Fill the array with the sampled locations and if the point corresponds
 * to a control point, its handle type.
 */
void BKE_curveprofile_create_samples(CurveProfile *profile,
                                     int n_segments,
                                     bool sample_straight_edges,
                                     CurveProfilePoint *r_samples)
{
  BezTriple *bezt;
  int i, n_left, n_common, i_sample, n_curved_edges;
  int *n_samples;
  CurvatureSortPoint *curve_sorted;
  int totpoints = profile->path_len;
  int totedges = totpoints - 1;

  BLI_assert(n_segments > 0);

  /* Create Bezier points for calculating the higher resolution path. */
  bezt = MEM_callocN(sizeof(BezTriple) * totpoints, "beztarr");
  for (i = 0; i < totpoints; i++) {
    bezt[i].vec[1][0] = profile->path[i].x;
    bezt[i].vec[1][1] = profile->path[i].y;
    bezt[i].h1 = profile->path[i].h1;
    bezt[i].h2 = profile->path[i].h2;
    /* Copy handle locations if the handle type is free. */
    if (ELEM(profile->path[i].h1, HD_FREE, HD_ALIGN)) {
      bezt[i].vec[0][0] = profile->path[i].h1_loc[0];
      bezt[i].vec[0][1] = profile->path[i].h1_loc[1];
    }
    if (ELEM(profile->path[i].h1, HD_FREE, HD_ALIGN)) {
      bezt[i].vec[2][0] = profile->path[i].h2_loc[0];
      bezt[i].vec[2][1] = profile->path[i].h2_loc[1];
    }
  }
  /* Get handle positions for the non-free bezier points. */
  calchandle_profile(&bezt[0], NULL, &bezt[1]);
  for (i = 1; i < totpoints - 1; i++) {
    calchandle_profile(&bezt[i], &bezt[i - 1], &bezt[i + 1]);
  }
  calchandle_profile(&bezt[totpoints - 1], &bezt[totpoints - 2], NULL);

  /* Copy the handle locations back to the control points. */
  for (i = 0; i < totpoints; i++) {
    profile->path[i].h1_loc[0] = bezt[i].vec[0][0];
    profile->path[i].h1_loc[1] = bezt[i].vec[0][1];
    profile->path[i].h2_loc[0] = bezt[i].vec[2][0];
    profile->path[i].h2_loc[1] = bezt[i].vec[2][1];
  }

  /* Create a list of edge indices with the most curved at the start, least curved at the end. */
  curve_sorted = MEM_callocN(sizeof(CurvatureSortPoint) * totedges, "curve sorted");
  for (i = 0; i < totedges; i++) {
    curve_sorted[i].bezt_index = i;
    /* Calculate the curvature of each edge once for use when sorting for curvature. */
    curve_sorted[i].bezt_curvature = bezt_edge_handle_angle(bezt, i);
  }
  qsort(curve_sorted, (size_t)totedges, sizeof(CurvatureSortPoint), sort_points_curvature);

  /* Assign the number of sampled points for each edge. */
  n_samples = MEM_callocN(sizeof(int) * totedges, "create samples numbers");
  int n_added = 0;
  if (n_segments >= totedges) {
    if (sample_straight_edges) {
      /* Assign an even number to each edge if it’s possible, then add the remainder of sampled
       * points starting with the most curved edges. */
      n_common = n_segments / totedges;
      n_left = n_segments % totedges;

      /* Assign the points that fill fit evenly to the edges. */
      if (n_common > 0) {
        for (i = 0; i < totedges; i++) {
          n_samples[i] = n_common;
          n_added += n_common;
        }
      }
    }
    else {
      /* Count the number of curved edges */
      n_curved_edges = 0;
      for (i = 0; i < totedges; i++) {
        if (is_curved_edge(bezt, i)) {
          n_curved_edges++;
        }
      }
      /* Just sample all of the edges if there are no curved edges. */
      n_curved_edges = (n_curved_edges == 0) ? totedges : n_curved_edges;

      /* Give all of the curved edges the same number of points and straight edges one point. */
      n_left = n_segments - (totedges - n_curved_edges); /* Left after 1 for each straight edge. */
      n_common = n_left / n_curved_edges;                /* Number assigned to all curved edges */
      if (n_common > 0) {
        for (i = 0; i < totedges; i++) {
          /* Add the common number if it's a curved edge or if edges are curved. */
          if (is_curved_edge(bezt, i) || n_curved_edges == totedges) {
            n_samples[i] += n_common;
            n_added += n_common;
          }
          else {
            n_samples[i] = 1;
            n_added++;
          }
        }
      }
      n_left -= n_common * n_curved_edges;
    }
  }
  else {
    /* Not enough segments to give one to each edge, so just give them to the most curved edges. */
    n_left = n_segments;
  }
  /* Assign the remainder of the points that couldn't be spread out evenly. */
  BLI_assert(n_left < totedges);
  for (i = 0; i < n_left; i++) {
    n_samples[curve_sorted[i].bezt_index]++;
    n_added++;
  }

  BLI_assert(n_added == n_segments); /* n_added is just used for this assert, could remove it. */

  /* Sample the points and add them to the locations table. */
  for (i_sample = 0, i = 0; i < totedges; i++) {
    if (n_samples[i] > 0) {
      /* Carry over the handle types from the control point to its first corresponding sample. */
      r_samples[i_sample].h1 = profile->path[i].h1;
      r_samples[i_sample].h2 = profile->path[i].h2;
      /* All extra sample points for this control point get "auto" handles. */
      for (int j = i_sample + 1; j < i_sample + n_samples[i]; j++) {
        r_samples[j].flag = 0;
        r_samples[j].h1 = HD_AUTO;
        r_samples[j].h2 = HD_AUTO;
        BLI_assert(j < n_segments);
      }

      /* Sample from the bezier points. X then Y values. */
      BKE_curve_forward_diff_bezier(bezt[i].vec[1][0],
                                    bezt[i].vec[2][0],
                                    bezt[i + 1].vec[0][0],
                                    bezt[i + 1].vec[1][0],
                                    &r_samples[i_sample].x,
                                    n_samples[i],
                                    sizeof(CurveProfilePoint));
      BKE_curve_forward_diff_bezier(bezt[i].vec[1][1],
                                    bezt[i].vec[2][1],
                                    bezt[i + 1].vec[0][1],
                                    bezt[i + 1].vec[1][1],
                                    &r_samples[i_sample].y,
                                    n_samples[i],
                                    sizeof(CurveProfilePoint));
    }
    i_sample += n_samples[i]; /* Add the next set of points after the ones we just added. */
    BLI_assert(i_sample <= n_segments);
  }

#ifdef DEBUG_PROFILE_TABLE
  printf("CURVEPROFILE CREATE SAMPLES\n");
  printf("n_segments: %d\n", n_segments);
  printf("totedges: %d\n", totedges);
  printf("n_common: %d\n", n_common);
  printf("n_left: %d\n", n_left);
  printf("n_samples: ");
  for (i = 0; i < totedges; i++) {
    printf("%d, ", n_samples[i]);
  }
  printf("\n");
  printf("i_curved_sorted: ");
  for (i = 0; i < totedges; i++) {
    printf("(%d %.2f), ", curve_sorted[i].bezt_index, curve_sorted[i].bezt_curvature);
  }
  printf("\n");
#endif

  MEM_freeN(bezt);
  MEM_freeN(curve_sorted);
  MEM_freeN(n_samples);
}

/**
 * Creates a higher resolution table by sampling the curved points.
 * This table is used for display and evenly spaced evaluation.
 */
static void curveprofile_make_table(CurveProfile *profile)
{
  int n_samples = PROF_TABLE_LEN(profile->path_len);
  CurveProfilePoint *new_table = MEM_callocN(sizeof(CurveProfilePoint) * (n_samples + 1),
                                             "high-res table");

  BKE_curveprofile_create_samples(profile, n_samples - 1, false, new_table);
  /* Manually add last point at the end of the profile */
  new_table[n_samples - 1].x = 0.0f;
  new_table[n_samples - 1].y = 1.0f;

  if (profile->table) {
    MEM_freeN(profile->table);
  }
  profile->table = new_table;
}

/**
 * Creates the table of points used for displaying a preview of the sampled segment locations on
 * the widget itself.
 */
static void CurveProfile_make_segments_table(CurveProfile *profile)
{
  int n_samples = profile->segments_len;
  if (n_samples <= 0) {
    return;
  }
  CurveProfilePoint *new_table = MEM_callocN(sizeof(CurveProfilePoint) * (n_samples + 1),
                                             "samples table");

  if (profile->flag & PROF_SAMPLE_EVEN_LENGTHS) {
    /* Even length sampling incompatible with only straight edge sampling for now. */
    BKE_curveprofile_create_samples_even_spacing(profile, n_samples, new_table);
  }
  else {
    BKE_curveprofile_create_samples(
        profile, n_samples, profile->flag & PROF_SAMPLE_STRAIGHT_EDGES, new_table);
  }

  if (profile->segments) {
    MEM_freeN(profile->segments);
  }
  profile->segments = new_table;
}

/**
 * Sets the default settings and clip range for the profile widget.
 * Does not generate either table.
 */
void BKE_curveprofile_set_defaults(CurveProfile *profile)
{
  profile->flag = PROF_USE_CLIP;

  BLI_rctf_init(&profile->view_rect, 0.0f, 1.0f, 0.0f, 1.0f);
  profile->clip_rect = profile->view_rect;

  profile->path_len = 2;
  profile->path = MEM_callocN(2 * sizeof(CurveProfilePoint), "path points");

  profile->path[0].x = 1.0f;
  profile->path[0].y = 0.0f;
  profile->path[0].profile = profile;
  profile->path[1].x = 1.0f;
  profile->path[1].y = 1.0f;
  profile->path[1].profile = profile;

  profile->changed_timestamp = 0;
}

/**
 * Returns a pointer to a newly allocated curve profile, using the given preset.
 * \param preset: Value in #eCurveProfilePresets.
 */
struct CurveProfile *BKE_curveprofile_add(int preset)
{
  CurveProfile *profile = MEM_callocN(sizeof(CurveProfile), "curve profile");

  BKE_curveprofile_set_defaults(profile);
  profile->preset = preset;
  BKE_curveprofile_reset(profile);
  curveprofile_make_table(profile);

  return profile;
}

/**
 * Should be called after the widget is changed. Does profile and remove double checks and more
 * importantly, recreates the display / evaluation and segments tables.
 * \param update_flags: Bitfield with fields defined in header file. Controls removing doubles and
 * clipping.
 */
void BKE_curveprofile_update(CurveProfile *profile, const int update_flags)
{
  CurveProfilePoint *points = profile->path;
  rctf *clipr = &profile->clip_rect;
  float thresh;
  int i;

  profile->changed_timestamp++;

  /* Clamp with the clipping rect in case something got past. */
  if (profile->flag & PROF_USE_CLIP) {
    /* Move points inside the clip rectangle. */
    if (update_flags & PROF_UPDATE_CLIP) {
      for (i = 0; i < profile->path_len; i++) {
        points[i].x = max_ff(points[i].x, clipr->xmin);
        points[i].x = min_ff(points[i].x, clipr->xmax);
        points[i].y = max_ff(points[i].y, clipr->ymin);
        points[i].y = min_ff(points[i].y, clipr->ymax);

        /* Extra sanity assert to make sure the points have the right profile pointer. */
        BLI_assert(points[i].profile == profile);
      }
    }
    /* Ensure zoom-level respects clipping. */
    if (BLI_rctf_size_x(&profile->view_rect) > BLI_rctf_size_x(&profile->clip_rect)) {
      profile->view_rect.xmin = profile->clip_rect.xmin;
      profile->view_rect.xmax = profile->clip_rect.xmax;
    }
    if (BLI_rctf_size_y(&profile->view_rect) > BLI_rctf_size_y(&profile->clip_rect)) {
      profile->view_rect.ymin = profile->clip_rect.ymin;
      profile->view_rect.ymax = profile->clip_rect.ymax;
    }
  }

  /* Remove doubles with a threshold set at 1% of default range. */
  thresh = pow2f(0.01f * BLI_rctf_size_x(clipr));
  if (update_flags & PROF_UPDATE_REMOVE_DOUBLES && profile->path_len > 2) {
    for (i = 0; i < profile->path_len - 1; i++) {
      if (len_squared_v2v2(&points[i].x, &points[i + 1].x) < thresh) {
        if (i == 0) {
          BKE_curveprofile_remove_point(profile, &points[1]);
        }
        else {
          BKE_curveprofile_remove_point(profile, &points[i]);
        }
        break; /* Assumes 1 deletion per update call is ok. */
      }
    }
  }

  /* Create the high resolution table for drawing and some evaluation functions. */
  curveprofile_make_table(profile);

  /* Store a table of samples for the segment locations for a preview and the table's user. */
  if (profile->segments_len > 0) {
    CurveProfile_make_segments_table(profile);
  }
}

/**
 * Refreshes the higher resolution table sampled from the input points. A call to this or
 * #BKE_curveprofile_update is needed before evaluation functions that use the table.
 * Also sets the number of segments used for the display preview of the locations
 * of the sampled points.
 */
void BKE_curveprofile_init(CurveProfile *profile, short segments_len)
{
  if (segments_len != profile->segments_len) {
    profile->flag |= PROF_DIRTY_PRESET;
  }
  profile->segments_len = segments_len;

  /* Calculate the higher resolution / segments tables for display and evaluation. */
  BKE_curveprofile_update(profile, PROF_UPDATE_NONE);
}

/**
 * Gives the distance to the next point in the widgets sampled table, in other words the length
 * of the \a 'i' edge of the table.
 *
 * \note Requires #BKE_curveprofile_init or #BKE_curveprofile_update call before to fill table.
 */
static float curveprofile_distance_to_next_table_point(const CurveProfile *profile, int i)
{
  BLI_assert(i < PROF_TABLE_LEN(profile->path_len));

  return len_v2v2(&profile->table[i].x, &profile->table[i + 1].x);
}

/**
 * Calculates the total length of the profile from the curves sampled in the table.
 *
 * \note Requires #BKE_curveprofile_init or #BKE_curveprofile_update call before to fill table.
 */
float BKE_curveprofile_total_length(const CurveProfile *profile)
{
  float total_length = 0;
  for (int i = 0; i < PROF_TABLE_LEN(profile->path_len) - 1; i++) {
    total_length += len_v2v2(&profile->table[i].x, &profile->table[i + 1].x);
  }
  return total_length;
}

/**
 * Samples evenly spaced positions along the curve profile's table (generated from path). Fills
 * an entire table at once for a speedup if all of the results are going to be used anyway.
 *
 * \note Requires #BKE_curveprofile_init or #BKE_curveprofile_update call before to fill table.
 * \note Working, but would conflict with "Sample Straight Edges" option, so this is unused for
 * now.
 */
void BKE_curveprofile_create_samples_even_spacing(CurveProfile *profile,
                                                  int n_segments,
                                                  CurveProfilePoint *r_samples)
{
  const float total_length = BKE_curveprofile_total_length(profile);
  const float segment_length = total_length / n_segments;
  float length_travelled = 0.0f;
  float distance_to_next_table_point = curveprofile_distance_to_next_table_point(profile, 0);
  float distance_to_previous_table_point = 0.0f;
  float segment_left, factor;
  int i_table = 0;

  /* Set the location for the first point. */
  r_samples[0].x = profile->table[0].x;
  r_samples[0].y = profile->table[0].y;

  /* Travel along the path, recording the locations of segments as we pass them. */
  segment_left = segment_length;
  for (int i = 1; i < n_segments; i++) {
    /* Travel over all of the points that fit inside this segment. */
    while (distance_to_next_table_point < segment_left) {
      length_travelled += distance_to_next_table_point;
      segment_left -= distance_to_next_table_point;
      i_table++;
      distance_to_next_table_point = curveprofile_distance_to_next_table_point(profile, i_table);
      distance_to_previous_table_point = 0.0f;
    }
    /* We're at the last table point that fits inside the current segment, use interpolation. */
    factor = (distance_to_previous_table_point + segment_left) /
             (distance_to_previous_table_point + distance_to_next_table_point);
    r_samples[i].x = interpf(profile->table[i_table + 1].x, profile->table[i_table].x, factor);
    r_samples[i].y = interpf(profile->table[i_table + 1].y, profile->table[i_table].y, factor);
#ifdef DEBUG_CURVEPROFILE_EVALUATE
    BLI_assert(factor <= 1.0f && factor >= 0.0f);
    printf("segment_left: %.3f\n", segment_left);
    printf("i_table: %d\n", i_table);
    printf("distance_to_previous_table_point: %.3f\n", distance_to_previous_table_point);
    printf("distance_to_next_table_point: %.3f\n", distance_to_next_table_point);
    printf("Interpolating with factor %.3f from (%.3f, %.3f) to (%.3f, %.3f)\n\n",
           factor,
           profile->table[i_table].x,
           profile->table[i_table].y,
           profile->table[i_table + 1].x,
           profile->table[i_table + 1].y);
#endif

    /* We sampled in between this table point and the next, so the next travel step is smaller. */
    distance_to_next_table_point -= segment_left;
    distance_to_previous_table_point += segment_left;
    length_travelled += segment_left;
    segment_left = segment_length;
  }
}

/**
 * Does a single evaluation along the profile's path.
 * Travels down (length_portion * path) length and returns the position at that point.
 *
 * \param length_portion: The portion (0 to 1) of the path's full length to sample at.
 * \note Requires #BKE_curveprofile_init or #BKE_curveprofile_update call before to fill table.
 */
void BKE_curveprofile_evaluate_length_portion(const CurveProfile *profile,
                                              float length_portion,
                                              float *x_out,
                                              float *y_out)
{
  const float total_length = BKE_curveprofile_total_length(profile);
  const float requested_length = length_portion * total_length;

  /* Find the last point along the path with a lower length portion than the input. */
  int i = 0;
  float length_travelled = 0.0f;
  while (length_travelled < requested_length) {
    /* Check if we reached the last point before the final one. */
    if (i == PROF_TABLE_LEN(profile->path_len) - 2) {
      break;
    }
    float new_length = curveprofile_distance_to_next_table_point(profile, i);
    if (length_travelled + new_length >= requested_length) {
      break;
    }
    length_travelled += new_length;
    i++;
  }

  /* Now travel the remaining distance of length portion down the path to the next point and
   * find the location where we stop. */
  float distance_to_next_point = curveprofile_distance_to_next_table_point(profile, i);
  float lerp_factor = (requested_length - length_travelled) / distance_to_next_point;

#ifdef DEBUG_CURVEPROFILE_EVALUATE
  printf("CURVEPROFILE EVALUATE\n");
  printf("  length portion input: %f\n", (double)length_portion);
  printf("  requested path length: %f\n", (double)requested_length);
  printf("  distance to next point: %f\n", (double)distance_to_next_point);
  printf("  length travelled: %f\n", (double)length_travelled);
  printf("  lerp-factor: %f\n", (double)lerp_factor);
  printf("  ith point (%f, %f)\n", (double)profile->path[i].x, (double)profile->path[i].y);
  printf("  next point(%f, %f)\n", (double)profile->path[i + 1].x, (double)profile->path[i + 1].y);
#endif

  *x_out = interpf(profile->table[i].x, profile->table[i + 1].x, lerp_factor);
  *y_out = interpf(profile->table[i].y, profile->table[i + 1].y, lerp_factor);
}

void BKE_curveprofile_blend_write(struct BlendWriter *writer, const struct CurveProfile *profile)
{
  BLO_write_struct(writer, CurveProfile, profile);
  BLO_write_struct_array(writer, CurveProfilePoint, profile->path_len, profile->path);
}

/* Expects that the curve profile itself has been read already. */
void BKE_curveprofile_blend_read(struct BlendDataReader *reader, struct CurveProfile *profile)
{
  BLO_read_data_address(reader, &profile->path);
  profile->table = NULL;
  profile->segments = NULL;

  /* Reset the points' pointers to the profile. */
  for (int i = 0; i < profile->path_len; i++) {
    profile->path[i].profile = profile;
  }
}