Welcome to mirror list, hosted at ThFree Co, Russian Federation.

geometry_component_mesh.cc « intern « blenkernel « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: d148d59a48b6396e4453f5a116ee272853d34fdf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
/* SPDX-License-Identifier: GPL-2.0-or-later */

#include "BLI_listbase.h"
#include "BLI_task.hh"

#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_object_types.h"

#include "BKE_attribute_math.hh"
#include "BKE_deform.h"
#include "BKE_geometry_fields.hh"
#include "BKE_geometry_set.hh"
#include "BKE_lib_id.h"
#include "BKE_mesh.h"
#include "BKE_mesh_mapping.h"

#include "FN_multi_function_builder.hh"

#include "attribute_access_intern.hh"

extern "C" MDeformVert *BKE_object_defgroup_data_create(ID *id);

/* -------------------------------------------------------------------- */
/** \name Geometry Component Implementation
 * \{ */

MeshComponent::MeshComponent() : GeometryComponent(GEO_COMPONENT_TYPE_MESH)
{
}

MeshComponent::~MeshComponent()
{
  this->clear();
}

GeometryComponent *MeshComponent::copy() const
{
  MeshComponent *new_component = new MeshComponent();
  if (mesh_ != nullptr) {
    new_component->mesh_ = BKE_mesh_copy_for_eval(mesh_, false);
    new_component->ownership_ = GeometryOwnershipType::Owned;
  }
  return new_component;
}

void MeshComponent::clear()
{
  BLI_assert(this->is_mutable());
  if (mesh_ != nullptr) {
    if (ownership_ == GeometryOwnershipType::Owned) {
      BKE_id_free(nullptr, mesh_);
    }
    mesh_ = nullptr;
  }
}

bool MeshComponent::has_mesh() const
{
  return mesh_ != nullptr;
}

void MeshComponent::replace(Mesh *mesh, GeometryOwnershipType ownership)
{
  BLI_assert(this->is_mutable());
  this->clear();
  mesh_ = mesh;
  ownership_ = ownership;
}

Mesh *MeshComponent::release()
{
  BLI_assert(this->is_mutable());
  Mesh *mesh = mesh_;
  mesh_ = nullptr;
  return mesh;
}

const Mesh *MeshComponent::get_for_read() const
{
  return mesh_;
}

Mesh *MeshComponent::get_for_write()
{
  BLI_assert(this->is_mutable());
  if (ownership_ == GeometryOwnershipType::ReadOnly) {
    mesh_ = BKE_mesh_copy_for_eval(mesh_, false);
    ownership_ = GeometryOwnershipType::Owned;
  }
  return mesh_;
}

bool MeshComponent::is_empty() const
{
  return mesh_ == nullptr;
}

bool MeshComponent::owns_direct_data() const
{
  return ownership_ == GeometryOwnershipType::Owned;
}

void MeshComponent::ensure_owns_direct_data()
{
  BLI_assert(this->is_mutable());
  if (ownership_ != GeometryOwnershipType::Owned) {
    mesh_ = BKE_mesh_copy_for_eval(mesh_, false);
    ownership_ = GeometryOwnershipType::Owned;
  }
}

/** \} */

/* -------------------------------------------------------------------- */
/** \name Mesh Normals Field Input
 * \{ */

namespace blender::bke {

VArray<float3> mesh_normals_varray(const Mesh &mesh,
                                   const IndexMask mask,
                                   const eAttrDomain domain)
{
  switch (domain) {
    case ATTR_DOMAIN_FACE: {
      return VArray<float3>::ForSpan(
          {(float3 *)BKE_mesh_poly_normals_ensure(&mesh), mesh.totpoly});
    }
    case ATTR_DOMAIN_POINT: {
      return VArray<float3>::ForSpan(
          {(float3 *)BKE_mesh_vertex_normals_ensure(&mesh), mesh.totvert});
    }
    case ATTR_DOMAIN_EDGE: {
      /* In this case, start with vertex normals and convert to the edge domain, since the
       * conversion from edges to vertices is very simple. Use "manual" domain interpolation
       * instead of the GeometryComponent API to avoid calculating unnecessary values and to
       * allow normalizing the result more simply. */
      Span<float3> vert_normals{(float3 *)BKE_mesh_vertex_normals_ensure(&mesh), mesh.totvert};
      const Span<MEdge> edges = mesh.edges();
      Array<float3> edge_normals(mask.min_array_size());
      for (const int i : mask) {
        const MEdge &edge = edges[i];
        edge_normals[i] = math::normalize(
            math::interpolate(vert_normals[edge.v1], vert_normals[edge.v2], 0.5f));
      }

      return VArray<float3>::ForContainer(std::move(edge_normals));
    }
    case ATTR_DOMAIN_CORNER: {
      /* The normals on corners are just the mesh's face normals, so start with the face normal
       * array and copy the face normal for each of its corners. In this case using the mesh
       * component's generic domain interpolation is fine, the data will still be normalized,
       * since the face normal is just copied to every corner. */
      return mesh.attributes().adapt_domain(
          VArray<float3>::ForSpan({(float3 *)BKE_mesh_poly_normals_ensure(&mesh), mesh.totpoly}),
          ATTR_DOMAIN_FACE,
          ATTR_DOMAIN_CORNER);
    }
    default:
      return {};
  }
}

}  // namespace blender::bke

/** \} */

/* -------------------------------------------------------------------- */
/** \name Attribute Access
 * \{ */

namespace blender::bke {

template<typename T>
static void adapt_mesh_domain_corner_to_point_impl(const Mesh &mesh,
                                                   const VArray<T> &old_values,
                                                   MutableSpan<T> r_values)
{
  BLI_assert(r_values.size() == mesh.totvert);
  const Span<MLoop> loops = mesh.loops();

  attribute_math::DefaultMixer<T> mixer(r_values);

  for (const int loop_index : IndexRange(mesh.totloop)) {
    const T value = old_values[loop_index];
    const MLoop &loop = loops[loop_index];
    const int point_index = loop.v;
    mixer.mix_in(point_index, value);
  }
  mixer.finalize();
}

/* A vertex is selected if all connected face corners were selected and it is not loose. */
template<>
void adapt_mesh_domain_corner_to_point_impl(const Mesh &mesh,
                                            const VArray<bool> &old_values,
                                            MutableSpan<bool> r_values)
{
  BLI_assert(r_values.size() == mesh.totvert);
  const Span<MLoop> loops = mesh.loops();

  Array<bool> loose_verts(mesh.totvert, true);

  r_values.fill(true);
  for (const int loop_index : IndexRange(mesh.totloop)) {
    const MLoop &loop = loops[loop_index];
    const int point_index = loop.v;

    loose_verts[point_index] = false;
    if (!old_values[loop_index]) {
      r_values[point_index] = false;
    }
  }

  /* Deselect loose vertices without corners that are still selected from the 'true' default. */
  /* The record fact says that the value is true.
   *Writing to the array from different threads is okay because each thread sets the same value. */
  threading::parallel_for(loose_verts.index_range(), 2048, [&](const IndexRange range) {
    for (const int vert_index : range) {
      if (loose_verts[vert_index]) {
        r_values[vert_index] = false;
      }
    }
  });
}

static GVArray adapt_mesh_domain_corner_to_point(const Mesh &mesh, const GVArray &varray)
{
  GArray<> values(varray.type(), mesh.totvert);
  attribute_math::convert_to_static_type(varray.type(), [&](auto dummy) {
    using T = decltype(dummy);
    if constexpr (!std::is_void_v<attribute_math::DefaultMixer<T>>) {
      /* We compute all interpolated values at once, because for this interpolation, one has to
       * iterate over all loops anyway. */
      adapt_mesh_domain_corner_to_point_impl<T>(
          mesh, varray.typed<T>(), values.as_mutable_span().typed<T>());
    }
  });
  return GVArray::ForGArray(std::move(values));
}

/**
 * Each corner's value is simply a copy of the value at its vertex.
 */
static GVArray adapt_mesh_domain_point_to_corner(const Mesh &mesh, const GVArray &varray)
{
  const Span<MLoop> loops = mesh.loops();

  GVArray new_varray;
  attribute_math::convert_to_static_type(varray.type(), [&](auto dummy) {
    using T = decltype(dummy);
    new_varray = VArray<T>::ForFunc(mesh.totloop,
                                    [loops, varray = varray.typed<T>()](const int64_t loop_index) {
                                      const int vertex_index = loops[loop_index].v;
                                      return varray[vertex_index];
                                    });
  });
  return new_varray;
}

static GVArray adapt_mesh_domain_corner_to_face(const Mesh &mesh, const GVArray &varray)
{
  const Span<MPoly> polys = mesh.polys();

  GVArray new_varray;
  attribute_math::convert_to_static_type(varray.type(), [&](auto dummy) {
    using T = decltype(dummy);
    if constexpr (!std::is_void_v<attribute_math::DefaultMixer<T>>) {
      if constexpr (std::is_same_v<T, bool>) {
        new_varray = VArray<T>::ForFunc(
            polys.size(), [polys, varray = varray.typed<bool>()](const int face_index) {
              /* A face is selected if all of its corners were selected. */
              const MPoly &poly = polys[face_index];
              for (const int loop_index : IndexRange(poly.loopstart, poly.totloop)) {
                if (!varray[loop_index]) {
                  return false;
                }
              }
              return true;
            });
      }
      else {
        new_varray = VArray<T>::ForFunc(
            polys.size(), [polys, varray = varray.typed<T>()](const int face_index) {
              T return_value;
              attribute_math::DefaultMixer<T> mixer({&return_value, 1});
              const MPoly &poly = polys[face_index];
              for (const int loop_index : IndexRange(poly.loopstart, poly.totloop)) {
                const T value = varray[loop_index];
                mixer.mix_in(0, value);
              }
              mixer.finalize();
              return return_value;
            });
      }
    }
  });
  return new_varray;
}

template<typename T>
static void adapt_mesh_domain_corner_to_edge_impl(const Mesh &mesh,
                                                  const VArray<T> &old_values,
                                                  MutableSpan<T> r_values)
{
  BLI_assert(r_values.size() == mesh.totedge);
  const Span<MPoly> polys = mesh.polys();
  const Span<MLoop> loops = mesh.loops();

  attribute_math::DefaultMixer<T> mixer(r_values);

  for (const int poly_index : polys.index_range()) {
    const MPoly &poly = polys[poly_index];

    /* For every edge, mix values from the two adjacent corners (the current and next corner). */
    for (const int i : IndexRange(poly.totloop)) {
      const int next_i = (i + 1) % poly.totloop;
      const int loop_i = poly.loopstart + i;
      const int next_loop_i = poly.loopstart + next_i;
      const MLoop &loop = loops[loop_i];
      const int edge_index = loop.e;
      mixer.mix_in(edge_index, old_values[loop_i]);
      mixer.mix_in(edge_index, old_values[next_loop_i]);
    }
  }

  mixer.finalize();
}

/* An edge is selected if all corners on adjacent faces were selected. */
template<>
void adapt_mesh_domain_corner_to_edge_impl(const Mesh &mesh,
                                           const VArray<bool> &old_values,
                                           MutableSpan<bool> r_values)
{
  BLI_assert(r_values.size() == mesh.totedge);
  const Span<MPoly> polys = mesh.polys();
  const Span<MLoop> loops = mesh.loops();

  /* It may be possible to rely on the #ME_LOOSEEDGE flag, but that seems error-prone. */
  Array<bool> loose_edges(mesh.totedge, true);

  r_values.fill(true);
  for (const int poly_index : polys.index_range()) {
    const MPoly &poly = polys[poly_index];

    for (const int i : IndexRange(poly.totloop)) {
      const int next_i = (i + 1) % poly.totloop;
      const int loop_i = poly.loopstart + i;
      const int next_loop_i = poly.loopstart + next_i;
      const MLoop &loop = loops[loop_i];
      const int edge_index = loop.e;

      loose_edges[edge_index] = false;

      if (!old_values[loop_i] || !old_values[next_loop_i]) {
        r_values[edge_index] = false;
      }
    }
  }

  /* Deselect loose edges without corners that are still selected from the 'true' default. */
  threading::parallel_for(IndexRange(mesh.totedge), 2048, [&](const IndexRange range) {
    for (const int edge_index : range) {
      if (loose_edges[edge_index]) {
        r_values[edge_index] = false;
      }
    }
  });
}

static GVArray adapt_mesh_domain_corner_to_edge(const Mesh &mesh, const GVArray &varray)
{
  GArray<> values(varray.type(), mesh.totedge);
  attribute_math::convert_to_static_type(varray.type(), [&](auto dummy) {
    using T = decltype(dummy);
    if constexpr (!std::is_void_v<attribute_math::DefaultMixer<T>>) {
      adapt_mesh_domain_corner_to_edge_impl<T>(
          mesh, varray.typed<T>(), values.as_mutable_span().typed<T>());
    }
  });
  return GVArray::ForGArray(std::move(values));
}

template<typename T>
void adapt_mesh_domain_face_to_point_impl(const Mesh &mesh,
                                          const VArray<T> &old_values,
                                          MutableSpan<T> r_values)
{
  BLI_assert(r_values.size() == mesh.totvert);
  const Span<MPoly> polys = mesh.polys();
  const Span<MLoop> loops = mesh.loops();

  attribute_math::DefaultMixer<T> mixer(r_values);

  for (const int poly_index : polys.index_range()) {
    const MPoly &poly = polys[poly_index];
    const T value = old_values[poly_index];
    for (const int loop_index : IndexRange(poly.loopstart, poly.totloop)) {
      const MLoop &loop = loops[loop_index];
      const int point_index = loop.v;
      mixer.mix_in(point_index, value);
    }
  }

  mixer.finalize();
}

/* A vertex is selected if any of the connected faces were selected. */
template<>
void adapt_mesh_domain_face_to_point_impl(const Mesh &mesh,
                                          const VArray<bool> &old_values,
                                          MutableSpan<bool> r_values)
{
  BLI_assert(r_values.size() == mesh.totvert);
  const Span<MPoly> polys = mesh.polys();
  const Span<MLoop> loops = mesh.loops();

  r_values.fill(false);
  threading::parallel_for(polys.index_range(), 2048, [&](const IndexRange range) {
    for (const int poly_index : range) {
      if (old_values[poly_index]) {
        const MPoly &poly = polys[poly_index];
        for (const MLoop &loop : loops.slice(poly.loopstart, poly.totloop)) {
          r_values[loop.v] = true;
        }
      }
    }
  });
}

static GVArray adapt_mesh_domain_face_to_point(const Mesh &mesh, const GVArray &varray)
{
  GArray<> values(varray.type(), mesh.totvert);
  attribute_math::convert_to_static_type(varray.type(), [&](auto dummy) {
    using T = decltype(dummy);
    if constexpr (!std::is_void_v<attribute_math::DefaultMixer<T>>) {
      adapt_mesh_domain_face_to_point_impl<T>(
          mesh, varray.typed<T>(), values.as_mutable_span().typed<T>());
    }
  });
  return GVArray::ForGArray(std::move(values));
}

/* Each corner's value is simply a copy of the value at its face. */
template<typename T>
void adapt_mesh_domain_face_to_corner_impl(const Mesh &mesh,
                                           const VArray<T> &old_values,
                                           MutableSpan<T> r_values)
{
  BLI_assert(r_values.size() == mesh.totloop);
  const Span<MPoly> polys = mesh.polys();

  threading::parallel_for(polys.index_range(), 1024, [&](const IndexRange range) {
    for (const int poly_index : range) {
      const MPoly &poly = polys[poly_index];
      MutableSpan<T> poly_corner_values = r_values.slice(poly.loopstart, poly.totloop);
      poly_corner_values.fill(old_values[poly_index]);
    }
  });
}

static GVArray adapt_mesh_domain_face_to_corner(const Mesh &mesh, const GVArray &varray)
{
  GArray<> values(varray.type(), mesh.totloop);
  attribute_math::convert_to_static_type(varray.type(), [&](auto dummy) {
    using T = decltype(dummy);
    if constexpr (!std::is_void_v<attribute_math::DefaultMixer<T>>) {
      adapt_mesh_domain_face_to_corner_impl<T>(
          mesh, varray.typed<T>(), values.as_mutable_span().typed<T>());
    }
  });
  return GVArray::ForGArray(std::move(values));
}

template<typename T>
void adapt_mesh_domain_face_to_edge_impl(const Mesh &mesh,
                                         const VArray<T> &old_values,
                                         MutableSpan<T> r_values)
{
  BLI_assert(r_values.size() == mesh.totedge);
  const Span<MPoly> polys = mesh.polys();
  const Span<MLoop> loops = mesh.loops();

  attribute_math::DefaultMixer<T> mixer(r_values);

  for (const int poly_index : polys.index_range()) {
    const MPoly &poly = polys[poly_index];
    const T value = old_values[poly_index];
    for (const int loop_index : IndexRange(poly.loopstart, poly.totloop)) {
      const MLoop &loop = loops[loop_index];
      mixer.mix_in(loop.e, value);
    }
  }
  mixer.finalize();
}

/* An edge is selected if any connected face was selected. */
template<>
void adapt_mesh_domain_face_to_edge_impl(const Mesh &mesh,
                                         const VArray<bool> &old_values,
                                         MutableSpan<bool> r_values)
{
  BLI_assert(r_values.size() == mesh.totedge);
  const Span<MPoly> polys = mesh.polys();
  const Span<MLoop> loops = mesh.loops();

  r_values.fill(false);
  threading::parallel_for(polys.index_range(), 2048, [&](const IndexRange range) {
    for (const int poly_index : range) {
      if (old_values[poly_index]) {
        const MPoly &poly = polys[poly_index];
        for (const MLoop &loop : loops.slice(poly.loopstart, poly.totloop)) {
          r_values[loop.e] = true;
        }
      }
    }
  });
}

static GVArray adapt_mesh_domain_face_to_edge(const Mesh &mesh, const GVArray &varray)
{
  GArray<> values(varray.type(), mesh.totedge);
  attribute_math::convert_to_static_type(varray.type(), [&](auto dummy) {
    using T = decltype(dummy);
    if constexpr (!std::is_void_v<attribute_math::DefaultMixer<T>>) {
      adapt_mesh_domain_face_to_edge_impl<T>(
          mesh, varray.typed<T>(), values.as_mutable_span().typed<T>());
    }
  });
  return GVArray::ForGArray(std::move(values));
}

static GVArray adapt_mesh_domain_point_to_face(const Mesh &mesh, const GVArray &varray)
{
  const Span<MPoly> polys = mesh.polys();
  const Span<MLoop> loops = mesh.loops();

  GVArray new_varray;
  attribute_math::convert_to_static_type(varray.type(), [&](auto dummy) {
    using T = decltype(dummy);
    if constexpr (!std::is_void_v<attribute_math::DefaultMixer<T>>) {
      if constexpr (std::is_same_v<T, bool>) {
        new_varray = VArray<T>::ForFunc(
            mesh.totpoly, [loops, polys, varray = varray.typed<bool>()](const int face_index) {
              /* A face is selected if all of its vertices were selected. */
              const MPoly &poly = polys[face_index];
              for (const int loop_index : IndexRange(poly.loopstart, poly.totloop)) {
                const MLoop &loop = loops[loop_index];
                if (!varray[loop.v]) {
                  return false;
                }
              }
              return true;
            });
      }
      else {
        new_varray = VArray<T>::ForFunc(
            mesh.totpoly, [loops, polys, varray = varray.typed<T>()](const int face_index) {
              T return_value;
              attribute_math::DefaultMixer<T> mixer({&return_value, 1});
              const MPoly &poly = polys[face_index];
              for (const int loop_index : IndexRange(poly.loopstart, poly.totloop)) {
                const MLoop &loop = loops[loop_index];
                const T value = varray[loop.v];
                mixer.mix_in(0, value);
              }
              mixer.finalize();
              return return_value;
            });
      }
    }
  });
  return new_varray;
}

static GVArray adapt_mesh_domain_point_to_edge(const Mesh &mesh, const GVArray &varray)
{
  const Span<MEdge> edges = mesh.edges();

  GVArray new_varray;
  attribute_math::convert_to_static_type(varray.type(), [&](auto dummy) {
    using T = decltype(dummy);
    if constexpr (!std::is_void_v<attribute_math::DefaultMixer<T>>) {
      if constexpr (std::is_same_v<T, bool>) {
        /* An edge is selected if both of its vertices were selected. */
        new_varray = VArray<bool>::ForFunc(
            edges.size(), [edges, varray = varray.typed<bool>()](const int edge_index) {
              const MEdge &edge = edges[edge_index];
              return varray[edge.v1] && varray[edge.v2];
            });
      }
      else {
        new_varray = VArray<T>::ForFunc(
            edges.size(), [edges, varray = varray.typed<T>()](const int edge_index) {
              T return_value;
              attribute_math::DefaultMixer<T> mixer({&return_value, 1});
              const MEdge &edge = edges[edge_index];
              mixer.mix_in(0, varray[edge.v1]);
              mixer.mix_in(0, varray[edge.v2]);
              mixer.finalize();
              return return_value;
            });
      }
    }
  });
  return new_varray;
}

template<typename T>
void adapt_mesh_domain_edge_to_corner_impl(const Mesh &mesh,
                                           const VArray<T> &old_values,
                                           MutableSpan<T> r_values)
{
  BLI_assert(r_values.size() == mesh.totloop);
  const Span<MPoly> polys = mesh.polys();
  const Span<MLoop> loops = mesh.loops();

  attribute_math::DefaultMixer<T> mixer(r_values);

  for (const int poly_index : polys.index_range()) {
    const MPoly &poly = polys[poly_index];

    /* For every corner, mix the values from the adjacent edges on the face. */
    for (const int loop_index : IndexRange(poly.loopstart, poly.totloop)) {
      const int loop_index_prev = mesh_topology::previous_poly_loop(poly, loop_index);
      const MLoop &loop = loops[loop_index];
      const MLoop &loop_prev = loops[loop_index_prev];
      mixer.mix_in(loop_index, old_values[loop.e]);
      mixer.mix_in(loop_index, old_values[loop_prev.e]);
    }
  }

  mixer.finalize();
}

/* A corner is selected if its two adjacent edges were selected. */
template<>
void adapt_mesh_domain_edge_to_corner_impl(const Mesh &mesh,
                                           const VArray<bool> &old_values,
                                           MutableSpan<bool> r_values)
{
  BLI_assert(r_values.size() == mesh.totloop);
  const Span<MPoly> polys = mesh.polys();
  const Span<MLoop> loops = mesh.loops();

  r_values.fill(false);

  threading::parallel_for(polys.index_range(), 2048, [&](const IndexRange range) {
    for (const int poly_index : range) {
      const MPoly &poly = polys[poly_index];
      for (const int loop_index : IndexRange(poly.loopstart, poly.totloop)) {
        const int loop_index_prev = mesh_topology::previous_poly_loop(poly, loop_index);
        const MLoop &loop = loops[loop_index];
        const MLoop &loop_prev = loops[loop_index_prev];
        if (old_values[loop.e] && old_values[loop_prev.e]) {
          r_values[loop_index] = true;
        }
      }
    }
  });
}

static GVArray adapt_mesh_domain_edge_to_corner(const Mesh &mesh, const GVArray &varray)
{
  GArray<> values(varray.type(), mesh.totloop);
  attribute_math::convert_to_static_type(varray.type(), [&](auto dummy) {
    using T = decltype(dummy);
    if constexpr (!std::is_void_v<attribute_math::DefaultMixer<T>>) {
      adapt_mesh_domain_edge_to_corner_impl<T>(
          mesh, varray.typed<T>(), values.as_mutable_span().typed<T>());
    }
  });
  return GVArray::ForGArray(std::move(values));
}

template<typename T>
static void adapt_mesh_domain_edge_to_point_impl(const Mesh &mesh,
                                                 const VArray<T> &old_values,
                                                 MutableSpan<T> r_values)
{
  BLI_assert(r_values.size() == mesh.totvert);
  const Span<MEdge> edges = mesh.edges();

  attribute_math::DefaultMixer<T> mixer(r_values);

  for (const int edge_index : IndexRange(mesh.totedge)) {
    const MEdge &edge = edges[edge_index];
    const T value = old_values[edge_index];
    mixer.mix_in(edge.v1, value);
    mixer.mix_in(edge.v2, value);
  }

  mixer.finalize();
}

/* A vertex is selected if any connected edge was selected. */
template<>
void adapt_mesh_domain_edge_to_point_impl(const Mesh &mesh,
                                          const VArray<bool> &old_values,
                                          MutableSpan<bool> r_values)
{
  BLI_assert(r_values.size() == mesh.totvert);
  const Span<MEdge> edges = mesh.edges();

  /* Multiple threads can write to the same index here, but they are only
   * writing true, and writing to single bytes is expected to be threadsafe. */
  r_values.fill(false);
  threading::parallel_for(edges.index_range(), 4096, [&](const IndexRange range) {
    for (const int edge_index : range) {
      if (old_values[edge_index]) {
        const MEdge &edge = edges[edge_index];
        r_values[edge.v1] = true;
        r_values[edge.v2] = true;
      }
    }
  });
}

static GVArray adapt_mesh_domain_edge_to_point(const Mesh &mesh, const GVArray &varray)
{
  GArray<> values(varray.type(), mesh.totvert);
  attribute_math::convert_to_static_type(varray.type(), [&](auto dummy) {
    using T = decltype(dummy);
    if constexpr (!std::is_void_v<attribute_math::DefaultMixer<T>>) {
      adapt_mesh_domain_edge_to_point_impl<T>(
          mesh, varray.typed<T>(), values.as_mutable_span().typed<T>());
    }
  });
  return GVArray::ForGArray(std::move(values));
}

static GVArray adapt_mesh_domain_edge_to_face(const Mesh &mesh, const GVArray &varray)
{
  const Span<MPoly> polys = mesh.polys();
  const Span<MLoop> loops = mesh.loops();

  GVArray new_varray;
  attribute_math::convert_to_static_type(varray.type(), [&](auto dummy) {
    using T = decltype(dummy);
    if constexpr (!std::is_void_v<attribute_math::DefaultMixer<T>>) {
      if constexpr (std::is_same_v<T, bool>) {
        /* A face is selected if all of its edges are selected. */
        new_varray = VArray<bool>::ForFunc(
            polys.size(), [loops, polys, varray = varray.typed<T>()](const int face_index) {
              const MPoly &poly = polys[face_index];
              for (const int loop_index : IndexRange(poly.loopstart, poly.totloop)) {
                const MLoop &loop = loops[loop_index];
                if (!varray[loop.e]) {
                  return false;
                }
              }
              return true;
            });
      }
      else {
        new_varray = VArray<T>::ForFunc(
            polys.size(), [loops, polys, varray = varray.typed<T>()](const int face_index) {
              T return_value;
              attribute_math::DefaultMixer<T> mixer({&return_value, 1});
              const MPoly &poly = polys[face_index];
              for (const int loop_index : IndexRange(poly.loopstart, poly.totloop)) {
                const MLoop &loop = loops[loop_index];
                const T value = varray[loop.e];
                mixer.mix_in(0, value);
              }
              mixer.finalize();
              return return_value;
            });
      }
    }
  });
  return new_varray;
}

}  // namespace blender::bke

static bool can_simple_adapt_for_single(const eAttrDomain from_domain, const eAttrDomain to_domain)
{
  /* For some domain combinations, a single value will always map directly. For others, there may
   * be loose elements on the result domain that should have the default value rather than the
   * single value from the source. */
  switch (from_domain) {
    case ATTR_DOMAIN_POINT:
      /* All other domains are always connected to points. */
      return true;
    case ATTR_DOMAIN_EDGE:
      /* There may be loose vertices not connected to edges. */
      return ELEM(to_domain, ATTR_DOMAIN_FACE, ATTR_DOMAIN_CORNER);
    case ATTR_DOMAIN_FACE:
      /* There may be loose vertices or edges not connected to faces. */
      return to_domain == ATTR_DOMAIN_CORNER;
    case ATTR_DOMAIN_CORNER:
      /* Only faces are always connected to corners. */
      return to_domain == ATTR_DOMAIN_FACE;
    default:
      BLI_assert_unreachable();
      return false;
  }
}

static blender::GVArray adapt_mesh_attribute_domain(const Mesh &mesh,
                                                    const blender::GVArray &varray,
                                                    const eAttrDomain from_domain,
                                                    const eAttrDomain to_domain)
{
  if (!varray) {
    return {};
  }
  if (varray.size() == 0) {
    return {};
  }
  if (from_domain == to_domain) {
    return varray;
  }
  if (varray.is_single()) {
    if (can_simple_adapt_for_single(from_domain, to_domain)) {
      BUFFER_FOR_CPP_TYPE_VALUE(varray.type(), value);
      varray.get_internal_single(value);
      return blender::GVArray::ForSingle(
          varray.type(), mesh.attributes().domain_size(to_domain), value);
    }
  }

  switch (from_domain) {
    case ATTR_DOMAIN_CORNER: {
      switch (to_domain) {
        case ATTR_DOMAIN_POINT:
          return blender::bke::adapt_mesh_domain_corner_to_point(mesh, varray);
        case ATTR_DOMAIN_FACE:
          return blender::bke::adapt_mesh_domain_corner_to_face(mesh, varray);
        case ATTR_DOMAIN_EDGE:
          return blender::bke::adapt_mesh_domain_corner_to_edge(mesh, varray);
        default:
          break;
      }
      break;
    }
    case ATTR_DOMAIN_POINT: {
      switch (to_domain) {
        case ATTR_DOMAIN_CORNER:
          return blender::bke::adapt_mesh_domain_point_to_corner(mesh, varray);
        case ATTR_DOMAIN_FACE:
          return blender::bke::adapt_mesh_domain_point_to_face(mesh, varray);
        case ATTR_DOMAIN_EDGE:
          return blender::bke::adapt_mesh_domain_point_to_edge(mesh, varray);
        default:
          break;
      }
      break;
    }
    case ATTR_DOMAIN_FACE: {
      switch (to_domain) {
        case ATTR_DOMAIN_POINT:
          return blender::bke::adapt_mesh_domain_face_to_point(mesh, varray);
        case ATTR_DOMAIN_CORNER:
          return blender::bke::adapt_mesh_domain_face_to_corner(mesh, varray);
        case ATTR_DOMAIN_EDGE:
          return blender::bke::adapt_mesh_domain_face_to_edge(mesh, varray);
        default:
          break;
      }
      break;
    }
    case ATTR_DOMAIN_EDGE: {
      switch (to_domain) {
        case ATTR_DOMAIN_CORNER:
          return blender::bke::adapt_mesh_domain_edge_to_corner(mesh, varray);
        case ATTR_DOMAIN_POINT:
          return blender::bke::adapt_mesh_domain_edge_to_point(mesh, varray);
        case ATTR_DOMAIN_FACE:
          return blender::bke::adapt_mesh_domain_edge_to_face(mesh, varray);
        default:
          break;
      }
      break;
    }
    default:
      break;
  }

  return {};
}

namespace blender::bke {

template<typename StructT, typename ElemT, ElemT (*GetFunc)(const StructT &)>
static GVArray make_derived_read_attribute(const void *data, const int domain_num)
{
  return VArray<ElemT>::template ForDerivedSpan<StructT, GetFunc>(
      Span<StructT>((const StructT *)data, domain_num));
}

template<typename StructT,
         typename ElemT,
         ElemT (*GetFunc)(const StructT &),
         void (*SetFunc)(StructT &, ElemT)>
static GVMutableArray make_derived_write_attribute(void *data, const int domain_num)
{
  return VMutableArray<ElemT>::template ForDerivedSpan<StructT, GetFunc, SetFunc>(
      MutableSpan<StructT>((StructT *)data, domain_num));
}

static float3 get_vertex_position(const MVert &vert)
{
  return float3(vert.co);
}

static void set_vertex_position(MVert &vert, float3 position)
{
  copy_v3_v3(vert.co, position);
}

static void tag_component_positions_changed(void *owner)
{
  Mesh *mesh = static_cast<Mesh *>(owner);
  if (mesh != nullptr) {
    BKE_mesh_tag_coords_changed(mesh);
  }
}

static bool get_shade_smooth(const MPoly &mpoly)
{
  return mpoly.flag & ME_SMOOTH;
}

static void set_shade_smooth(MPoly &mpoly, bool value)
{
  SET_FLAG_FROM_TEST(mpoly.flag, value, ME_SMOOTH);
}

static float2 get_loop_uv(const MLoopUV &uv)
{
  return float2(uv.uv);
}

static void set_loop_uv(MLoopUV &uv, float2 co)
{
  copy_v2_v2(uv.uv, co);
}

static float get_crease(const float &crease)
{
  return crease;
}

static void set_crease(float &crease, const float value)
{
  crease = std::clamp(value, 0.0f, 1.0f);
}

class VArrayImpl_For_VertexWeights final : public VMutableArrayImpl<float> {
 private:
  MDeformVert *dverts_;
  const int dvert_index_;

 public:
  VArrayImpl_For_VertexWeights(MutableSpan<MDeformVert> dverts, const int dvert_index)
      : VMutableArrayImpl<float>(dverts.size()), dverts_(dverts.data()), dvert_index_(dvert_index)
  {
  }

  VArrayImpl_For_VertexWeights(Span<MDeformVert> dverts, const int dvert_index)
      : VMutableArrayImpl<float>(dverts.size()),
        dverts_(const_cast<MDeformVert *>(dverts.data())),
        dvert_index_(dvert_index)
  {
  }

  float get(const int64_t index) const override
  {
    if (dverts_ == nullptr) {
      return 0.0f;
    }
    if (const MDeformWeight *weight = this->find_weight_at_index(index)) {
      return weight->weight;
    }
    return 0.0f;
  }

  void set(const int64_t index, const float value) override
  {
    MDeformVert &dvert = dverts_[index];
    if (value == 0.0f) {
      if (MDeformWeight *weight = this->find_weight_at_index(index)) {
        weight->weight = 0.0f;
      }
    }
    else {
      MDeformWeight *weight = BKE_defvert_ensure_index(&dvert, dvert_index_);
      weight->weight = value;
    }
  }

  void set_all(Span<float> src) override
  {
    for (const int64_t index : src.index_range()) {
      this->set(index, src[index]);
    }
  }

  void materialize(IndexMask mask, MutableSpan<float> r_span) const override
  {
    if (dverts_ == nullptr) {
      return r_span.fill_indices(mask, 0.0f);
    }
    for (const int64_t index : mask) {
      if (const MDeformWeight *weight = this->find_weight_at_index(index)) {
        r_span[index] = weight->weight;
      }
      else {
        r_span[index] = 0.0f;
      }
    }
  }

  void materialize_to_uninitialized(IndexMask mask, MutableSpan<float> r_span) const override
  {
    this->materialize(mask, r_span);
  }

 private:
  MDeformWeight *find_weight_at_index(const int64_t index)
  {
    for (MDeformWeight &weight : MutableSpan(dverts_[index].dw, dverts_[index].totweight)) {
      if (weight.def_nr == dvert_index_) {
        return &weight;
      }
    }
    return nullptr;
  }
  const MDeformWeight *find_weight_at_index(const int64_t index) const
  {
    for (const MDeformWeight &weight : Span(dverts_[index].dw, dverts_[index].totweight)) {
      if (weight.def_nr == dvert_index_) {
        return &weight;
      }
    }
    return nullptr;
  }
};

/**
 * This provider makes vertex groups available as float attributes.
 */
class VertexGroupsAttributeProvider final : public DynamicAttributesProvider {
 public:
  GAttributeReader try_get_for_read(const void *owner,
                                    const AttributeIDRef &attribute_id) const final
  {
    if (!attribute_id.is_named()) {
      return {};
    }
    const Mesh *mesh = static_cast<const Mesh *>(owner);
    if (mesh == nullptr) {
      return {};
    }
    const std::string name = attribute_id.name();
    const int vertex_group_index = BLI_findstringindex(
        &mesh->vertex_group_names, name.c_str(), offsetof(bDeformGroup, name));
    if (vertex_group_index < 0) {
      return {};
    }
    const Span<MDeformVert> dverts = mesh->deform_verts();
    if (dverts.is_empty()) {
      static const float default_value = 0.0f;
      return {VArray<float>::ForSingle(default_value, mesh->totvert), ATTR_DOMAIN_POINT};
    }
    return {VArray<float>::For<VArrayImpl_For_VertexWeights>(dverts, vertex_group_index),
            ATTR_DOMAIN_POINT};
  }

  GAttributeWriter try_get_for_write(void *owner, const AttributeIDRef &attribute_id) const final
  {
    if (!attribute_id.is_named()) {
      return {};
    }
    Mesh *mesh = static_cast<Mesh *>(owner);
    if (mesh == nullptr) {
      return {};
    }

    const std::string name = attribute_id.name();
    const int vertex_group_index = BLI_findstringindex(
        &mesh->vertex_group_names, name.c_str(), offsetof(bDeformGroup, name));
    if (vertex_group_index < 0) {
      return {};
    }
    MutableSpan<MDeformVert> dverts = mesh->deform_verts_for_write();
    return {VMutableArray<float>::For<VArrayImpl_For_VertexWeights>(dverts, vertex_group_index),
            ATTR_DOMAIN_POINT};
  }

  bool try_delete(void *owner, const AttributeIDRef &attribute_id) const final
  {
    if (!attribute_id.is_named()) {
      return false;
    }
    Mesh *mesh = static_cast<Mesh *>(owner);
    if (mesh == nullptr) {
      return true;
    }

    const std::string name = attribute_id.name();

    int index;
    bDeformGroup *group;
    if (!BKE_id_defgroup_name_find(&mesh->id, name.c_str(), &index, &group)) {
      return false;
    }
    BLI_remlink(&mesh->vertex_group_names, group);
    MEM_freeN(group);
    if (mesh->deform_verts().is_empty()) {
      return true;
    }

    for (MDeformVert &dvert : mesh->deform_verts_for_write()) {
      MDeformWeight *weight = BKE_defvert_find_index(&dvert, index);
      BKE_defvert_remove_group(&dvert, weight);
      for (MDeformWeight &weight : MutableSpan(dvert.dw, dvert.totweight)) {
        if (weight.def_nr > index) {
          weight.def_nr--;
        }
      }
    }
    return true;
  }

  bool foreach_attribute(const void *owner, const AttributeForeachCallback callback) const final
  {
    const Mesh *mesh = static_cast<const Mesh *>(owner);
    if (mesh == nullptr) {
      return true;
    }

    LISTBASE_FOREACH (const bDeformGroup *, group, &mesh->vertex_group_names) {
      if (!callback(group->name, {ATTR_DOMAIN_POINT, CD_PROP_FLOAT})) {
        return false;
      }
    }
    return true;
  }

  void foreach_domain(const FunctionRef<void(eAttrDomain)> callback) const final
  {
    callback(ATTR_DOMAIN_POINT);
  }
};

/**
 * This provider makes face normals available as a read-only float3 attribute.
 */
class NormalAttributeProvider final : public BuiltinAttributeProvider {
 public:
  NormalAttributeProvider()
      : BuiltinAttributeProvider(
            "normal", ATTR_DOMAIN_FACE, CD_PROP_FLOAT3, NonCreatable, Readonly, NonDeletable)
  {
  }

  GVArray try_get_for_read(const void *owner) const final
  {
    const Mesh *mesh = static_cast<const Mesh *>(owner);
    if (mesh == nullptr || mesh->totpoly == 0) {
      return {};
    }
    return VArray<float3>::ForSpan({(float3 *)BKE_mesh_poly_normals_ensure(mesh), mesh->totpoly});
  }

  GAttributeWriter try_get_for_write(void * /*owner*/) const final
  {
    return {};
  }

  bool try_delete(void * /*owner*/) const final
  {
    return false;
  }

  bool try_create(void * /*owner*/, const AttributeInit & /*initializer*/) const final
  {
    return false;
  }

  bool exists(const void *owner) const final
  {
    const Mesh *mesh = static_cast<const Mesh *>(owner);
    return mesh->totpoly != 0;
  }
};

/**
 * In this function all the attribute providers for a mesh component are created. Most data in this
 * function is statically allocated, because it does not change over time.
 */
static ComponentAttributeProviders create_attribute_providers_for_mesh()
{
#define MAKE_MUTABLE_CUSTOM_DATA_GETTER(NAME) \
  [](void *owner) -> CustomData * { \
    Mesh *mesh = static_cast<Mesh *>(owner); \
    return &mesh->NAME; \
  }
#define MAKE_CONST_CUSTOM_DATA_GETTER(NAME) \
  [](const void *owner) -> const CustomData * { \
    const Mesh *mesh = static_cast<const Mesh *>(owner); \
    return &mesh->NAME; \
  }
#define MAKE_GET_ELEMENT_NUM_GETTER(NAME) \
  [](const void *owner) -> int { \
    const Mesh *mesh = static_cast<const Mesh *>(owner); \
    return mesh->NAME; \
  }

  static CustomDataAccessInfo corner_access = {MAKE_MUTABLE_CUSTOM_DATA_GETTER(ldata),
                                               MAKE_CONST_CUSTOM_DATA_GETTER(ldata),
                                               MAKE_GET_ELEMENT_NUM_GETTER(totloop)};
  static CustomDataAccessInfo point_access = {MAKE_MUTABLE_CUSTOM_DATA_GETTER(vdata),
                                              MAKE_CONST_CUSTOM_DATA_GETTER(vdata),
                                              MAKE_GET_ELEMENT_NUM_GETTER(totvert)};
  static CustomDataAccessInfo edge_access = {MAKE_MUTABLE_CUSTOM_DATA_GETTER(edata),
                                             MAKE_CONST_CUSTOM_DATA_GETTER(edata),
                                             MAKE_GET_ELEMENT_NUM_GETTER(totedge)};
  static CustomDataAccessInfo face_access = {MAKE_MUTABLE_CUSTOM_DATA_GETTER(pdata),
                                             MAKE_CONST_CUSTOM_DATA_GETTER(pdata),
                                             MAKE_GET_ELEMENT_NUM_GETTER(totpoly)};

#undef MAKE_CONST_CUSTOM_DATA_GETTER
#undef MAKE_MUTABLE_CUSTOM_DATA_GETTER

  static BuiltinCustomDataLayerProvider position(
      "position",
      ATTR_DOMAIN_POINT,
      CD_PROP_FLOAT3,
      CD_MVERT,
      BuiltinAttributeProvider::NonCreatable,
      BuiltinAttributeProvider::Writable,
      BuiltinAttributeProvider::NonDeletable,
      point_access,
      make_derived_read_attribute<MVert, float3, get_vertex_position>,
      make_derived_write_attribute<MVert, float3, get_vertex_position, set_vertex_position>,
      tag_component_positions_changed);

  static NormalAttributeProvider normal;

  static BuiltinCustomDataLayerProvider id("id",
                                           ATTR_DOMAIN_POINT,
                                           CD_PROP_INT32,
                                           CD_PROP_INT32,
                                           BuiltinAttributeProvider::Creatable,
                                           BuiltinAttributeProvider::Writable,
                                           BuiltinAttributeProvider::Deletable,
                                           point_access,
                                           make_array_read_attribute<int>,
                                           make_array_write_attribute<int>,
                                           nullptr);

  static const fn::CustomMF_SI_SO<int, int> material_index_clamp{
      "Material Index Validate",
      [](int value) {
        /* Use #short for the maximum since many areas still use that type for indices. */
        return std::clamp<int>(value, 0, std::numeric_limits<short>::max());
      },
      fn::CustomMF_presets::AllSpanOrSingle()};
  static BuiltinCustomDataLayerProvider material_index("material_index",
                                                       ATTR_DOMAIN_FACE,
                                                       CD_PROP_INT32,
                                                       CD_PROP_INT32,
                                                       BuiltinAttributeProvider::Creatable,
                                                       BuiltinAttributeProvider::Writable,
                                                       BuiltinAttributeProvider::Deletable,
                                                       face_access,
                                                       make_array_read_attribute<int>,
                                                       make_array_write_attribute<int>,
                                                       nullptr,
                                                       AttributeValidator{&material_index_clamp});

  static BuiltinCustomDataLayerProvider shade_smooth(
      "shade_smooth",
      ATTR_DOMAIN_FACE,
      CD_PROP_BOOL,
      CD_MPOLY,
      BuiltinAttributeProvider::NonCreatable,
      BuiltinAttributeProvider::Writable,
      BuiltinAttributeProvider::NonDeletable,
      face_access,
      make_derived_read_attribute<MPoly, bool, get_shade_smooth>,
      make_derived_write_attribute<MPoly, bool, get_shade_smooth, set_shade_smooth>,
      nullptr);

  static BuiltinCustomDataLayerProvider crease(
      "crease",
      ATTR_DOMAIN_EDGE,
      CD_PROP_FLOAT,
      CD_CREASE,
      BuiltinAttributeProvider::Creatable,
      BuiltinAttributeProvider::Writable,
      BuiltinAttributeProvider::Deletable,
      edge_access,
      make_array_read_attribute<float>,
      make_derived_write_attribute<float, float, get_crease, set_crease>,
      nullptr);

  static NamedLegacyCustomDataProvider uvs(
      ATTR_DOMAIN_CORNER,
      CD_PROP_FLOAT2,
      CD_MLOOPUV,
      corner_access,
      make_derived_read_attribute<MLoopUV, float2, get_loop_uv>,
      make_derived_write_attribute<MLoopUV, float2, get_loop_uv, set_loop_uv>);

  static VertexGroupsAttributeProvider vertex_groups;
  static CustomDataAttributeProvider corner_custom_data(ATTR_DOMAIN_CORNER, corner_access);
  static CustomDataAttributeProvider point_custom_data(ATTR_DOMAIN_POINT, point_access);
  static CustomDataAttributeProvider edge_custom_data(ATTR_DOMAIN_EDGE, edge_access);
  static CustomDataAttributeProvider face_custom_data(ATTR_DOMAIN_FACE, face_access);

  return ComponentAttributeProviders(
      {&position, &id, &material_index, &shade_smooth, &normal, &crease},
      {&uvs,
       &corner_custom_data,
       &vertex_groups,
       &point_custom_data,
       &edge_custom_data,
       &face_custom_data});
}

static AttributeAccessorFunctions get_mesh_accessor_functions()
{
  static const ComponentAttributeProviders providers = create_attribute_providers_for_mesh();
  AttributeAccessorFunctions fn =
      attribute_accessor_functions::accessor_functions_for_providers<providers>();
  fn.domain_size = [](const void *owner, const eAttrDomain domain) {
    if (owner == nullptr) {
      return 0;
    }
    const Mesh &mesh = *static_cast<const Mesh *>(owner);
    switch (domain) {
      case ATTR_DOMAIN_POINT:
        return mesh.totvert;
      case ATTR_DOMAIN_EDGE:
        return mesh.totedge;
      case ATTR_DOMAIN_FACE:
        return mesh.totpoly;
      case ATTR_DOMAIN_CORNER:
        return mesh.totloop;
      default:
        return 0;
    }
  };
  fn.domain_supported = [](const void * /*owner*/, const eAttrDomain domain) {
    return ELEM(domain, ATTR_DOMAIN_POINT, ATTR_DOMAIN_EDGE, ATTR_DOMAIN_FACE, ATTR_DOMAIN_CORNER);
  };
  fn.adapt_domain = [](const void *owner,
                       const blender::GVArray &varray,
                       const eAttrDomain from_domain,
                       const eAttrDomain to_domain) -> blender::GVArray {
    if (owner == nullptr) {
      return {};
    }
    const Mesh &mesh = *static_cast<const Mesh *>(owner);
    return adapt_mesh_attribute_domain(mesh, varray, from_domain, to_domain);
  };
  return fn;
}

static const AttributeAccessorFunctions &get_mesh_accessor_functions_ref()
{
  static const AttributeAccessorFunctions fn = get_mesh_accessor_functions();
  return fn;
}

}  // namespace blender::bke

blender::bke::AttributeAccessor Mesh::attributes() const
{
  return blender::bke::AttributeAccessor(this, blender::bke::get_mesh_accessor_functions_ref());
}

blender::bke::MutableAttributeAccessor Mesh::attributes_for_write()
{
  return blender::bke::MutableAttributeAccessor(this,
                                                blender::bke::get_mesh_accessor_functions_ref());
}

std::optional<blender::bke::AttributeAccessor> MeshComponent::attributes() const
{
  return blender::bke::AttributeAccessor(mesh_, blender::bke::get_mesh_accessor_functions_ref());
}

std::optional<blender::bke::MutableAttributeAccessor> MeshComponent::attributes_for_write()
{
  Mesh *mesh = this->get_for_write();
  return blender::bke::MutableAttributeAccessor(mesh,
                                                blender::bke::get_mesh_accessor_functions_ref());
}

/** \} */