Welcome to mirror list, hosted at ThFree Co, Russian Federation.

mesh_evaluate.c « intern « blenkernel « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: d17ca751c5eedc8736f0ee4729e2c7b24778527d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
/*
 * ***** BEGIN GPL LICENSE BLOCK *****
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 *
 * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
 * All rights reserved.
 *
 * Contributor(s): Blender Foundation
 *
 * ***** END GPL LICENSE BLOCK *****
 */

/** \file blender/blenkernel/intern/mesh_evaluate.c
 *  \ingroup bke
 *
 * Functions to evaluate mesh data.
 */

#include <limits.h>

#include "MEM_guardedalloc.h"

#include "DNA_object_types.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"

#include "BLI_utildefines.h"
#include "BLI_memarena.h"
#include "BLI_mempool.h"
#include "BLI_math.h"
#include "BLI_edgehash.h"
#include "BLI_bitmap.h"
#include "BLI_polyfill2d.h"
#include "BLI_linklist.h"
#include "BLI_linklist_stack.h"
#include "BLI_alloca.h"
#include "BLI_stack.h"
#include "BLI_task.h"

#include "BKE_customdata.h"
#include "BKE_mesh.h"
#include "BKE_multires.h"
#include "BKE_report.h"

#include "BLI_strict_flags.h"

#include "mikktspace.h"

// #define DEBUG_TIME

#include "PIL_time.h"
#ifdef DEBUG_TIME
#  include "PIL_time_utildefines.h"
#endif

/* -------------------------------------------------------------------- */

/** \name Mesh Normal Calculation
 * \{ */

/**
 * Call when there are no polygons.
 */
static void mesh_calc_normals_vert_fallback(MVert *mverts, int numVerts)
{
	int i;
	for (i = 0; i < numVerts; i++) {
		MVert *mv = &mverts[i];
		float no[3];

		normalize_v3_v3(no, mv->co);
		normal_float_to_short_v3(mv->no, no);
	}
}

/* Calculate vertex and face normals, face normals are returned in *r_faceNors if non-NULL
 * and vertex normals are stored in actual mverts.
 */
void BKE_mesh_calc_normals_mapping(MVert *mverts, int numVerts,
                                   MLoop *mloop, MPoly *mpolys, int numLoops, int numPolys, float (*r_polyNors)[3],
                                   MFace *mfaces, int numFaces, const int *origIndexFace, float (*r_faceNors)[3])
{
	BKE_mesh_calc_normals_mapping_ex(mverts, numVerts, mloop, mpolys,
	                                 numLoops, numPolys, r_polyNors, mfaces, numFaces,
	                                 origIndexFace, r_faceNors, false);
}
/* extended version of 'BKE_mesh_calc_normals_poly' with option not to calc vertex normals */
void BKE_mesh_calc_normals_mapping_ex(
        MVert *mverts, int numVerts,
        MLoop *mloop, MPoly *mpolys,
        int numLoops, int numPolys, float (*r_polyNors)[3],
        MFace *mfaces, int numFaces, const int *origIndexFace, float (*r_faceNors)[3],
        const bool only_face_normals)
{
	float (*pnors)[3] = r_polyNors, (*fnors)[3] = r_faceNors;
	int i;
	MFace *mf;
	MPoly *mp;

	if (numPolys == 0) {
		if (only_face_normals == false) {
			mesh_calc_normals_vert_fallback(mverts, numVerts);
		}
		return;
	}

	/* if we are not calculating verts and no verts were passes then we have nothing to do */
	if ((only_face_normals == true) && (r_polyNors == NULL) && (r_faceNors == NULL)) {
		printf("%s: called with nothing to do\n", __func__);
		return;
	}

	if (!pnors) pnors = MEM_callocN(sizeof(float[3]) * (size_t)numPolys, __func__);
	/* if (!fnors) fnors = MEM_callocN(sizeof(float[3]) * numFaces, "face nors mesh.c"); */ /* NO NEED TO ALLOC YET */


	if (only_face_normals == false) {
		/* vertex normals are optional, they require some extra calculations,
		 * so make them optional */
		BKE_mesh_calc_normals_poly(mverts, numVerts, mloop, mpolys, numLoops, numPolys, pnors, false);
	}
	else {
		/* only calc poly normals */
		mp = mpolys;
		for (i = 0; i < numPolys; i++, mp++) {
			BKE_mesh_calc_poly_normal(mp, mloop + mp->loopstart, mverts, pnors[i]);
		}
	}

	if (origIndexFace &&
	    /* fnors == r_faceNors */ /* NO NEED TO ALLOC YET */
	    fnors != NULL &&
	    numFaces)
	{
		mf = mfaces;
		for (i = 0; i < numFaces; i++, mf++, origIndexFace++) {
			if (*origIndexFace < numPolys) {
				copy_v3_v3(fnors[i], pnors[*origIndexFace]);
			}
			else {
				/* eek, we're not corresponding to polys */
				printf("error in %s: tessellation face indices are incorrect.  normals may look bad.\n", __func__);
			}
		}
	}

	if (pnors != r_polyNors) MEM_freeN(pnors);
	/* if (fnors != r_faceNors) MEM_freeN(fnors); */ /* NO NEED TO ALLOC YET */

	fnors = pnors = NULL;
	
}

static void mesh_calc_normals_poly_accum(MPoly *mp, MLoop *ml,
                                         MVert *mvert, float polyno[3], float (*tnorms)[3])
{
	const int nverts = mp->totloop;
	float (*edgevecbuf)[3] = BLI_array_alloca(edgevecbuf, (size_t)nverts);
	int i;

	/* Polygon Normal and edge-vector */
	/* inline version of #BKE_mesh_calc_poly_normal, also does edge-vectors */
	{
		int i_prev = nverts - 1;
		const float *v_prev = mvert[ml[i_prev].v].co;
		const float *v_curr;

		zero_v3(polyno);
		/* Newell's Method */
		for (i = 0; i < nverts; i++) {
			v_curr = mvert[ml[i].v].co;
			add_newell_cross_v3_v3v3(polyno, v_prev, v_curr);

			/* Unrelated to normalize, calculate edge-vector */
			sub_v3_v3v3(edgevecbuf[i_prev], v_prev, v_curr);
			normalize_v3(edgevecbuf[i_prev]);
			i_prev = i;

			v_prev = v_curr;
		}
		if (UNLIKELY(normalize_v3(polyno) == 0.0f)) {
			polyno[2] = 1.0f; /* other axis set to 0.0 */
		}
	}

	/* accumulate angle weighted face normal */
	/* inline version of #accumulate_vertex_normals_poly */
	{
		const float *prev_edge = edgevecbuf[nverts - 1];

		for (i = 0; i < nverts; i++) {
			const float *cur_edge = edgevecbuf[i];

			/* calculate angle between the two poly edges incident on
			 * this vertex */
			const float fac = saacos(-dot_v3v3(cur_edge, prev_edge));

			/* accumulate */
			madd_v3_v3fl(tnorms[ml[i].v], polyno, fac);
			prev_edge = cur_edge;
		}
	}

}

void BKE_mesh_calc_normals_poly(MVert *mverts, int numVerts, MLoop *mloop, MPoly *mpolys,
                                int UNUSED(numLoops), int numPolys, float (*r_polynors)[3],
                                const bool only_face_normals)
{
	float (*pnors)[3] = r_polynors;
	float (*tnorms)[3];
	int i;
	MPoly *mp;

	if (only_face_normals) {
		BLI_assert((pnors != NULL) || (numPolys == 0));

#pragma omp parallel for if (numPolys > BKE_MESH_OMP_LIMIT)
		for (i = 0; i < numPolys; i++) {
			BKE_mesh_calc_poly_normal(&mpolys[i], mloop + mpolys[i].loopstart, mverts, pnors[i]);
		}
		return;
	}

	/* first go through and calculate normals for all the polys */
	tnorms = MEM_callocN(sizeof(*tnorms) * (size_t)numVerts, __func__);

	if (pnors) {
		mp = mpolys;
		for (i = 0; i < numPolys; i++, mp++) {
			mesh_calc_normals_poly_accum(mp, mloop + mp->loopstart, mverts, pnors[i], tnorms);
		}
	}
	else {
		float tpnor[3];  /* temp poly normal */
		mp = mpolys;
		for (i = 0; i < numPolys; i++, mp++) {
			mesh_calc_normals_poly_accum(mp, mloop + mp->loopstart, mverts, tpnor, tnorms);
		}
	}

	for (i = 0; i < numVerts; i++) {
		MVert *mv = &mverts[i];
		float *no = tnorms[i];

		if (UNLIKELY(normalize_v3(no) == 0.0f)) {
			/* following Mesh convention; we use vertex coordinate itself for normal in this case */
			normalize_v3_v3(no, mv->co);
		}

		normal_float_to_short_v3(mv->no, no);
	}

	MEM_freeN(tnorms);
}

void BKE_mesh_calc_normals(Mesh *mesh)
{
#ifdef DEBUG_TIME
	TIMEIT_START(BKE_mesh_calc_normals);
#endif
	BKE_mesh_calc_normals_poly(mesh->mvert, mesh->totvert,
	                           mesh->mloop, mesh->mpoly, mesh->totloop, mesh->totpoly,
	                           NULL, false);
#ifdef DEBUG_TIME
	TIMEIT_END(BKE_mesh_calc_normals);
#endif
}

void BKE_mesh_calc_normals_tessface(MVert *mverts, int numVerts, MFace *mfaces, int numFaces, float (*r_faceNors)[3])
{
	float (*tnorms)[3] = MEM_callocN(sizeof(*tnorms) * (size_t)numVerts, "tnorms");
	float (*fnors)[3] = (r_faceNors) ? r_faceNors : MEM_callocN(sizeof(*fnors) * (size_t)numFaces, "meshnormals");
	int i;

	for (i = 0; i < numFaces; i++) {
		MFace *mf = &mfaces[i];
		float *f_no = fnors[i];
		float *n4 = (mf->v4) ? tnorms[mf->v4] : NULL;
		const float *c4 = (mf->v4) ? mverts[mf->v4].co : NULL;

		if (mf->v4)
			normal_quad_v3(f_no, mverts[mf->v1].co, mverts[mf->v2].co, mverts[mf->v3].co, mverts[mf->v4].co);
		else
			normal_tri_v3(f_no, mverts[mf->v1].co, mverts[mf->v2].co, mverts[mf->v3].co);

		accumulate_vertex_normals(tnorms[mf->v1], tnorms[mf->v2], tnorms[mf->v3], n4,
		                          f_no, mverts[mf->v1].co, mverts[mf->v2].co, mverts[mf->v3].co, c4);
	}

	/* following Mesh convention; we use vertex coordinate itself for normal in this case */
	for (i = 0; i < numVerts; i++) {
		MVert *mv = &mverts[i];
		float *no = tnorms[i];
		
		if (UNLIKELY(normalize_v3(no) == 0.0f)) {
			normalize_v3_v3(no, mv->co);
		}

		normal_float_to_short_v3(mv->no, no);
	}
	
	MEM_freeN(tnorms);

	if (fnors != r_faceNors)
		MEM_freeN(fnors);
}

void BKE_lnor_spacearr_init(MLoopNorSpaceArray *lnors_spacearr, const int numLoops)
{
	if (!(lnors_spacearr->lspacearr && lnors_spacearr->loops_pool)) {
		MemArena *mem;

		if (!lnors_spacearr->mem) {
			lnors_spacearr->mem = BLI_memarena_new(BLI_MEMARENA_STD_BUFSIZE, __func__);
		}
		mem = lnors_spacearr->mem;
		lnors_spacearr->lspacearr = BLI_memarena_calloc(mem, sizeof(MLoopNorSpace *) * (size_t)numLoops);
		lnors_spacearr->loops_pool = BLI_memarena_alloc(mem, sizeof(LinkNode) * (size_t)numLoops);
	}
}

void BKE_lnor_spacearr_clear(MLoopNorSpaceArray *lnors_spacearr)
{
	BLI_memarena_clear(lnors_spacearr->mem);
	lnors_spacearr->lspacearr = NULL;
	lnors_spacearr->loops_pool = NULL;
}

void BKE_lnor_spacearr_free(MLoopNorSpaceArray *lnors_spacearr)
{
	BLI_memarena_free(lnors_spacearr->mem);
	lnors_spacearr->lspacearr = NULL;
	lnors_spacearr->loops_pool = NULL;
	lnors_spacearr->mem = NULL;
}

MLoopNorSpace *BKE_lnor_space_create(MLoopNorSpaceArray *lnors_spacearr)
{
	return BLI_memarena_calloc(lnors_spacearr->mem, sizeof(MLoopNorSpace));
}

/* This threshold is a bit touchy (usual float precision issue), this value seems OK. */
#define LNOR_SPACE_TRIGO_THRESHOLD (1.0f - 1e-6f)

/* Should only be called once.
 * Beware, this modifies ref_vec and other_vec in place!
 * In case no valid space can be generated, ref_alpha and ref_beta are set to zero (which means 'use auto lnors').
 */
void BKE_lnor_space_define(MLoopNorSpace *lnor_space, const float lnor[3],
                           float vec_ref[3], float vec_other[3], BLI_Stack *edge_vectors)
{
	const float pi2 = (float)M_PI * 2.0f;
	float tvec[3], dtp;
	const float dtp_ref = dot_v3v3(vec_ref, lnor);
	const float dtp_other = dot_v3v3(vec_other, lnor);

	if (UNLIKELY(fabsf(dtp_ref) >= LNOR_SPACE_TRIGO_THRESHOLD || fabsf(dtp_other) >= LNOR_SPACE_TRIGO_THRESHOLD)) {
		/* If vec_ref or vec_other are too much aligned with lnor, we can't build lnor space,
		 * tag it as invalid and abort. */
		lnor_space->ref_alpha = lnor_space->ref_beta = 0.0f;

		if (edge_vectors) {
			BLI_stack_clear(edge_vectors);
		}
		return;
	}

	copy_v3_v3(lnor_space->vec_lnor, lnor);

	/* Compute ref alpha, average angle of all available edge vectors to lnor. */
	if (edge_vectors) {
		float alpha = 0.0f;
		int nbr = 0;
		while (!BLI_stack_is_empty(edge_vectors)) {
			const float *vec = BLI_stack_peek(edge_vectors);
			alpha += saacosf(dot_v3v3(vec, lnor));
			BLI_stack_discard(edge_vectors);
			nbr++;
		}
		/* Note: In theory, this could be 'nbr > 2', but there is one case where we only have two edges for
		 *       two loops: a smooth vertex with only two edges and two faces (our Monkey's nose has that, e.g.). */
		BLI_assert(nbr >= 2);  /* This piece of code shall only be called for more than one loop... */
		lnor_space->ref_alpha = alpha / (float)nbr;
	}
	else {
		lnor_space->ref_alpha = (saacosf(dot_v3v3(vec_ref, lnor)) + saacosf(dot_v3v3(vec_other, lnor))) / 2.0f;
	}

	/* Project vec_ref on lnor's ortho plane. */
	mul_v3_v3fl(tvec, lnor, dtp_ref);
	sub_v3_v3(vec_ref, tvec);
	normalize_v3_v3(lnor_space->vec_ref, vec_ref);

	cross_v3_v3v3(tvec, lnor, lnor_space->vec_ref);
	normalize_v3_v3(lnor_space->vec_ortho, tvec);

	/* Project vec_other on lnor's ortho plane. */
	mul_v3_v3fl(tvec, lnor, dtp_other);
	sub_v3_v3(vec_other, tvec);
	normalize_v3(vec_other);

	/* Beta is angle between ref_vec and other_vec, around lnor. */
	dtp = dot_v3v3(lnor_space->vec_ref, vec_other);
	if (LIKELY(dtp < LNOR_SPACE_TRIGO_THRESHOLD)) {
		const float beta = saacos(dtp);
		lnor_space->ref_beta = (dot_v3v3(lnor_space->vec_ortho, vec_other) < 0.0f) ? pi2 - beta : beta;
	}
	else {
		lnor_space->ref_beta = pi2;
	}
}

void BKE_lnor_space_add_loop(MLoopNorSpaceArray *lnors_spacearr, MLoopNorSpace *lnor_space, const int ml_index,
                             const bool do_add_loop)
{
	lnors_spacearr->lspacearr[ml_index] = lnor_space;
	if (do_add_loop) {
		BLI_linklist_prepend_nlink(&lnor_space->loops, SET_INT_IN_POINTER(ml_index), &lnors_spacearr->loops_pool[ml_index]);
	}
}

MINLINE float unit_short_to_float(const short val)
{
	return (float)val / (float)SHRT_MAX;
}

MINLINE short unit_float_to_short(const float val)
{
	/* Rounding... */
	return (short)floorf(val * (float)SHRT_MAX + 0.5f);
}

void BKE_lnor_space_custom_data_to_normal(MLoopNorSpace *lnor_space, const short clnor_data[2], float r_custom_lnor[3])
{
	/* NOP custom normal data or invalid lnor space, return. */
	if (clnor_data[0] == 0 || lnor_space->ref_alpha == 0.0f || lnor_space->ref_beta == 0.0f) {
		copy_v3_v3(r_custom_lnor, lnor_space->vec_lnor);
		return;
	}

	{
		/* TODO Check whether using sincosf() gives any noticeable benefit
		 *      (could not even get it working under linux though)! */
		const float pi2 = (float)(M_PI * 2.0);
		const float alphafac = unit_short_to_float(clnor_data[0]);
		const float alpha = (alphafac > 0.0f ? lnor_space->ref_alpha : pi2 - lnor_space->ref_alpha) * alphafac;
		const float betafac = unit_short_to_float(clnor_data[1]);

		mul_v3_v3fl(r_custom_lnor, lnor_space->vec_lnor, cosf(alpha));

		if (betafac == 0.0f) {
			madd_v3_v3fl(r_custom_lnor, lnor_space->vec_ref, sinf(alpha));
		}
		else {
			const float sinalpha = sinf(alpha);
			const float beta = (betafac > 0.0f ? lnor_space->ref_beta : pi2 - lnor_space->ref_beta) * betafac;
			madd_v3_v3fl(r_custom_lnor, lnor_space->vec_ref, sinalpha * cosf(beta));
			madd_v3_v3fl(r_custom_lnor, lnor_space->vec_ortho, sinalpha * sinf(beta));
		}
	}
}

void BKE_lnor_space_custom_normal_to_data(MLoopNorSpace *lnor_space, const float custom_lnor[3], short r_clnor_data[2])
{
	/* We use null vector as NOP custom normal (can be simpler than giving autocomputed lnor...). */
	if (is_zero_v3(custom_lnor) || compare_v3v3(lnor_space->vec_lnor, custom_lnor, 1e-4f)) {
		r_clnor_data[0] = r_clnor_data[1] = 0;
		return;
	}

	{
		const float pi2 = (float)(M_PI * 2.0);
		const float cos_alpha = dot_v3v3(lnor_space->vec_lnor, custom_lnor);
		float vec[3], cos_beta;
		float alpha;

		alpha = saacosf(cos_alpha);
		if (alpha > lnor_space->ref_alpha) {
			/* Note we could stick to [0, pi] range here, but makes decoding more complex, not worth it. */
			r_clnor_data[0] = unit_float_to_short(-(pi2 - alpha) / (pi2 - lnor_space->ref_alpha));
		}
		else {
			r_clnor_data[0] = unit_float_to_short(alpha / lnor_space->ref_alpha);
		}

		/* Project custom lnor on (vec_ref, vec_ortho) plane. */
		mul_v3_v3fl(vec, lnor_space->vec_lnor, -cos_alpha);
		add_v3_v3(vec, custom_lnor);
		normalize_v3(vec);

		cos_beta = dot_v3v3(lnor_space->vec_ref, vec);

		if (cos_beta < LNOR_SPACE_TRIGO_THRESHOLD) {
			float beta = saacosf(cos_beta);
			if (dot_v3v3(lnor_space->vec_ortho, vec) < 0.0f) {
				beta = pi2 - beta;
			}

			if (beta > lnor_space->ref_beta) {
				r_clnor_data[1] = unit_float_to_short(-(pi2 - beta) / (pi2 - lnor_space->ref_beta));
			}
			else {
				r_clnor_data[1] = unit_float_to_short(beta / lnor_space->ref_beta);
			}
		}
		else {
			r_clnor_data[1] = 0;
		}
	}
}

#define LOOP_SPLIT_TASK_BLOCK_SIZE 1024

typedef struct LoopSplitTaskData {
	/* Specific to each instance (each task). */
	MLoopNorSpace *lnor_space;  /* We have to create those outside of tasks, since afaik memarena is not threadsafe. */
	float (*lnor)[3];
	const MLoop *ml_curr;
	const MLoop *ml_prev;
	int ml_curr_index;
	int ml_prev_index;
	const int *e2l_prev;  /* Also used a flag to switch between single or fan process! */
	int mp_index;

	/* This one is special, it's owned and managed by worker tasks, avoid to have to create it for each fan! */
	BLI_Stack *edge_vectors;

	char pad_c;
} LoopSplitTaskData;

typedef struct LoopSplitTaskDataCommon {
	/* Read/write.
	 * Note we do not need to protect it, though, since two different tasks will *always* affect different
	 * elements in the arrays. */
	MLoopNorSpaceArray *lnors_spacearr;
	BLI_bitmap *sharp_verts;
	float (*loopnors)[3];
	short (*clnors_data)[2];

	/* Read-only. */
	const MVert *mverts;
	const MEdge *medges;
	const MLoop *mloops;
	const MPoly *mpolys;
	const int (*edge_to_loops)[2];
	const int *loop_to_poly;
	const float (*polynors)[3];

	int numPolys;

	/* ***** Workers communication. ***** */
	ThreadQueue *task_queue;

} LoopSplitTaskDataCommon;

#define INDEX_UNSET INT_MIN
#define INDEX_INVALID -1
/* See comment about edge_to_loops below. */
#define IS_EDGE_SHARP(_e2l) (ELEM((_e2l)[1], INDEX_UNSET, INDEX_INVALID))

static void split_loop_nor_single_do(LoopSplitTaskDataCommon *common_data, LoopSplitTaskData *data)
{
	MLoopNorSpaceArray *lnors_spacearr = common_data->lnors_spacearr;
	short (*clnors_data)[2] = common_data->clnors_data;

	const MVert *mverts = common_data->mverts;
	const MEdge *medges = common_data->medges;
	const float (*polynors)[3] = common_data->polynors;

	MLoopNorSpace *lnor_space = data->lnor_space;
	float (*lnor)[3] = data->lnor;
	const MLoop *ml_curr = data->ml_curr;
	const MLoop *ml_prev = data->ml_prev;
	const int ml_curr_index = data->ml_curr_index;
#if 0  /* Not needed for 'single' loop. */
	const int ml_prev_index = data->ml_prev_index;
	const int *e2l_prev = data->e2l_prev;
#endif
	const int mp_index = data->mp_index;

	/* Simple case (both edges around that vertex are sharp in current polygon),
	 * this loop just takes its poly normal.
	 */
	copy_v3_v3(*lnor, polynors[mp_index]);

	/* printf("BASIC: handling loop %d / edge %d / vert %d\n", ml_curr_index, ml_curr->e, ml_curr->v); */

	/* If needed, generate this (simple!) lnor space. */
	if (lnors_spacearr) {
		float vec_curr[3], vec_prev[3];

		const unsigned int mv_pivot_index = ml_curr->v;  /* The vertex we are "fanning" around! */
		const MVert *mv_pivot = &mverts[mv_pivot_index];
		const MEdge *me_curr = &medges[ml_curr->e];
		const MVert *mv_2 = (me_curr->v1 == mv_pivot_index) ? &mverts[me_curr->v2] : &mverts[me_curr->v1];
		const MEdge *me_prev = &medges[ml_prev->e];
		const MVert *mv_3 = (me_prev->v1 == mv_pivot_index) ? &mverts[me_prev->v2] : &mverts[me_prev->v1];

		sub_v3_v3v3(vec_curr, mv_2->co, mv_pivot->co);
		normalize_v3(vec_curr);
		sub_v3_v3v3(vec_prev, mv_3->co, mv_pivot->co);
		normalize_v3(vec_prev);

		BKE_lnor_space_define(lnor_space, *lnor, vec_curr, vec_prev, NULL);
		/* We know there is only one loop in this space, no need to create a linklist in this case... */
		BKE_lnor_space_add_loop(lnors_spacearr, lnor_space, ml_curr_index, false);

		if (clnors_data) {
			BKE_lnor_space_custom_data_to_normal(lnor_space, clnors_data[ml_curr_index], *lnor);
		}
	}
}

static void split_loop_nor_fan_do(LoopSplitTaskDataCommon *common_data, LoopSplitTaskData *data)
{
	MLoopNorSpaceArray *lnors_spacearr = common_data->lnors_spacearr;
	float (*loopnors)[3] = common_data->loopnors;
	short (*clnors_data)[2] = common_data->clnors_data;

	const MVert *mverts = common_data->mverts;
	const MEdge *medges = common_data->medges;
	const MLoop *mloops = common_data->mloops;
	const MPoly *mpolys = common_data->mpolys;
	const int (*edge_to_loops)[2] = common_data->edge_to_loops;
	const int *loop_to_poly = common_data->loop_to_poly;
	const float (*polynors)[3] = common_data->polynors;

	MLoopNorSpace *lnor_space = data->lnor_space;
#if 0  /* Not needed for 'fan' loops. */
	float (*lnor)[3] = data->lnor;
#endif
	const MLoop *ml_curr = data->ml_curr;
	const MLoop *ml_prev = data->ml_prev;
	const int ml_curr_index = data->ml_curr_index;
	const int ml_prev_index = data->ml_prev_index;
	const int mp_index = data->mp_index;
	const int *e2l_prev = data->e2l_prev;

	BLI_Stack *edge_vectors = data->edge_vectors;

	/* Gah... We have to fan around current vertex, until we find the other non-smooth edge,
	 * and accumulate face normals into the vertex!
	 * Note in case this vertex has only one sharp edges, this is a waste because the normal is the same as
	 * the vertex normal, but I do not see any easy way to detect that (would need to count number
	 * of sharp edges per vertex, I doubt the additional memory usage would be worth it, especially as
	 * it should not be a common case in real-life meshes anyway).
	 */
	const unsigned int mv_pivot_index = ml_curr->v;  /* The vertex we are "fanning" around! */
	const MVert *mv_pivot = &mverts[mv_pivot_index];
	const MEdge *me_org = &medges[ml_curr->e];  /* ml_curr would be mlfan_prev if we needed that one */
	const int *e2lfan_curr;
	float vec_curr[3], vec_prev[3], vec_org[3];
	const MLoop *mlfan_curr, *mlfan_next;
	const MPoly *mpfan_next;
	float lnor[3] = {0.0f, 0.0f, 0.0f};
	/* mlfan_vert_index: the loop of our current edge might not be the loop of our current vertex! */
	int mlfan_curr_index, mlfan_vert_index, mpfan_curr_index;

	/* We validate clnors data on the fly - cheapest way to do! */
	int clnors_avg[2] = {0, 0};
	short (*clnor_ref)[2] = NULL;
	int clnors_nbr = 0;
	bool clnors_invalid = false;

	/* Temp loop normal stack. */
	BLI_SMALLSTACK_DECLARE(normal, float *);
	/* Temp clnors stack. */
	BLI_SMALLSTACK_DECLARE(clnors, short *);

	e2lfan_curr = e2l_prev;
	mlfan_curr = ml_prev;
	mlfan_curr_index = ml_prev_index;
	mlfan_vert_index = ml_curr_index;
	mpfan_curr_index = mp_index;

	BLI_assert(mlfan_curr_index >= 0);
	BLI_assert(mlfan_vert_index >= 0);
	BLI_assert(mpfan_curr_index >= 0);

	/* Only need to compute previous edge's vector once, then we can just reuse old current one! */
	{
		const MVert *mv_2 = (me_org->v1 == mv_pivot_index) ? &mverts[me_org->v2] : &mverts[me_org->v1];

		sub_v3_v3v3(vec_org, mv_2->co, mv_pivot->co);
		normalize_v3(vec_org);
		copy_v3_v3(vec_prev, vec_org);

		if (lnors_spacearr) {
			BLI_stack_push(edge_vectors, vec_org);
		}
	}

	/* printf("FAN: vert %d, start edge %d\n", mv_pivot_index, ml_curr->e); */

	while (true) {
		const MEdge *me_curr = &medges[mlfan_curr->e];
		/* Compute edge vectors.
		 * NOTE: We could pre-compute those into an array, in the first iteration, instead of computing them
		 *       twice (or more) here. However, time gained is not worth memory and time lost,
		 *       given the fact that this code should not be called that much in real-life meshes...
		 */
		{
			const MVert *mv_2 = (me_curr->v1 == mv_pivot_index) ? &mverts[me_curr->v2] : &mverts[me_curr->v1];

			sub_v3_v3v3(vec_curr, mv_2->co, mv_pivot->co);
			normalize_v3(vec_curr);
		}

		/* printf("\thandling edge %d / loop %d\n", mlfan_curr->e, mlfan_curr_index); */

		{
			/* Code similar to accumulate_vertex_normals_poly. */
			/* Calculate angle between the two poly edges incident on this vertex. */
			const float fac = saacos(dot_v3v3(vec_curr, vec_prev));
			/* Accumulate */
			madd_v3_v3fl(lnor, polynors[mpfan_curr_index], fac);

			if (clnors_data) {
				/* Accumulate all clnors, if they are not all equal we have to fix that! */
				short (*clnor)[2] = &clnors_data[mlfan_vert_index];
				if (clnors_nbr) {
					clnors_invalid |= ((*clnor_ref)[0] != (*clnor)[0] || (*clnor_ref)[1] != (*clnor)[1]);
				}
				else {
					clnor_ref = clnor;
				}
				clnors_avg[0] += (*clnor)[0];
				clnors_avg[1] += (*clnor)[1];
				clnors_nbr++;
				/* We store here a pointer to all custom lnors processed. */
				BLI_SMALLSTACK_PUSH(clnors, (short *)*clnor);
			}
		}

		/* We store here a pointer to all loop-normals processed. */
		BLI_SMALLSTACK_PUSH(normal, (float *)(loopnors[mlfan_vert_index]));

		if (lnors_spacearr) {
			/* Assign current lnor space to current 'vertex' loop. */
			BKE_lnor_space_add_loop(lnors_spacearr, lnor_space, mlfan_vert_index, true);
			if (me_curr != me_org) {
				/* We store here all edges-normalized vectors processed. */
				BLI_stack_push(edge_vectors, vec_curr);
			}
		}

		if (IS_EDGE_SHARP(e2lfan_curr) || (me_curr == me_org)) {
			/* Current edge is sharp and we have finished with this fan of faces around this vert,
			 * or this vert is smooth, and we have completed a full turn around it.
			 */
			/* printf("FAN: Finished!\n"); */
			break;
		}

		copy_v3_v3(vec_prev, vec_curr);

		/* Warning! This is rather complex!
		 * We have to find our next edge around the vertex (fan mode).
		 * First we find the next loop, which is either previous or next to mlfan_curr_index, depending
		 * whether both loops using current edge are in the same direction or not, and whether
		 * mlfan_curr_index actually uses the vertex we are fanning around!
		 * mlfan_curr_index is the index of mlfan_next here, and mlfan_next is not the real next one
		 * (i.e. not the future mlfan_curr)...
		 */
		mlfan_curr_index = (e2lfan_curr[0] == mlfan_curr_index) ? e2lfan_curr[1] : e2lfan_curr[0];
		mpfan_curr_index = loop_to_poly[mlfan_curr_index];

		BLI_assert(mlfan_curr_index >= 0);
		BLI_assert(mpfan_curr_index >= 0);

		mlfan_next = &mloops[mlfan_curr_index];
		mpfan_next = &mpolys[mpfan_curr_index];
		if ((mlfan_curr->v == mlfan_next->v && mlfan_curr->v == mv_pivot_index) ||
		    (mlfan_curr->v != mlfan_next->v && mlfan_curr->v != mv_pivot_index))
		{
			/* We need the previous loop, but current one is our vertex's loop. */
			mlfan_vert_index = mlfan_curr_index;
			if (--mlfan_curr_index < mpfan_next->loopstart) {
				mlfan_curr_index = mpfan_next->loopstart + mpfan_next->totloop - 1;
			}
		}
		else {
			/* We need the next loop, which is also our vertex's loop. */
			if (++mlfan_curr_index >= mpfan_next->loopstart + mpfan_next->totloop) {
				mlfan_curr_index = mpfan_next->loopstart;
			}
			mlfan_vert_index = mlfan_curr_index;
		}
		mlfan_curr = &mloops[mlfan_curr_index];
		/* And now we are back in sync, mlfan_curr_index is the index of mlfan_curr! Pff! */

		e2lfan_curr = edge_to_loops[mlfan_curr->e];
	}

	{
		float lnor_len = normalize_v3(lnor);

		/* If we are generating lnor spacearr, we can now define the one for this fan,
		 * and optionally compute final lnor from custom data too!
		 */
		if (lnors_spacearr) {
			if (UNLIKELY(lnor_len == 0.0f)) {
				/* Use vertex normal as fallback! */
				copy_v3_v3(lnor, loopnors[mlfan_vert_index]);
				lnor_len = 1.0f;
			}

			BKE_lnor_space_define(lnor_space, lnor, vec_org, vec_curr, edge_vectors);

			if (clnors_data) {
				if (clnors_invalid) {
					short *clnor;

					clnors_avg[0] /= clnors_nbr;
					clnors_avg[1] /= clnors_nbr;
					/* Fix/update all clnors of this fan with computed average value. */
					printf("Invalid clnors in this fan!\n");
					while ((clnor = BLI_SMALLSTACK_POP(clnors))) {
						//print_v2("org clnor", clnor);
						clnor[0] = (short)clnors_avg[0];
						clnor[1] = (short)clnors_avg[1];
					}
					//print_v2("new clnors", clnors_avg);
				}
				/* Extra bonus: since smallstack is local to this func, no more need to empty it at all cost! */

				BKE_lnor_space_custom_data_to_normal(lnor_space, *clnor_ref, lnor);
			}
		}

		/* In case we get a zero normal here, just use vertex normal already set! */
		if (LIKELY(lnor_len != 0.0f)) {
			/* Copy back the final computed normal into all related loop-normals. */
			float *nor;

			while ((nor = BLI_SMALLSTACK_POP(normal))) {
				copy_v3_v3(nor, lnor);
			}
		}
		/* Extra bonus: since smallstack is local to this func, no more need to empty it at all cost! */
	}
}

static void loop_split_worker_do(
        LoopSplitTaskDataCommon *common_data, LoopSplitTaskData *data, BLI_Stack *edge_vectors)
{
	BLI_assert(data->ml_curr);
	if (data->e2l_prev) {
		BLI_assert((edge_vectors == NULL) || BLI_stack_is_empty(edge_vectors));
		data->edge_vectors = edge_vectors;
		split_loop_nor_fan_do(common_data, data);
	}
	else {
		/* No need for edge_vectors for 'single' case! */
		split_loop_nor_single_do(common_data, data);
	}
}

static void loop_split_worker(TaskPool *UNUSED(pool), void *taskdata, int UNUSED(threadid))
{
	LoopSplitTaskDataCommon *common_data = taskdata;
	LoopSplitTaskData *data_buff;

	/* Temp edge vectors stack, only used when computing lnor spacearr. */
	BLI_Stack *edge_vectors = common_data->lnors_spacearr ? BLI_stack_new(sizeof(float[3]), __func__) : NULL;

#ifdef DEBUG_TIME
	TIMEIT_START(loop_split_worker);
#endif

	while ((data_buff = BLI_thread_queue_pop(common_data->task_queue))) {
		LoopSplitTaskData *data = data_buff;
		int i;

		for (i = 0; i < LOOP_SPLIT_TASK_BLOCK_SIZE; i++, data++) {
			/* A NULL ml_curr is used to tag ended data! */
			if (data->ml_curr == NULL) {
				break;
			}
			loop_split_worker_do(common_data, data, edge_vectors);
		}

		MEM_freeN(data_buff);
	}

	if (edge_vectors) {
		BLI_stack_free(edge_vectors);
	}

#ifdef DEBUG_TIME
	TIMEIT_END(loop_split_worker);
#endif
}

/* Note we use data_buff to detect whether we are in threaded context or not, in later case it is NULL. */
static void loop_split_generator_do(LoopSplitTaskDataCommon *common_data, const bool threaded)
{
	MLoopNorSpaceArray *lnors_spacearr = common_data->lnors_spacearr;
	BLI_bitmap *sharp_verts = common_data->sharp_verts;
	float (*loopnors)[3] = common_data->loopnors;

	const MLoop *mloops = common_data->mloops;
	const MPoly *mpolys = common_data->mpolys;
	const int (*edge_to_loops)[2] = common_data->edge_to_loops;
	const int numPolys = common_data->numPolys;

	const MPoly *mp;
	int mp_index;

	LoopSplitTaskData *data, *data_buff = NULL, data_mem;
	int data_idx = 0;

	/* Temp edge vectors stack, only used when computing lnor spacearr (and we are not multi-threading). */
	BLI_Stack *edge_vectors = (lnors_spacearr && !data_buff) ? BLI_stack_new(sizeof(float[3]), __func__) : NULL;

#ifdef DEBUG_TIME
	TIMEIT_START(loop_split_generator);
#endif

	if (!threaded) {
		memset(&data_mem, 0, sizeof(data_mem));
		data = &data_mem;
	}

	/* We now know edges that can be smoothed (with their vector, and their two loops), and edges that will be hard!
	 * Now, time to generate the normals.
	 */
	for (mp = mpolys, mp_index = 0; mp_index < numPolys; mp++, mp_index++) {
		const MLoop *ml_curr, *ml_prev;
		float (*lnors)[3];
		const int ml_last_index = (mp->loopstart + mp->totloop) - 1;
		int ml_curr_index = mp->loopstart;
		int ml_prev_index = ml_last_index;

		ml_curr = &mloops[ml_curr_index];
		ml_prev = &mloops[ml_prev_index];
		lnors = &loopnors[ml_curr_index];

		for (; ml_curr_index <= ml_last_index; ml_curr++, ml_curr_index++, lnors++) {
			const int *e2l_curr = edge_to_loops[ml_curr->e];
			const int *e2l_prev = edge_to_loops[ml_prev->e];

			if (!IS_EDGE_SHARP(e2l_curr) && (!lnors_spacearr || BLI_BITMAP_TEST_BOOL(sharp_verts, ml_curr->v))) {
				/* A smooth edge, and we are not generating lnor_spacearr, or the related vertex is sharp.
				 * We skip it because it is either:
				 * - in the middle of a 'smooth fan' already computed (or that will be as soon as we hit
				 *   one of its ends, i.e. one of its two sharp edges), or...
				 * - the related vertex is a "full smooth" one, in which case pre-populated normals from vertex
				 *   are just fine (or it has already be handled in a previous loop in case of needed lnors spacearr)!
				 */
				/* printf("Skipping loop %d / edge %d / vert %d(%d)\n", ml_curr_index, ml_curr->e, ml_curr->v, sharp_verts[ml_curr->v]); */
			}
			else {
				if (threaded) {
					if (data_idx == 0) {
						data_buff = MEM_callocN(sizeof(*data_buff) * LOOP_SPLIT_TASK_BLOCK_SIZE, __func__);
					}
					data = &data_buff[data_idx];
				}

				if (IS_EDGE_SHARP(e2l_curr) && IS_EDGE_SHARP(e2l_prev)) {
					data->lnor = lnors;
					data->ml_curr = ml_curr;
					data->ml_prev = ml_prev;
					data->ml_curr_index = ml_curr_index;
#if 0  /* Not needed for 'single' loop. */
					data->ml_prev_index = ml_prev_index;
					data->e2l_prev = NULL;  /* Tag as 'single' task. */
#endif
					data->mp_index = mp_index;
					if (lnors_spacearr) {
						data->lnor_space = BKE_lnor_space_create(lnors_spacearr);
					}
				}
				/* We *do not need* to check/tag loops as already computed!
				 * Due to the fact a loop only links to one of its two edges, a same fan *will never be walked
				 * more than once!*
				 * Since we consider edges having neighbor polys with inverted (flipped) normals as sharp, we are sure
				 * that no fan will be skipped, even only considering the case (sharp curr_edge, smooth prev_edge),
				 * and not the alternative (smooth curr_edge, sharp prev_edge).
				 * All this due/thanks to link between normals and loop ordering (i.e. winding).
				 */
				else {
#if 0  /* Not needed for 'fan' loops. */
					data->lnor = lnors;
#endif
					data->ml_curr = ml_curr;
					data->ml_prev = ml_prev;
					data->ml_curr_index = ml_curr_index;
					data->ml_prev_index = ml_prev_index;
					data->e2l_prev = e2l_prev;  /* Also tag as 'fan' task. */
					data->mp_index = mp_index;
					if (lnors_spacearr) {
						data->lnor_space = BKE_lnor_space_create(lnors_spacearr);
						/* Tag related vertex as sharp, to avoid fanning around it again (in case it was a smooth one).
						 * This *has* to be done outside of workers tasks! */
						BLI_BITMAP_ENABLE(sharp_verts, ml_curr->v);
					}
				}

				if (threaded) {
					data_idx++;
					if (data_idx == LOOP_SPLIT_TASK_BLOCK_SIZE) {
						BLI_thread_queue_push(common_data->task_queue, data_buff);
						data_idx = 0;
					}
				}
				else {
					loop_split_worker_do(common_data, data, edge_vectors);
					memset(data, 0, sizeof(data_mem));
				}
			}

			ml_prev = ml_curr;
			ml_prev_index = ml_curr_index;
		}
	}

	if (threaded) {
		/* Last block of data... Since it is calloc'ed and we use first NULL item as stopper, everything is fine. */
		if (LIKELY(data_idx)) {
			BLI_thread_queue_push(common_data->task_queue, data_buff);
		}

		/* This will signal all other worker threads to wake up and finish! */
		BLI_thread_queue_nowait(common_data->task_queue);
	}

	if (edge_vectors) {
		BLI_stack_free(edge_vectors);
	}

#ifdef DEBUG_TIME
	TIMEIT_END(loop_split_generator);
#endif
}

static void loop_split_generator(TaskPool *UNUSED(pool), void *taskdata, int UNUSED(threadid))
{
	LoopSplitTaskDataCommon *common_data = taskdata;

	loop_split_generator_do(common_data, true);
}

/**
 * Compute split normals, i.e. vertex normals associated with each poly (hence 'loop normals').
 * Useful to materialize sharp edges (or non-smooth faces) without actually modifying the geometry (splitting edges).
 */
void BKE_mesh_normals_loop_split(
        MVert *mverts, const int numVerts, MEdge *medges, const int numEdges,
        MLoop *mloops, float (*r_loopnors)[3], const int numLoops,
        MPoly *mpolys, const float (*polynors)[3], const int numPolys,
        const bool use_split_normals, float split_angle,
        MLoopNorSpaceArray *r_lnors_spacearr, short (*clnors_data)[2], int *r_loop_to_poly)
{

	/* For now this is not supported. If we do not use split normals, we do not generate anything fancy! */
	BLI_assert(use_split_normals || !(r_lnors_spacearr));

	if (!use_split_normals) {
		/* In this case, we simply fill lnors with vnors (or fnors for flat faces), quite simple!
		 * Note this is done here to keep some logic and consistency in this quite complex code,
		 * since we may want to use lnors even when mesh's 'autosmooth' is disabled (see e.g. mesh mapping code).
		 * As usual, we could handle that on case-by-case basis, but simpler to keep it well confined here.
		 */
		int mp_index;

		for (mp_index = 0; mp_index < numPolys; mp_index++) {
			MPoly *mp = &mpolys[mp_index];
			int ml_index = mp->loopstart;
			const int ml_index_end = ml_index + mp->totloop;
			const bool is_poly_flat = ((mp->flag & ME_SMOOTH) == 0);

			for (; ml_index < ml_index_end; ml_index++) {
				if (r_loop_to_poly) {
					r_loop_to_poly[ml_index] = mp_index;
				}
				if (is_poly_flat) {
					copy_v3_v3(r_loopnors[ml_index], polynors[mp_index]);
				}
				else {
					normal_short_to_float_v3(r_loopnors[ml_index], mverts[mloops[ml_index].v].no);
				}
			}
		}
		return;
	}

	{

	/* Mapping edge -> loops.
	 * If that edge is used by more than two loops (polys), it is always sharp (and tagged as such, see below).
	 * We also use the second loop index as a kind of flag: smooth edge: > 0,
	 *                                                      sharp edge: < 0 (INDEX_INVALID || INDEX_UNSET),
	 *                                                      unset: INDEX_UNSET
	 * Note that currently we only have two values for second loop of sharp edges. However, if needed, we can
	 * store the negated value of loop index instead of INDEX_INVALID to retrieve the real value later in code).
	 * Note also that lose edges always have both values set to 0!
	 */
	int (*edge_to_loops)[2] = MEM_callocN(sizeof(int[2]) * (size_t)numEdges, __func__);

	/* Simple mapping from a loop to its polygon index. */
	int *loop_to_poly = r_loop_to_poly ? r_loop_to_poly : MEM_mallocN(sizeof(int) * (size_t)numLoops, __func__);

	MPoly *mp;
	int mp_index, me_index;
	bool check_angle = (split_angle < (float)M_PI);
	int i;

	BLI_bitmap *sharp_verts = NULL;
	MLoopNorSpaceArray _lnors_spacearr = {NULL};

	LoopSplitTaskDataCommon common_data = {NULL};

#ifdef DEBUG_TIME
	TIMEIT_START(BKE_mesh_normals_loop_split);
#endif

	if (check_angle) {
		/* When using custom loop normals, disable the angle feature! */
		if (clnors_data) {
			check_angle = false;
		}
		else {
			split_angle = cosf(split_angle);
		}
	}

	if (!r_lnors_spacearr && clnors_data) {
		/* We need to compute lnor spacearr if some custom lnor data are given to us! */
		r_lnors_spacearr = &_lnors_spacearr;
	}
	if (r_lnors_spacearr) {
		BKE_lnor_spacearr_init(r_lnors_spacearr, numLoops);
		sharp_verts = BLI_BITMAP_NEW((size_t)numVerts, __func__);
	}

	/* This first loop check which edges are actually smooth, and compute edge vectors. */
	for (mp = mpolys, mp_index = 0; mp_index < numPolys; mp++, mp_index++) {
		MLoop *ml_curr;
		int *e2l;
		int ml_curr_index = mp->loopstart;
		const int ml_last_index = (ml_curr_index + mp->totloop) - 1;

		ml_curr = &mloops[ml_curr_index];

		for (; ml_curr_index <= ml_last_index; ml_curr++, ml_curr_index++) {
			e2l = edge_to_loops[ml_curr->e];

			loop_to_poly[ml_curr_index] = mp_index;

			/* Pre-populate all loop normals as if their verts were all-smooth, this way we don't have to compute
			 * those later!
			 */
			normal_short_to_float_v3(r_loopnors[ml_curr_index], mverts[ml_curr->v].no);

			/* Check whether current edge might be smooth or sharp */
			if ((e2l[0] | e2l[1]) == 0) {
				/* 'Empty' edge until now, set e2l[0] (and e2l[1] to INDEX_UNSET to tag it as unset). */
				e2l[0] = ml_curr_index;
				/* We have to check this here too, else we might miss some flat faces!!! */
				e2l[1] = (mp->flag & ME_SMOOTH) ? INDEX_UNSET : INDEX_INVALID;
			}
			else if (e2l[1] == INDEX_UNSET) {
				/* Second loop using this edge, time to test its sharpness.
				 * An edge is sharp if it is tagged as such, or its face is not smooth,
				 * or both poly have opposed (flipped) normals, i.e. both loops on the same edge share the same vertex,
				 * or angle between both its polys' normals is above split_angle value.
				 */
				if (!(mp->flag & ME_SMOOTH) || (medges[ml_curr->e].flag & ME_SHARP) ||
				    ml_curr->v == mloops[e2l[0]].v ||
				    (check_angle && dot_v3v3(polynors[loop_to_poly[e2l[0]]], polynors[mp_index]) < split_angle))
				{
					/* Note: we are sure that loop != 0 here ;) */
					e2l[1] = INDEX_INVALID;
				}
				else {
					e2l[1] = ml_curr_index;
				}
			}
			else if (!IS_EDGE_SHARP(e2l)) {
				/* More than two loops using this edge, tag as sharp if not yet done. */
				e2l[1] = INDEX_INVALID;
			}
			/* Else, edge is already 'disqualified' (i.e. sharp)! */
		}
	}

	if (r_lnors_spacearr) {
		/* Tag vertices that have at least one sharp edge as 'sharp' (used for the lnor spacearr computation).
		 * XXX This third loop over edges is a bit disappointing, could not find any other way yet.
		 *     Not really performance-critical anyway.
		 */
		for (me_index = 0; me_index < numEdges; me_index++) {
			const int *e2l = edge_to_loops[me_index];
			const MEdge *me = &medges[me_index];
			if (IS_EDGE_SHARP(e2l)) {
				BLI_BITMAP_ENABLE(sharp_verts, me->v1);
				BLI_BITMAP_ENABLE(sharp_verts, me->v2);
			}
		}
	}

	/* Init data common to all tasks. */
	common_data.lnors_spacearr = r_lnors_spacearr;
	common_data.loopnors = r_loopnors;
	common_data.clnors_data = clnors_data;

	common_data.mverts = mverts;
	common_data.medges = medges;
	common_data.mloops = mloops;
	common_data.mpolys = mpolys;
	common_data.sharp_verts = sharp_verts;
	common_data.edge_to_loops = (const int(*)[2])edge_to_loops;
	common_data.loop_to_poly = loop_to_poly;
	common_data.polynors = polynors;
	common_data.numPolys = numPolys;

	if (numLoops < LOOP_SPLIT_TASK_BLOCK_SIZE * 8) {
		/* Not enough loops to be worth the whole threading overhead... */
		loop_split_generator_do(&common_data, false);
	}
	else {
		TaskScheduler *task_scheduler;
		TaskPool *task_pool;
		int nbr_workers;

		common_data.task_queue = BLI_thread_queue_init();

		task_scheduler = BLI_task_scheduler_get();
		task_pool = BLI_task_pool_create(task_scheduler, NULL);

		nbr_workers = max_ii(2, BLI_task_scheduler_num_threads(task_scheduler));
		for (i = 1; i < nbr_workers; i++) {
			BLI_task_pool_push(task_pool, loop_split_worker, &common_data, false, TASK_PRIORITY_HIGH);
		}
		BLI_task_pool_push(task_pool, loop_split_generator, &common_data, false, TASK_PRIORITY_HIGH);
		BLI_task_pool_work_and_wait(task_pool);

		BLI_task_pool_free(task_pool);

		BLI_thread_queue_free(common_data.task_queue);
	}

	MEM_freeN(edge_to_loops);
	if (!r_loop_to_poly) {
		MEM_freeN(loop_to_poly);
	}

	if (r_lnors_spacearr) {
		MEM_freeN(sharp_verts);
		if (r_lnors_spacearr == &_lnors_spacearr) {
			BKE_lnor_spacearr_free(r_lnors_spacearr);
		}
	}

#ifdef DEBUG_TIME
	TIMEIT_END(BKE_mesh_normals_loop_split);
#endif

	}
}

#undef INDEX_UNSET
#undef INDEX_INVALID
#undef IS_EDGE_SHARP

/**
 * Compute internal representation of given custom normals (as an array of float[2]).
 * It also makes sure the mesh matches those custom normals, by setting sharp edges flag as needed to get a
 * same custom lnor for all loops sharing a same smooth fan.
 * If use_vertices if true, custom_loopnors is assumed to be per-vertex, not per-loop
 * (this allows to set whole vert's normals at once, useful in some cases).
 */
static void mesh_normals_loop_custom_set(
        MVert *mverts, const int numVerts, MEdge *medges, const int numEdges,
        MLoop *mloops, float (*custom_loopnors)[3], const int numLoops,
        MPoly *mpolys, const float (*polynors)[3], const int numPolys,
        short (*r_clnors_data)[2], const bool use_vertices)
{
	/* We *may* make that poor BKE_mesh_normals_loop_split() even more complex by making it handling that
	 * feature too, would probably be more efficient in absolute.
	 * However, this function *is not* performance-critical, since it is mostly expected to be called
	 * by io addons when importing custom normals, and modifier (and perhaps from some editing tools later?).
	 * So better to keep some simplicity here, and just call BKE_mesh_normals_loop_split() twice!
	 */
	MLoopNorSpaceArray lnors_spacearr = {NULL};
	BLI_bitmap *done_loops = BLI_BITMAP_NEW((size_t)numLoops, __func__);
	float (*lnors)[3] = MEM_callocN(sizeof(*lnors) * (size_t)numLoops, __func__);
	int *loop_to_poly = MEM_mallocN(sizeof(int) * (size_t)numLoops, __func__);
	/* In this case we always consider split nors as ON, and do not want to use angle to define smooth fans! */
	const bool use_split_normals = true;
	const float split_angle = (float)M_PI;
	int i;

	BLI_SMALLSTACK_DECLARE(clnors_data, short *);

	/* Compute current lnor spacearr. */
	BKE_mesh_normals_loop_split(mverts, numVerts, medges, numEdges, mloops, lnors, numLoops,
	                            mpolys, polynors, numPolys, use_split_normals, split_angle,
	                            &lnors_spacearr, NULL, loop_to_poly);

	/* Now, check each current smooth fan (one lnor space per smooth fan!), and if all its matching custom lnors
	 * are not (enough) equal, add sharp edges as needed.
	 * This way, next time we run BKE_mesh_normals_loop_split(), we'll get lnor spacearr/smooth fans matching
	 * given custom lnors.
	 * Note this code *will never* unsharp edges!
	 * And quite obviously, when we set custom normals per vertices, running this is absolutely useless.
	 */
	if (!use_vertices) {
		for (i = 0; i < numLoops; i++) {
			if (!lnors_spacearr.lspacearr[i]) {
				/* This should not happen in theory, but in some rare case (probably ugly geometry)
				 * we can get some NULL loopspacearr at this point. :/
				 * Maybe we should set those loops' edges as sharp?
				 */
				BLI_BITMAP_ENABLE(done_loops, i);
				printf("WARNING! Getting invalid NULL loop space for loop %d!\n", i);
				continue;
			}

			if (!BLI_BITMAP_TEST(done_loops, i)) {
				/* Notes:
				 *     * In case of mono-loop smooth fan, loops is NULL, so everything is fine (we have nothing to do).
				 *     * Loops in this linklist are ordered (in reversed order compared to how they were discovered by
				 *       BKE_mesh_normals_loop_split(), but this is not a problem). Which means if we find a
				 *       mismatching clnor, we know all remaining loops will have to be in a new, different smooth fan/
				 *       lnor space.
				 *     * In smooth fan case, we compare each clnor against a ref one, to avoid small differences adding
				 *       up into a real big one in the end!
				 */
				LinkNode *loops = lnors_spacearr.lspacearr[i]->loops;
				MLoop *prev_ml = NULL;
				const float *org_nor = NULL;

				while (loops) {
					const int lidx = GET_INT_FROM_POINTER(loops->link);
					MLoop *ml = &mloops[lidx];
					const int nidx = lidx;
					float *nor = custom_loopnors[nidx];

					if (is_zero_v3(nor)) {
						nor = lnors[nidx];
					}

					if (!org_nor) {
						org_nor = nor;
					}
					else if (dot_v3v3(org_nor, nor) < LNOR_SPACE_TRIGO_THRESHOLD) {
						/* Current normal differs too much from org one, we have to tag the edge between
						 * previous loop's face and current's one as sharp.
						 * We know those two loops do not point to the same edge, since we do not allow reversed winding
						 * in a same smooth fan.
						 */
						const MPoly *mp = &mpolys[loop_to_poly[lidx]];
						const MLoop *mlp = &mloops[(lidx == mp->loopstart) ? mp->loopstart + mp->totloop - 1 : lidx - 1];
						medges[(prev_ml->e == mlp->e) ? prev_ml->e : ml->e].flag |= ME_SHARP;

						org_nor = nor;
					}

					prev_ml = ml;
					loops = loops->next;
					BLI_BITMAP_ENABLE(done_loops, lidx);
				}
				BLI_BITMAP_ENABLE(done_loops, i);  /* For single loops, where lnors_spacearr.lspacearr[i]->loops is NULL. */
			}
		}

		/* And now, recompute our new auto lnors and lnor spacearr! */
		BKE_lnor_spacearr_clear(&lnors_spacearr);
		BKE_mesh_normals_loop_split(mverts, numVerts, medges, numEdges, mloops, lnors, numLoops,
		                            mpolys, polynors, numPolys, use_split_normals, split_angle,
		                            &lnors_spacearr, NULL, loop_to_poly);
	}
	else {
		BLI_BITMAP_SET_ALL(done_loops, true, (size_t)numLoops);
	}

	/* And we just have to convert plain object-space custom normals to our lnor space-encoded ones. */
	for (i = 0; i < numLoops; i++) {
		if (!lnors_spacearr.lspacearr[i]) {
			BLI_BITMAP_DISABLE(done_loops, i);
			printf("WARNING! Still getting invalid NULL loop space in second loop for loop %d!\n", i);
			continue;
		}

		if (BLI_BITMAP_TEST_BOOL(done_loops, i)) {
			/* Note we accumulate and average all custom normals in current smooth fan, to avoid getting different
			 * clnors data (tiny differences in plain custom normals can give rather huge differences in
			 * computed 2D factors).
			 */
			LinkNode *loops = lnors_spacearr.lspacearr[i]->loops;
			if (loops) {
				int nbr_nors = 0;
				float avg_nor[3];
				short clnor_data_tmp[2], *clnor_data;

				zero_v3(avg_nor);
				while (loops) {
					const int lidx = GET_INT_FROM_POINTER(loops->link);
					const int nidx = use_vertices ? (int)mloops[lidx].v : lidx;
					float *nor = custom_loopnors[nidx];

					if (is_zero_v3(nor)) {
						nor = lnors[nidx];
					}

					nbr_nors++;
					add_v3_v3(avg_nor, nor);
					BLI_SMALLSTACK_PUSH(clnors_data, (short *)r_clnors_data[lidx]);

					loops = loops->next;
					BLI_BITMAP_DISABLE(done_loops, lidx);
				}

				mul_v3_fl(avg_nor, 1.0f / (float)nbr_nors);
				BKE_lnor_space_custom_normal_to_data(lnors_spacearr.lspacearr[i], avg_nor, clnor_data_tmp);

				while ((clnor_data = BLI_SMALLSTACK_POP(clnors_data))) {
					clnor_data[0] = clnor_data_tmp[0];
					clnor_data[1] = clnor_data_tmp[1];
				}
			}
			else {
				const int nidx = use_vertices ? (int)mloops[i].v : i;
				float *nor = custom_loopnors[nidx];

				BKE_lnor_space_custom_normal_to_data(lnors_spacearr.lspacearr[i], nor, r_clnors_data[i]);
				BLI_BITMAP_DISABLE(done_loops, i);
			}
		}
	}

	MEM_freeN(lnors);
	MEM_freeN(loop_to_poly);
	MEM_freeN(done_loops);
	BKE_lnor_spacearr_free(&lnors_spacearr);
}

void BKE_mesh_normals_loop_custom_set(
        MVert *mverts, const int numVerts, MEdge *medges, const int numEdges,
        MLoop *mloops, float (*custom_loopnors)[3], const int numLoops,
        MPoly *mpolys, const float (*polynors)[3], const int numPolys,
        short (*r_clnors_data)[2])
{
	mesh_normals_loop_custom_set(mverts, numVerts, medges, numEdges, mloops, custom_loopnors, numLoops,
	                             mpolys, polynors, numPolys, r_clnors_data, false);
}

void BKE_mesh_normals_loop_custom_from_vertices_set(
        MVert *mverts, float (*custom_vertnors)[3], const int numVerts,
        MEdge *medges, const int numEdges, MLoop *mloops, const int numLoops,
        MPoly *mpolys, const float (*polynors)[3], const int numPolys,
        short (*r_clnors_data)[2])
{
	mesh_normals_loop_custom_set(mverts, numVerts, medges, numEdges, mloops, custom_vertnors, numLoops,
	                             mpolys, polynors, numPolys, r_clnors_data, true);
}

#undef LNOR_SPACE_TRIGO_THRESHOLD

/** \} */


/* -------------------------------------------------------------------- */

/** \name Mesh Tangent Calculations
 * \{ */

/* Tangent space utils. */

/* User data. */
typedef struct {
	MPoly *mpolys;         /* faces */
	MLoop *mloops;         /* faces's vertices */
	MVert *mverts;         /* vertices */
	MLoopUV *luvs;         /* texture coordinates */
	float (*lnors)[3];     /* loops' normals */
	float (*tangents)[4];  /* output tangents */
	int num_polys;         /* number of polygons */
} BKEMeshToTangent;

/* Mikktspace's API */
static int get_num_faces(const SMikkTSpaceContext *pContext)
{
	BKEMeshToTangent *p_mesh = (BKEMeshToTangent *)pContext->m_pUserData;
	return p_mesh->num_polys;
}

static int get_num_verts_of_face(const SMikkTSpaceContext *pContext, const int face_idx)
{
	BKEMeshToTangent *p_mesh = (BKEMeshToTangent *)pContext->m_pUserData;
	return p_mesh->mpolys[face_idx].totloop;
}

static void get_position(const SMikkTSpaceContext *pContext, float r_co[3], const int face_idx, const int vert_idx)
{
	BKEMeshToTangent *p_mesh = (BKEMeshToTangent *)pContext->m_pUserData;
	const int loop_idx = p_mesh->mpolys[face_idx].loopstart + vert_idx;
	copy_v3_v3(r_co, p_mesh->mverts[p_mesh->mloops[loop_idx].v].co);
}

static void get_texture_coordinate(const SMikkTSpaceContext *pContext, float r_uv[2], const int face_idx,
                                   const int vert_idx)
{
	BKEMeshToTangent *p_mesh = (BKEMeshToTangent *)pContext->m_pUserData;
	copy_v2_v2(r_uv, p_mesh->luvs[p_mesh->mpolys[face_idx].loopstart + vert_idx].uv);
}

static void get_normal(const SMikkTSpaceContext *pContext, float r_no[3], const int face_idx, const int vert_idx)
{
	BKEMeshToTangent *p_mesh = (BKEMeshToTangent *)pContext->m_pUserData;
	copy_v3_v3(r_no, p_mesh->lnors[p_mesh->mpolys[face_idx].loopstart + vert_idx]);
}

static void set_tspace(const SMikkTSpaceContext *pContext, const float fv_tangent[3], const float face_sign,
                       const int face_idx, const int vert_idx)
{
	BKEMeshToTangent *p_mesh = (BKEMeshToTangent *)pContext->m_pUserData;
	float *p_res = p_mesh->tangents[p_mesh->mpolys[face_idx].loopstart + vert_idx];
	copy_v3_v3(p_res, fv_tangent);
	p_res[3] = face_sign;
}

/**
 * Compute simplified tangent space normals, i.e. tangent vector + sign of bi-tangent one, which combined with
 * split normals can be used to recreate the full tangent space.
 * Note: * The mesh should be made of only tris and quads!
 */
void BKE_mesh_loop_tangents_ex(MVert *mverts, const int UNUSED(numVerts), MLoop *mloops,
                               float (*r_looptangent)[4], float (*loopnors)[3], MLoopUV *loopuvs,
                               const int UNUSED(numLoops), MPoly *mpolys, const int numPolys, ReportList *reports)
{
	BKEMeshToTangent mesh_to_tangent = {NULL};
	SMikkTSpaceContext s_context = {NULL};
	SMikkTSpaceInterface s_interface = {NULL};

	MPoly *mp;
	int mp_index;

	/* First check we do have a tris/quads only mesh. */
	for (mp = mpolys, mp_index = 0; mp_index < numPolys; mp++, mp_index++) {
		if (mp->totloop > 4) {
			BKE_report(reports, RPT_ERROR, "Tangent space can only be computed for tris/quads, aborting");
			return;
		}
	}

	/* Compute Mikktspace's tangent normals. */
	mesh_to_tangent.mpolys = mpolys;
	mesh_to_tangent.mloops = mloops;
	mesh_to_tangent.mverts = mverts;
	mesh_to_tangent.luvs = loopuvs;
	mesh_to_tangent.lnors = loopnors;
	mesh_to_tangent.tangents = r_looptangent;
	mesh_to_tangent.num_polys = numPolys;

	s_context.m_pUserData = &mesh_to_tangent;
	s_context.m_pInterface = &s_interface;
	s_interface.m_getNumFaces = get_num_faces;
	s_interface.m_getNumVerticesOfFace = get_num_verts_of_face;
	s_interface.m_getPosition = get_position;
	s_interface.m_getTexCoord = get_texture_coordinate;
	s_interface.m_getNormal = get_normal;
	s_interface.m_setTSpaceBasic = set_tspace;

	/* 0 if failed */
	if (genTangSpaceDefault(&s_context) == false) {
		BKE_report(reports, RPT_ERROR, "Mikktspace failed to generate tangents for this mesh!");
	}
}

/**
 * Wrapper around BKE_mesh_loop_tangents_ex, which takes care of most boiling code.
 * Note: * There must be a valid loop's CD_NORMALS available.
 *       * The mesh should be made of only tris and quads!
 */
void BKE_mesh_loop_tangents(Mesh *mesh, const char *uvmap, float (*r_looptangents)[4], ReportList *reports)
{
	MLoopUV *loopuvs;
	float (*loopnors)[3];

	/* Check we have valid texture coordinates first! */
	if (uvmap) {
		loopuvs = CustomData_get_layer_named(&mesh->ldata, CD_MLOOPUV, uvmap);
	}
	else {
		loopuvs = CustomData_get_layer(&mesh->ldata, CD_MLOOPUV);
	}
	if (!loopuvs) {
		BKE_reportf(reports, RPT_ERROR, "Tangent space computation needs an UVMap, \"%s\" not found, aborting", uvmap);
		return;
	}

	loopnors = CustomData_get_layer(&mesh->ldata, CD_NORMAL);
	if (!loopnors) {
		BKE_report(reports, RPT_ERROR, "Tangent space computation needs loop normals, none found, aborting");
		return;
	}

	BKE_mesh_loop_tangents_ex(mesh->mvert, mesh->totvert, mesh->mloop, r_looptangents,
	                          loopnors, loopuvs, mesh->totloop, mesh->mpoly, mesh->totpoly, reports);
}

/** \} */


/* -------------------------------------------------------------------- */

/** \name Polygon Calculations
 * \{ */

/*
 * COMPUTE POLY NORMAL
 *
 * Computes the normal of a planar
 * polygon See Graphics Gems for
 * computing newell normal.
 *
 */
static void mesh_calc_ngon_normal(MPoly *mpoly, MLoop *loopstart,
                                  MVert *mvert, float normal[3])
{
	const int nverts = mpoly->totloop;
	const float *v_prev = mvert[loopstart[nverts - 1].v].co;
	const float *v_curr;
	int i;

	zero_v3(normal);

	/* Newell's Method */
	for (i = 0; i < nverts; i++) {
		v_curr = mvert[loopstart[i].v].co;
		add_newell_cross_v3_v3v3(normal, v_prev, v_curr);
		v_prev = v_curr;
	}

	if (UNLIKELY(normalize_v3(normal) == 0.0f)) {
		normal[2] = 1.0f; /* other axis set to 0.0 */
	}
}

void BKE_mesh_calc_poly_normal(MPoly *mpoly, MLoop *loopstart,
                               MVert *mvarray, float no[3])
{
	if (mpoly->totloop > 4) {
		mesh_calc_ngon_normal(mpoly, loopstart, mvarray, no);
	}
	else if (mpoly->totloop == 3) {
		normal_tri_v3(no,
		              mvarray[loopstart[0].v].co,
		              mvarray[loopstart[1].v].co,
		              mvarray[loopstart[2].v].co
		              );
	}
	else if (mpoly->totloop == 4) {
		normal_quad_v3(no,
		               mvarray[loopstart[0].v].co,
		               mvarray[loopstart[1].v].co,
		               mvarray[loopstart[2].v].co,
		               mvarray[loopstart[3].v].co
		               );
	}
	else { /* horrible, two sided face! */
		no[0] = 0.0;
		no[1] = 0.0;
		no[2] = 1.0;
	}
}
/* duplicate of function above _but_ takes coords rather then mverts */
static void mesh_calc_ngon_normal_coords(MPoly *mpoly, MLoop *loopstart,
                                         const float (*vertex_coords)[3], float normal[3])
{
	const int nverts = mpoly->totloop;
	const float *v_prev = vertex_coords[loopstart[nverts - 1].v];
	const float *v_curr;
	int i;

	zero_v3(normal);

	/* Newell's Method */
	for (i = 0; i < nverts; i++) {
		v_curr = vertex_coords[loopstart[i].v];
		add_newell_cross_v3_v3v3(normal, v_prev, v_curr);
		v_prev = v_curr;
	}

	if (UNLIKELY(normalize_v3(normal) == 0.0f)) {
		normal[2] = 1.0f; /* other axis set to 0.0 */
	}
}

void BKE_mesh_calc_poly_normal_coords(MPoly *mpoly, MLoop *loopstart,
                                      const float (*vertex_coords)[3], float no[3])
{
	if (mpoly->totloop > 4) {
		mesh_calc_ngon_normal_coords(mpoly, loopstart, vertex_coords, no);
	}
	else if (mpoly->totloop == 3) {
		normal_tri_v3(no,
		              vertex_coords[loopstart[0].v],
		              vertex_coords[loopstart[1].v],
		              vertex_coords[loopstart[2].v]
		              );
	}
	else if (mpoly->totloop == 4) {
		normal_quad_v3(no,
		               vertex_coords[loopstart[0].v],
		               vertex_coords[loopstart[1].v],
		               vertex_coords[loopstart[2].v],
		               vertex_coords[loopstart[3].v]
		               );
	}
	else { /* horrible, two sided face! */
		no[0] = 0.0;
		no[1] = 0.0;
		no[2] = 1.0;
	}
}

static void mesh_calc_ngon_center(MPoly *mpoly, MLoop *loopstart,
                                  MVert *mvert, float cent[3])
{
	const float w = 1.0f / (float)mpoly->totloop;
	int i;

	zero_v3(cent);

	for (i = 0; i < mpoly->totloop; i++) {
		madd_v3_v3fl(cent, mvert[(loopstart++)->v].co, w);
	}
}

void BKE_mesh_calc_poly_center(MPoly *mpoly, MLoop *loopstart,
                               MVert *mvarray, float cent[3])
{
	if (mpoly->totloop == 3) {
		cent_tri_v3(cent,
		            mvarray[loopstart[0].v].co,
		            mvarray[loopstart[1].v].co,
		            mvarray[loopstart[2].v].co
		            );
	}
	else if (mpoly->totloop == 4) {
		cent_quad_v3(cent,
		             mvarray[loopstart[0].v].co,
		             mvarray[loopstart[1].v].co,
		             mvarray[loopstart[2].v].co,
		             mvarray[loopstart[3].v].co
		             );
	}
	else {
		mesh_calc_ngon_center(mpoly, loopstart, mvarray, cent);
	}
}

/* note, passing polynormal is only a speedup so we can skip calculating it */
float BKE_mesh_calc_poly_area(MPoly *mpoly, MLoop *loopstart,
                              MVert *mvarray)
{
	if (mpoly->totloop == 3) {
		return area_tri_v3(mvarray[loopstart[0].v].co,
		                   mvarray[loopstart[1].v].co,
		                   mvarray[loopstart[2].v].co
		                   );
	}
	else {
		int i;
		MLoop *l_iter = loopstart;
		float area;
		float (*vertexcos)[3] = BLI_array_alloca(vertexcos, (size_t)mpoly->totloop);

		/* pack vertex cos into an array for area_poly_v3 */
		for (i = 0; i < mpoly->totloop; i++, l_iter++) {
			copy_v3_v3(vertexcos[i], mvarray[l_iter->v].co);
		}

		/* finally calculate the area */
		area = area_poly_v3((const float (*)[3])vertexcos, (unsigned int)mpoly->totloop);

		return area;
	}
}

/* note, results won't be correct if polygon is non-planar */
static float mesh_calc_poly_planar_area_centroid(MPoly *mpoly, MLoop *loopstart, MVert *mvarray, float cent[3])
{
	int i;
	float tri_area;
	float total_area = 0.0f;
	float v1[3], v2[3], v3[3], normal[3], tri_cent[3];

	BKE_mesh_calc_poly_normal(mpoly, loopstart, mvarray, normal);
	copy_v3_v3(v1, mvarray[loopstart[0].v].co);
	copy_v3_v3(v2, mvarray[loopstart[1].v].co);
	zero_v3(cent);

	for (i = 2; i < mpoly->totloop; i++) {
		copy_v3_v3(v3, mvarray[loopstart[i].v].co);

		tri_area = area_tri_signed_v3(v1, v2, v3, normal);
		total_area += tri_area;

		cent_tri_v3(tri_cent, v1, v2, v3);
		madd_v3_v3fl(cent, tri_cent, tri_area);

		copy_v3_v3(v2, v3);
	}

	mul_v3_fl(cent, 1.0f / total_area);

	return total_area;
}

#if 0 /* slow version of the function below */
void BKE_mesh_calc_poly_angles(MPoly *mpoly, MLoop *loopstart,
                               MVert *mvarray, float angles[])
{
	MLoop *ml;
	MLoop *mloop = &loopstart[-mpoly->loopstart];

	int j;
	for (j = 0, ml = loopstart; j < mpoly->totloop; j++, ml++) {
		MLoop *ml_prev = ME_POLY_LOOP_PREV(mloop, mpoly, j);
		MLoop *ml_next = ME_POLY_LOOP_NEXT(mloop, mpoly, j);

		float e1[3], e2[3];

		sub_v3_v3v3(e1, mvarray[ml_next->v].co, mvarray[ml->v].co);
		sub_v3_v3v3(e2, mvarray[ml_prev->v].co, mvarray[ml->v].co);

		angles[j] = (float)M_PI - angle_v3v3(e1, e2);
	}
}

#else /* equivalent the function above but avoid multiple subtractions + normalize */

void BKE_mesh_calc_poly_angles(MPoly *mpoly, MLoop *loopstart,
                               MVert *mvarray, float angles[])
{
	float nor_prev[3];
	float nor_next[3];

	int i_this = mpoly->totloop - 1;
	int i_next = 0;

	sub_v3_v3v3(nor_prev, mvarray[loopstart[i_this - 1].v].co, mvarray[loopstart[i_this].v].co);
	normalize_v3(nor_prev);

	while (i_next < mpoly->totloop) {
		sub_v3_v3v3(nor_next, mvarray[loopstart[i_this].v].co, mvarray[loopstart[i_next].v].co);
		normalize_v3(nor_next);
		angles[i_this] = angle_normalized_v3v3(nor_prev, nor_next);

		/* step */
		copy_v3_v3(nor_prev, nor_next);
		i_this = i_next;
		i_next++;
	}
}
#endif

void BKE_mesh_poly_edgehash_insert(EdgeHash *ehash, const MPoly *mp, const MLoop *mloop)
{
	const MLoop *ml, *ml_next;
	int i = mp->totloop;

	ml_next = mloop;       /* first loop */
	ml = &ml_next[i - 1];  /* last loop */

	while (i-- != 0) {
		BLI_edgehash_reinsert(ehash, ml->v, ml_next->v, NULL);

		ml = ml_next;
		ml_next++;
	}
}

void BKE_mesh_poly_edgebitmap_insert(unsigned int *edge_bitmap, const MPoly *mp, const MLoop *mloop)
{
	const MLoop *ml;
	int i = mp->totloop;

	ml = mloop;

	while (i-- != 0) {
		BLI_BITMAP_ENABLE(edge_bitmap, ml->e);
		ml++;
	}
}

/** \} */


/* -------------------------------------------------------------------- */

/** \name Mesh Center Calculation
 * \{ */

bool BKE_mesh_center_median(Mesh *me, float cent[3])
{
	int i = me->totvert;
	MVert *mvert;
	zero_v3(cent);
	for (mvert = me->mvert; i--; mvert++) {
		add_v3_v3(cent, mvert->co);
	}
	/* otherwise we get NAN for 0 verts */
	if (me->totvert) {
		mul_v3_fl(cent, 1.0f / (float)me->totvert);
	}

	return (me->totvert != 0);
}

bool BKE_mesh_center_bounds(Mesh *me, float cent[3])
{
	float min[3], max[3];
	INIT_MINMAX(min, max);
	if (BKE_mesh_minmax(me, min, max)) {
		mid_v3_v3v3(cent, min, max);
		return true;
	}

	return false;
}

bool BKE_mesh_center_centroid(Mesh *me, float cent[3])
{
	int i = me->totpoly;
	MPoly *mpoly;
	float poly_area;
	float total_area = 0.0f;
	float poly_cent[3];

	zero_v3(cent);

	/* calculate a weighted average of polygon centroids */
	for (mpoly = me->mpoly; i--; mpoly++) {
		poly_area = mesh_calc_poly_planar_area_centroid(mpoly, me->mloop + mpoly->loopstart, me->mvert, poly_cent);

		madd_v3_v3fl(cent, poly_cent, poly_area);
		total_area += poly_area;
	}
	/* otherwise we get NAN for 0 polys */
	if (me->totpoly) {
		mul_v3_fl(cent, 1.0f / total_area);
	}

	/* zero area faces cause this, fallback to median */
	if (UNLIKELY(!is_finite_v3(cent))) {
		return BKE_mesh_center_median(me, cent);
	}

	return (me->totpoly != 0);
}
/** \} */


/* -------------------------------------------------------------------- */

/** \name Mesh Volume Calculation
 * \{ */

static bool mesh_calc_center_centroid_ex(MVert *mverts, int UNUSED(numVerts),
                                         MFace *mfaces, int numFaces,
                                         float center[3])
{
	float totweight;
	int f;
	
	zero_v3(center);
	
	if (numFaces == 0)
		return false;
	
	totweight = 0.0f;
	for (f = 0; f < numFaces; ++f) {
		MFace *face = &mfaces[f];
		MVert *v1 = &mverts[face->v1];
		MVert *v2 = &mverts[face->v2];
		MVert *v3 = &mverts[face->v3];
		MVert *v4 = &mverts[face->v4];
		float area;
		
		area = area_tri_v3(v1->co, v2->co, v3->co);
		madd_v3_v3fl(center, v1->co, area);
		madd_v3_v3fl(center, v2->co, area);
		madd_v3_v3fl(center, v3->co, area);
		totweight += area;
		
		if (face->v4) {
			area = area_tri_v3(v3->co, v4->co, v1->co);
			madd_v3_v3fl(center, v3->co, area);
			madd_v3_v3fl(center, v4->co, area);
			madd_v3_v3fl(center, v1->co, area);
			totweight += area;
		}
	}
	if (totweight == 0.0f)
		return false;
	
	mul_v3_fl(center, 1.0f / (3.0f * totweight));
	
	return true;
}

void BKE_mesh_calc_volume(MVert *mverts, int numVerts,
                          MFace *mfaces, int numFaces,
                          float *r_vol, float *r_com)
{
	float center[3];
	float totvol;
	int f;
	
	if (r_vol) *r_vol = 0.0f;
	if (r_com) zero_v3(r_com);
	
	if (numFaces == 0)
		return;
	
	if (!mesh_calc_center_centroid_ex(mverts, numVerts, mfaces, numFaces, center))
		return;
	
	totvol = 0.0f;
	for (f = 0; f < numFaces; ++f) {
		MFace *face = &mfaces[f];
		MVert *v1 = &mverts[face->v1];
		MVert *v2 = &mverts[face->v2];
		MVert *v3 = &mverts[face->v3];
		MVert *v4 = &mverts[face->v4];
		float vol;
		
		vol = volume_tetrahedron_signed_v3(center, v1->co, v2->co, v3->co);
		if (r_vol) {
			totvol += vol;
		}
		if (r_com) {
			/* averaging factor 1/4 is applied in the end */
			madd_v3_v3fl(r_com, center, vol); // XXX could extract this
			madd_v3_v3fl(r_com, v1->co, vol);
			madd_v3_v3fl(r_com, v2->co, vol);
			madd_v3_v3fl(r_com, v3->co, vol);
		}
		
		if (face->v4) {
			vol = volume_tetrahedron_signed_v3(center, v3->co, v4->co, v1->co);
			
			if (r_vol) {
				totvol += vol;
			}
			if (r_com) {
				/* averaging factor 1/4 is applied in the end */
				madd_v3_v3fl(r_com, center, vol); // XXX could extract this
				madd_v3_v3fl(r_com, v3->co, vol);
				madd_v3_v3fl(r_com, v4->co, vol);
				madd_v3_v3fl(r_com, v1->co, vol);
			}
		}
	}
	
	/* Note: Depending on arbitrary centroid position,
	 * totvol can become negative even for a valid mesh.
	 * The true value is always the positive value.
	 */
	if (r_vol) {
		*r_vol = fabsf(totvol);
	}
	if (r_com) {
		/* Note: Factor 1/4 is applied once for all vertices here.
		 * This also automatically negates the vector if totvol is negative.
		 */
		if (totvol != 0.0f)
			mul_v3_fl(r_com, 0.25f / totvol);
	}
}


/* -------------------------------------------------------------------- */

/** \name NGon Tessellation (NGon/Tessface Conversion)
 * \{ */

/**
 * Convert a triangle or quadrangle of loop/poly data to tessface data
 */
void BKE_mesh_loops_to_mface_corners(
        CustomData *fdata, CustomData *ldata,
        CustomData *pdata, unsigned int lindex[4], int findex,
        const int polyindex,
        const int mf_len, /* 3 or 4 */

        /* cache values to avoid lookups every time */
        const int numTex, /* CustomData_number_of_layers(pdata, CD_MTEXPOLY) */
        const int numCol, /* CustomData_number_of_layers(ldata, CD_MLOOPCOL) */
        const bool hasPCol, /* CustomData_has_layer(ldata, CD_PREVIEW_MLOOPCOL) */
        const bool hasOrigSpace, /* CustomData_has_layer(ldata, CD_ORIGSPACE_MLOOP) */
        const bool hasLNor /* CustomData_has_layer(ldata, CD_NORMAL) */
)
{
	MTFace *texface;
	MTexPoly *texpoly;
	MCol *mcol;
	MLoopCol *mloopcol;
	MLoopUV *mloopuv;
	int i, j;

	for (i = 0; i < numTex; i++) {
		texface = CustomData_get_n(fdata, CD_MTFACE, findex, i);
		texpoly = CustomData_get_n(pdata, CD_MTEXPOLY, polyindex, i);

		ME_MTEXFACE_CPY(texface, texpoly);

		for (j = 0; j < mf_len; j++) {
			mloopuv = CustomData_get_n(ldata, CD_MLOOPUV, (int)lindex[j], i);
			copy_v2_v2(texface->uv[j], mloopuv->uv);
		}
	}

	for (i = 0; i < numCol; i++) {
		mcol = CustomData_get_n(fdata, CD_MCOL, findex, i);

		for (j = 0; j < mf_len; j++) {
			mloopcol = CustomData_get_n(ldata, CD_MLOOPCOL, (int)lindex[j], i);
			MESH_MLOOPCOL_TO_MCOL(mloopcol, &mcol[j]);
		}
	}

	if (hasPCol) {
		mcol = CustomData_get(fdata,  findex, CD_PREVIEW_MCOL);

		for (j = 0; j < mf_len; j++) {
			mloopcol = CustomData_get(ldata, (int)lindex[j], CD_PREVIEW_MLOOPCOL);
			MESH_MLOOPCOL_TO_MCOL(mloopcol, &mcol[j]);
		}
	}

	if (hasOrigSpace) {
		OrigSpaceFace *of = CustomData_get(fdata, findex, CD_ORIGSPACE);
		OrigSpaceLoop *lof;

		for (j = 0; j < mf_len; j++) {
			lof = CustomData_get(ldata, (int)lindex[j], CD_ORIGSPACE_MLOOP);
			copy_v2_v2(of->uv[j], lof->uv);
		}
	}

	if (hasLNor) {
		short (*tlnors)[3] = CustomData_get(fdata, findex, CD_TESSLOOPNORMAL);

		for (j = 0; j < mf_len; j++) {
			normal_float_to_short_v3(tlnors[j], CustomData_get(ldata, (int)lindex[j], CD_NORMAL));
		}
	}
}

/**
 * Convert all CD layers from loop/poly to tessface data.
 *
 * \param loopindices is an array of an int[4] per tessface, mapping tessface's verts to loops indices.
 *
 * \note when mface is not NULL, mface[face_index].v4 is used to test quads, else, loopindices[face_index][3] is used.
 */
void BKE_mesh_loops_to_tessdata(CustomData *fdata, CustomData *ldata, CustomData *pdata, MFace *mface,
                                int *polyindices, unsigned int (*loopindices)[4], const int num_faces)
{
	/* Note: performances are sub-optimal when we get a NULL mface, we could be ~25% quicker with dedicated code...
	 *       Issue is, unless having two different functions with nearly the same code, there's not much ways to solve
	 *       this. Better imho to live with it for now. :/ --mont29
	 */
	const int numTex = CustomData_number_of_layers(pdata, CD_MTEXPOLY);
	const int numCol = CustomData_number_of_layers(ldata, CD_MLOOPCOL);
	const bool hasPCol = CustomData_has_layer(ldata, CD_PREVIEW_MLOOPCOL);
	const bool hasOrigSpace = CustomData_has_layer(ldata, CD_ORIGSPACE_MLOOP);
	const bool hasLoopNormal = CustomData_has_layer(ldata, CD_NORMAL);
	int findex, i, j;
	const int *pidx;
	unsigned int (*lidx)[4];

	for (i = 0; i < numTex; i++) {
		MTFace *texface = CustomData_get_layer_n(fdata, CD_MTFACE, i);
		MTexPoly *texpoly = CustomData_get_layer_n(pdata, CD_MTEXPOLY, i);
		MLoopUV *mloopuv = CustomData_get_layer_n(ldata, CD_MLOOPUV, i);

		for (findex = 0, pidx = polyindices, lidx = loopindices;
		     findex < num_faces;
		     pidx++, lidx++, findex++, texface++)
		{
			ME_MTEXFACE_CPY(texface, &texpoly[*pidx]);

			for (j = (mface ? mface[findex].v4 : (*lidx)[3]) ? 4 : 3; j--;) {
				copy_v2_v2(texface->uv[j], mloopuv[(*lidx)[j]].uv);
			}
		}
	}

	for (i = 0; i < numCol; i++) {
		MCol (*mcol)[4] = CustomData_get_layer_n(fdata, CD_MCOL, i);
		MLoopCol *mloopcol = CustomData_get_layer_n(ldata, CD_MLOOPCOL, i);

		for (findex = 0, lidx = loopindices; findex < num_faces; lidx++, findex++, mcol++) {
			for (j = (mface ? mface[findex].v4 : (*lidx)[3]) ? 4 : 3; j--;) {
				MESH_MLOOPCOL_TO_MCOL(&mloopcol[(*lidx)[j]], &(*mcol)[j]);
			}
		}
	}

	if (hasPCol) {
		MCol (*mcol)[4] = CustomData_get_layer(fdata, CD_PREVIEW_MCOL);
		MLoopCol *mloopcol = CustomData_get_layer(ldata, CD_PREVIEW_MLOOPCOL);

		for (findex = 0, lidx = loopindices; findex < num_faces; lidx++, findex++, mcol++) {
			for (j = (mface ? mface[findex].v4 : (*lidx)[3]) ? 4 : 3; j--;) {
				MESH_MLOOPCOL_TO_MCOL(&mloopcol[(*lidx)[j]], &(*mcol)[j]);
			}
		}
	}

	if (hasOrigSpace) {
		OrigSpaceFace *of = CustomData_get_layer(fdata, CD_ORIGSPACE);
		OrigSpaceLoop *lof = CustomData_get_layer(ldata, CD_ORIGSPACE_MLOOP);

		for (findex = 0, lidx = loopindices; findex < num_faces; lidx++, findex++, of++) {
			for (j = (mface ? mface[findex].v4 : (*lidx)[3]) ? 4 : 3; j--;) {
				copy_v2_v2(of->uv[j], lof[(*lidx)[j]].uv);
			}
		}
	}

	if (hasLoopNormal) {
		short (*fnors)[4][3] = CustomData_get_layer(fdata, CD_TESSLOOPNORMAL);
		float (*lnors)[3] = CustomData_get_layer(ldata, CD_NORMAL);

		for (findex = 0, lidx = loopindices; findex < num_faces; lidx++, findex++, fnors++) {
			for (j = (mface ? mface[findex].v4 : (*lidx)[3]) ? 4 : 3; j--;) {
				normal_float_to_short_v3((*fnors)[j], lnors[(*lidx)[j]]);
			}
		}
	}
}

/**
 * Recreate tessellation.
 *
 * \param do_face_nor_copy: Controls whether the normals from the poly are copied to the tessellated faces.
 *
 * \return number of tessellation faces.
 */
int BKE_mesh_recalc_tessellation(
        CustomData *fdata, CustomData *ldata, CustomData *pdata,
        MVert *mvert,
        int totface, int totloop, int totpoly,
        const bool do_face_nor_copy)
{
	/* use this to avoid locking pthread for _every_ polygon
	 * and calling the fill function */

#define USE_TESSFACE_SPEEDUP
#define USE_TESSFACE_QUADS  /* NEEDS FURTHER TESTING */

/* We abuse MFace->edcode to tag quad faces. See below for details. */
#define TESSFACE_IS_QUAD 1

	const int looptris_tot = poly_to_tri_count(totpoly, totloop);

	MPoly *mp, *mpoly;
	MLoop *ml, *mloop;
	MFace *mface, *mf;
	MemArena *arena = NULL;
	int *mface_to_poly_map;
	unsigned int (*lindices)[4];
	int poly_index, mface_index;
	unsigned int j;

	mpoly = CustomData_get_layer(pdata, CD_MPOLY);
	mloop = CustomData_get_layer(ldata, CD_MLOOP);

	/* allocate the length of totfaces, avoid many small reallocs,
	 * if all faces are tri's it will be correct, quads == 2x allocs */
	/* take care. we are _not_ calloc'ing so be sure to initialize each field */
	mface_to_poly_map = MEM_mallocN(sizeof(*mface_to_poly_map) * (size_t)looptris_tot, __func__);
	mface             = MEM_mallocN(sizeof(*mface) *             (size_t)looptris_tot, __func__);
	lindices          = MEM_mallocN(sizeof(*lindices) *          (size_t)looptris_tot, __func__);

	mface_index = 0;
	mp = mpoly;
	for (poly_index = 0; poly_index < totpoly; poly_index++, mp++) {
		const unsigned int mp_loopstart = (unsigned int)mp->loopstart;
		const unsigned int mp_totloop = (unsigned int)mp->totloop;
		unsigned int l1, l2, l3, l4;
		unsigned int *lidx;
		if (mp_totloop < 3) {
			/* do nothing */
		}

#ifdef USE_TESSFACE_SPEEDUP

#define ML_TO_MF(i1, i2, i3)                                                  \
		mface_to_poly_map[mface_index] = poly_index;                          \
		mf = &mface[mface_index];                                             \
		lidx = lindices[mface_index];                                         \
		/* set loop indices, transformed to vert indices later */             \
		l1 = mp_loopstart + i1;                                               \
		l2 = mp_loopstart + i2;                                               \
		l3 = mp_loopstart + i3;                                               \
		mf->v1 = mloop[l1].v;                                                 \
		mf->v2 = mloop[l2].v;                                                 \
		mf->v3 = mloop[l3].v;                                                 \
		mf->v4 = 0;                                                           \
		lidx[0] = l1;                                                         \
		lidx[1] = l2;                                                         \
		lidx[2] = l3;                                                         \
		lidx[3] = 0;                                                          \
		mf->mat_nr = mp->mat_nr;                                              \
		mf->flag = mp->flag;                                                  \
		mf->edcode = 0;                                                       \
		(void)0

/* ALMOST IDENTICAL TO DEFINE ABOVE (see EXCEPTION) */
#define ML_TO_MF_QUAD()                                                       \
		mface_to_poly_map[mface_index] = poly_index;                          \
		mf = &mface[mface_index];                                             \
		lidx = lindices[mface_index];                                         \
		/* set loop indices, transformed to vert indices later */             \
		l1 = mp_loopstart + 0; /* EXCEPTION */                                \
		l2 = mp_loopstart + 1; /* EXCEPTION */                                \
		l3 = mp_loopstart + 2; /* EXCEPTION */                                \
		l4 = mp_loopstart + 3; /* EXCEPTION */                                \
		mf->v1 = mloop[l1].v;                                                 \
		mf->v2 = mloop[l2].v;                                                 \
		mf->v3 = mloop[l3].v;                                                 \
		mf->v4 = mloop[l4].v;                                                 \
		lidx[0] = l1;                                                         \
		lidx[1] = l2;                                                         \
		lidx[2] = l3;                                                         \
		lidx[3] = l4;                                                         \
		mf->mat_nr = mp->mat_nr;                                              \
		mf->flag = mp->flag;                                                  \
		mf->edcode = TESSFACE_IS_QUAD;                                        \
		(void)0


		else if (mp_totloop == 3) {
			ML_TO_MF(0, 1, 2);
			mface_index++;
		}
		else if (mp_totloop == 4) {
#ifdef USE_TESSFACE_QUADS
			ML_TO_MF_QUAD();
			mface_index++;
#else
			ML_TO_MF(0, 1, 2);
			mface_index++;
			ML_TO_MF(0, 2, 3);
			mface_index++;
#endif
		}
#endif /* USE_TESSFACE_SPEEDUP */
		else {
			const float *co_curr, *co_prev;

			float normal[3];

			float axis_mat[3][3];
			float (*projverts)[2];
			unsigned int (*tris)[3];

			const unsigned int totfilltri = mp_totloop - 2;

			if (UNLIKELY(arena == NULL)) {
				arena = BLI_memarena_new(BLI_MEMARENA_STD_BUFSIZE, __func__);
			}

			tris = BLI_memarena_alloc(arena, sizeof(*tris) * (size_t)totfilltri);
			projverts = BLI_memarena_alloc(arena, sizeof(*projverts) * (size_t)mp_totloop);

			zero_v3(normal);

			/* calc normal */
			ml = mloop + mp_loopstart;
			co_prev = mvert[ml[mp_totloop - 1].v].co;
			for (j = 0; j < mp_totloop; j++, ml++) {
				co_curr = mvert[ml->v].co;
				add_newell_cross_v3_v3v3(normal, co_prev, co_curr);
				co_prev = co_curr;
			}
			if (UNLIKELY(normalize_v3(normal) == 0.0f)) {
				normal[2] = 1.0f;
			}

			/* project verts to 2d */
			axis_dominant_v3_to_m3(axis_mat, normal);

			ml = mloop + mp_loopstart;
			for (j = 0; j < mp_totloop; j++, ml++) {
				mul_v2_m3v3(projverts[j], axis_mat, mvert[ml->v].co);
			}

			BLI_polyfill_calc_arena((const float (*)[2])projverts, mp_totloop, -1, tris, arena);

			/* apply fill */
			for (j = 0; j < totfilltri; j++) {
				unsigned int *tri = tris[j];
				lidx = lindices[mface_index];

				mface_to_poly_map[mface_index] = poly_index;
				mf = &mface[mface_index];

				/* set loop indices, transformed to vert indices later */
				l1 = mp_loopstart + tri[0];
				l2 = mp_loopstart + tri[1];
				l3 = mp_loopstart + tri[2];

				/* sort loop indices to ensure winding is correct */
				if (l1 > l2) SWAP(unsigned int, l1, l2);
				if (l2 > l3) SWAP(unsigned int, l2, l3);
				if (l1 > l2) SWAP(unsigned int, l1, l2);

				mf->v1 = mloop[l1].v;
				mf->v2 = mloop[l2].v;
				mf->v3 = mloop[l3].v;
				mf->v4 = 0;

				lidx[0] = l1;
				lidx[1] = l2;
				lidx[2] = l3;
				lidx[3] = 0;

				mf->mat_nr = mp->mat_nr;
				mf->flag = mp->flag;
				mf->edcode = 0;

				mface_index++;
			}

			BLI_memarena_clear(arena);
		}
	}

	if (arena) {
		BLI_memarena_free(arena);
		arena = NULL;
	}

	CustomData_free(fdata, totface);
	totface = mface_index;

	BLI_assert(totface <= looptris_tot);

	/* not essential but without this we store over-alloc'd memory in the CustomData layers */
	if (LIKELY(looptris_tot != totface)) {
		mface = MEM_reallocN(mface, sizeof(*mface) * (size_t)totface);
		mface_to_poly_map = MEM_reallocN(mface_to_poly_map, sizeof(*mface_to_poly_map) * (size_t)totface);
	}

	CustomData_add_layer(fdata, CD_MFACE, CD_ASSIGN, mface, totface);

	/* CD_ORIGINDEX will contain an array of indices from tessfaces to the polygons
	 * they are directly tessellated from */
	CustomData_add_layer(fdata, CD_ORIGINDEX, CD_ASSIGN, mface_to_poly_map, totface);
	CustomData_from_bmeshpoly(fdata, pdata, ldata, totface);

	if (do_face_nor_copy) {
		/* If polys have a normals layer, copying that to faces can help
		 * avoid the need to recalculate normals later */
		if (CustomData_has_layer(pdata, CD_NORMAL)) {
			float (*pnors)[3] = CustomData_get_layer(pdata, CD_NORMAL);
			float (*fnors)[3] = CustomData_add_layer(fdata, CD_NORMAL, CD_CALLOC, NULL, totface);
			for (mface_index = 0; mface_index < totface; mface_index++) {
				copy_v3_v3(fnors[mface_index], pnors[mface_to_poly_map[mface_index]]);
			}
		}
	}

	/* NOTE: quad detection issue - forth vertidx vs forth loopidx:
	 * Polygons take care of their loops ordering, hence not of their vertices ordering.
	 * Currently, our tfaces' forth vertex index might be 0 even for a quad. However, we know our forth loop index is
	 * never 0 for quads (because they are sorted for polygons, and our quads are still mere copies of their polygons).
	 * So we pass NULL as MFace pointer, and BKE_mesh_loops_to_tessdata will use the forth loop index as quad test.
	 * ...
	 */
	BKE_mesh_loops_to_tessdata(fdata, ldata, pdata, NULL, mface_to_poly_map, lindices, totface);

	/* NOTE: quad detection issue - forth vertidx vs forth loopidx:
	 * ...However, most TFace code uses 'MFace->v4 == 0' test to check whether it is a tri or quad.
	 * test_index_face() will check this and rotate the tessellated face if needed.
	 */
#ifdef USE_TESSFACE_QUADS
	mf = mface;
	for (mface_index = 0; mface_index < totface; mface_index++, mf++) {
		if (mf->edcode == TESSFACE_IS_QUAD) {
			test_index_face(mf, fdata, mface_index, 4);
			mf->edcode = 0;
		}
	}
#endif

	MEM_freeN(lindices);

	return totface;

#undef USE_TESSFACE_SPEEDUP
#undef USE_TESSFACE_QUADS

#undef ML_TO_MF
#undef ML_TO_MF_QUAD

}

#ifdef USE_BMESH_SAVE_AS_COMPAT

/**
 * This function recreates a tessellation.
 * returns number of tessellation faces.
 *
 * for forwards compat only quad->tri polys to mface, skip ngons.
 */
int BKE_mesh_mpoly_to_mface(struct CustomData *fdata, struct CustomData *ldata,
                            struct CustomData *pdata, int totface, int UNUSED(totloop), int totpoly)
{
	MLoop *mloop;

	unsigned int lindex[4];
	int i;
	int k;

	MPoly *mp, *mpoly;
	MFace *mface, *mf;

	const int numTex = CustomData_number_of_layers(pdata, CD_MTEXPOLY);
	const int numCol = CustomData_number_of_layers(ldata, CD_MLOOPCOL);
	const bool hasPCol = CustomData_has_layer(ldata, CD_PREVIEW_MLOOPCOL);
	const bool hasOrigSpace = CustomData_has_layer(ldata, CD_ORIGSPACE_MLOOP);
	const bool hasLNor = CustomData_has_layer(ldata, CD_NORMAL);

	/* over-alloc, ngons will be skipped */
	mface = MEM_mallocN(sizeof(*mface) * (size_t)totpoly, __func__);

	mpoly = CustomData_get_layer(pdata, CD_MPOLY);
	mloop = CustomData_get_layer(ldata, CD_MLOOP);

	mp = mpoly;
	k = 0;
	for (i = 0; i < totpoly; i++, mp++) {
		if (ELEM(mp->totloop, 3, 4)) {
			const unsigned int mp_loopstart = (unsigned int)mp->loopstart;
			mf = &mface[k];

			mf->mat_nr = mp->mat_nr;
			mf->flag = mp->flag;

			mf->v1 = mp_loopstart + 0;
			mf->v2 = mp_loopstart + 1;
			mf->v3 = mp_loopstart + 2;
			mf->v4 = (mp->totloop == 4) ? (mp_loopstart + 3) : 0;

			/* abuse edcode for temp storage and clear next loop */
			mf->edcode = (char)mp->totloop; /* only ever 3 or 4 */

			k++;
		}
	}

	CustomData_free(fdata, totface);

	totface = k;

	CustomData_add_layer(fdata, CD_MFACE, CD_ASSIGN, mface, totface);

	CustomData_from_bmeshpoly(fdata, pdata, ldata, totface);

	mp = mpoly;
	k = 0;
	for (i = 0; i < totpoly; i++, mp++) {
		if (ELEM(mp->totloop, 3, 4)) {
			mf = &mface[k];

			if (mf->edcode == 3) {
				/* sort loop indices to ensure winding is correct */
				/* NO SORT - looks like we can skip this */

				lindex[0] = mf->v1;
				lindex[1] = mf->v2;
				lindex[2] = mf->v3;
				lindex[3] = 0; /* unused */

				/* transform loop indices to vert indices */
				mf->v1 = mloop[mf->v1].v;
				mf->v2 = mloop[mf->v2].v;
				mf->v3 = mloop[mf->v3].v;

				BKE_mesh_loops_to_mface_corners(fdata, ldata, pdata,
				                                lindex, k, i, 3,
				                                numTex, numCol, hasPCol, hasOrigSpace, hasLNor);
				test_index_face(mf, fdata, k, 3);
			}
			else {
				/* sort loop indices to ensure winding is correct */
				/* NO SORT - looks like we can skip this */

				lindex[0] = mf->v1;
				lindex[1] = mf->v2;
				lindex[2] = mf->v3;
				lindex[3] = mf->v4;

				/* transform loop indices to vert indices */
				mf->v1 = mloop[mf->v1].v;
				mf->v2 = mloop[mf->v2].v;
				mf->v3 = mloop[mf->v3].v;
				mf->v4 = mloop[mf->v4].v;

				BKE_mesh_loops_to_mface_corners(fdata, ldata, pdata,
				                                lindex, k, i, 4,
				                                numTex, numCol, hasPCol, hasOrigSpace, hasLNor);
				test_index_face(mf, fdata, k, 4);
			}

			mf->edcode = 0;

			k++;
		}
	}

	return k;
}
#endif /* USE_BMESH_SAVE_AS_COMPAT */


static void bm_corners_to_loops_ex(ID *id, CustomData *fdata, CustomData *ldata, CustomData *pdata,
                                   MFace *mface, int totloop, int findex, int loopstart, int numTex, int numCol)
{
	MTFace *texface;
	MTexPoly *texpoly;
	MCol *mcol;
	MLoopCol *mloopcol;
	MLoopUV *mloopuv;
	MFace *mf;
	int i;

	mf = mface + findex;

	for (i = 0; i < numTex; i++) {
		texface = CustomData_get_n(fdata, CD_MTFACE, findex, i);
		texpoly = CustomData_get_n(pdata, CD_MTEXPOLY, findex, i);

		ME_MTEXFACE_CPY(texpoly, texface);

		mloopuv = CustomData_get_n(ldata, CD_MLOOPUV, loopstart, i);
		copy_v2_v2(mloopuv->uv, texface->uv[0]); mloopuv++;
		copy_v2_v2(mloopuv->uv, texface->uv[1]); mloopuv++;
		copy_v2_v2(mloopuv->uv, texface->uv[2]); mloopuv++;

		if (mf->v4) {
			copy_v2_v2(mloopuv->uv, texface->uv[3]); mloopuv++;
		}
	}

	for (i = 0; i < numCol; i++) {
		mloopcol = CustomData_get_n(ldata, CD_MLOOPCOL, loopstart, i);
		mcol = CustomData_get_n(fdata, CD_MCOL, findex, i);

		MESH_MLOOPCOL_FROM_MCOL(mloopcol, &mcol[0]); mloopcol++;
		MESH_MLOOPCOL_FROM_MCOL(mloopcol, &mcol[1]); mloopcol++;
		MESH_MLOOPCOL_FROM_MCOL(mloopcol, &mcol[2]); mloopcol++;
		if (mf->v4) {
			MESH_MLOOPCOL_FROM_MCOL(mloopcol, &mcol[3]); mloopcol++;
		}
	}

	if (CustomData_has_layer(fdata, CD_TESSLOOPNORMAL)) {
		float (*lnors)[3] = CustomData_get(ldata, loopstart, CD_NORMAL);
		short (*tlnors)[3] = CustomData_get(fdata, findex, CD_TESSLOOPNORMAL);
		const int max = mf->v4 ? 4 : 3;

		for (i = 0; i < max; i++, lnors++, tlnors++) {
			normal_short_to_float_v3(*lnors, *tlnors);
		}
	}

	if (CustomData_has_layer(fdata, CD_MDISPS)) {
		MDisps *ld = CustomData_get(ldata, loopstart, CD_MDISPS);
		MDisps *fd = CustomData_get(fdata, findex, CD_MDISPS);
		float (*disps)[3] = fd->disps;
		int tot = mf->v4 ? 4 : 3;
		int corners;

		if (CustomData_external_test(fdata, CD_MDISPS)) {
			if (id && fdata->external) {
				CustomData_external_add(ldata, id, CD_MDISPS,
				                        totloop, fdata->external->filename);
			}
		}

		corners = multires_mdisp_corners(fd);

		if (corners == 0) {
			/* Empty MDisp layers appear in at least one of the sintel.blend files.
			 * Not sure why this happens, but it seems fine to just ignore them here.
			 * If (corners == 0) for a non-empty layer though, something went wrong. */
			BLI_assert(fd->totdisp == 0);
		}
		else {
			const int side = (int)sqrtf((float)(fd->totdisp / corners));
			const int side_sq = side * side;
			const size_t disps_size = sizeof(float[3]) * (size_t)side_sq;

			for (i = 0; i < tot; i++, disps += side_sq, ld++) {
				ld->totdisp = side_sq;
				ld->level = (int)(logf((float)side - 1.0f) / (float)M_LN2) + 1;

				if (ld->disps)
					MEM_freeN(ld->disps);

				ld->disps = MEM_mallocN(disps_size, "converted loop mdisps");
				if (fd->disps) {
					memcpy(ld->disps, disps, disps_size);
				}
				else {
					memset(ld->disps, 0, disps_size);
				}
			}
		}
	}
}


void BKE_mesh_convert_mfaces_to_mpolys(Mesh *mesh)
{
	BKE_mesh_convert_mfaces_to_mpolys_ex(&mesh->id, &mesh->fdata, &mesh->ldata, &mesh->pdata,
	                                     mesh->totedge, mesh->totface, mesh->totloop, mesh->totpoly,
	                                     mesh->medge, mesh->mface,
	                                     &mesh->totloop, &mesh->totpoly, &mesh->mloop, &mesh->mpoly);

	BKE_mesh_update_customdata_pointers(mesh, true);
}

/* the same as BKE_mesh_convert_mfaces_to_mpolys but oriented to be used in do_versions from readfile.c
 * the difference is how active/render/clone/stencil indices are handled here
 *
 * normally thay're being set from pdata which totally makes sense for meshes which are already
 * converted to bmesh structures, but when loading older files indices shall be updated in other
 * way around, so newly added pdata and ldata would have this indices set based on fdata layer
 *
 * this is normally only needed when reading older files, in all other cases BKE_mesh_convert_mfaces_to_mpolys
 * shall be always used
 */
void BKE_mesh_do_versions_convert_mfaces_to_mpolys(Mesh *mesh)
{
	BKE_mesh_convert_mfaces_to_mpolys_ex(&mesh->id, &mesh->fdata, &mesh->ldata, &mesh->pdata,
	                                     mesh->totedge, mesh->totface, mesh->totloop, mesh->totpoly,
	                                     mesh->medge, mesh->mface,
	                                     &mesh->totloop, &mesh->totpoly, &mesh->mloop, &mesh->mpoly);

	CustomData_bmesh_do_versions_update_active_layers(&mesh->fdata, &mesh->pdata, &mesh->ldata);

	BKE_mesh_update_customdata_pointers(mesh, true);
}

void BKE_mesh_convert_mfaces_to_mpolys_ex(ID *id, CustomData *fdata, CustomData *ldata, CustomData *pdata,
                                          int totedge_i, int totface_i, int totloop_i, int totpoly_i,
                                          MEdge *medge, MFace *mface,
                                          int *r_totloop, int *r_totpoly,
                                          MLoop **r_mloop, MPoly **r_mpoly)
{
	MFace *mf;
	MLoop *ml, *mloop;
	MPoly *mp, *mpoly;
	MEdge *me;
	EdgeHash *eh;
	int numTex, numCol;
	int i, j, totloop, totpoly, *polyindex;

	/* old flag, clear to allow for reuse */
#define ME_FGON (1 << 3)

	/* just in case some of these layers are filled in (can happen with python created meshes) */
	CustomData_free(ldata, totloop_i);
	CustomData_free(pdata, totpoly_i);

	totpoly = totface_i;
	mpoly = MEM_callocN(sizeof(MPoly) * (size_t)totpoly, "mpoly converted");
	CustomData_add_layer(pdata, CD_MPOLY, CD_ASSIGN, mpoly, totpoly);

	numTex = CustomData_number_of_layers(fdata, CD_MTFACE);
	numCol = CustomData_number_of_layers(fdata, CD_MCOL);

	totloop = 0;
	mf = mface;
	for (i = 0; i < totface_i; i++, mf++) {
		totloop += mf->v4 ? 4 : 3;
	}

	mloop = MEM_callocN(sizeof(MLoop) * (size_t)totloop, "mloop converted");

	CustomData_add_layer(ldata, CD_MLOOP, CD_ASSIGN, mloop, totloop);

	CustomData_to_bmeshpoly(fdata, pdata, ldata, totloop, totpoly);

	if (id) {
		/* ensure external data is transferred */
		CustomData_external_read(fdata, id, CD_MASK_MDISPS, totface_i);
	}

	eh = BLI_edgehash_new_ex(__func__, (unsigned int)totedge_i);

	/* build edge hash */
	me = medge;
	for (i = 0; i < totedge_i; i++, me++) {
		BLI_edgehash_insert(eh, me->v1, me->v2, SET_UINT_IN_POINTER(i));

		/* unrelated but avoid having the FGON flag enabled, so we can reuse it later for something else */
		me->flag &= ~ME_FGON;
	}

	polyindex = CustomData_get_layer(fdata, CD_ORIGINDEX);

	j = 0; /* current loop index */
	ml = mloop;
	mf = mface;
	mp = mpoly;
	for (i = 0; i < totface_i; i++, mf++, mp++) {
		mp->loopstart = j;

		mp->totloop = mf->v4 ? 4 : 3;

		mp->mat_nr = mf->mat_nr;
		mp->flag = mf->flag;

#       define ML(v1, v2) { \
			ml->v = mf->v1; \
			ml->e = GET_UINT_FROM_POINTER(BLI_edgehash_lookup(eh, mf->v1, mf->v2)); \
			ml++; j++; \
		} (void)0

		ML(v1, v2);
		ML(v2, v3);
		if (mf->v4) {
			ML(v3, v4);
			ML(v4, v1);
		}
		else {
			ML(v3, v1);
		}

#       undef ML

		bm_corners_to_loops_ex(id, fdata, ldata, pdata, mface, totloop, i, mp->loopstart, numTex, numCol);

		if (polyindex) {
			*polyindex = i;
			polyindex++;
		}
	}

	/* note, we don't convert NGons at all, these are not even real ngons,
	 * they have their own UV's, colors etc - its more an editing feature. */

	BLI_edgehash_free(eh, NULL);

	*r_totpoly = totpoly;
	*r_totloop = totloop;
	*r_mpoly = mpoly;
	*r_mloop = mloop;

#undef ME_FGON

}
/** \} */


/* -------------------------------------------------------------------- */

/** \name Mesh Flag Flushing
 * \{ */

/* update the hide flag for edges and faces from the corresponding
 * flag in verts */
void BKE_mesh_flush_hidden_from_verts_ex(const MVert *mvert,
                                         const MLoop *mloop,
                                         MEdge *medge, const int totedge,
                                         MPoly *mpoly, const int totpoly)
{
	int i, j;

	for (i = 0; i < totedge; i++) {
		MEdge *e = &medge[i];
		if (mvert[e->v1].flag & ME_HIDE ||
		    mvert[e->v2].flag & ME_HIDE)
		{
			e->flag |= ME_HIDE;
		}
		else {
			e->flag &= ~ME_HIDE;
		}
	}
	for (i = 0; i < totpoly; i++) {
		MPoly *p = &mpoly[i];
		p->flag &= (char)~ME_HIDE;
		for (j = 0; j < p->totloop; j++) {
			if (mvert[mloop[p->loopstart + j].v].flag & ME_HIDE)
				p->flag |= ME_HIDE;
		}
	}
}
void BKE_mesh_flush_hidden_from_verts(Mesh *me)
{
	BKE_mesh_flush_hidden_from_verts_ex(me->mvert, me->mloop,
	                                    me->medge, me->totedge,
	                                    me->mpoly, me->totpoly);
}

void BKE_mesh_flush_hidden_from_polys_ex(MVert *mvert,
                                         const MLoop *mloop,
                                         MEdge *medge, const int UNUSED(totedge),
                                         const MPoly *mpoly, const int totpoly)
{
	const MPoly *mp;
	int i;

	i = totpoly;
	for (mp = mpoly; i--; mp++) {
		if (mp->flag & ME_HIDE) {
			const MLoop *ml;
			int j;
			j = mp->totloop;
			for (ml = &mloop[mp->loopstart]; j--; ml++) {
				mvert[ml->v].flag |= ME_HIDE;
				medge[ml->e].flag |= ME_HIDE;
			}
		}
	}

	i = totpoly;
	for (mp = mpoly; i--; mp++) {
		if ((mp->flag & ME_HIDE) == 0) {
			const MLoop *ml;
			int j;
			j = mp->totloop;
			for (ml = &mloop[mp->loopstart]; j--; ml++) {
				mvert[ml->v].flag &= (char)~ME_HIDE;
				medge[ml->e].flag &= (char)~ME_HIDE;
			}
		}
	}
}
void BKE_mesh_flush_hidden_from_polys(Mesh *me)
{
	BKE_mesh_flush_hidden_from_polys_ex(me->mvert, me->mloop,
	                                    me->medge, me->totedge,
	                                    me->mpoly, me->totpoly);
}

/**
 * simple poly -> vert/edge selection.
 */
void BKE_mesh_flush_select_from_polys_ex(MVert *mvert,       const int totvert,
                                         const MLoop *mloop,
                                         MEdge *medge,       const int totedge,
                                         const MPoly *mpoly, const int totpoly)
{
	MVert *mv;
	MEdge *med;
	const MPoly *mp;
	int i;

	i = totvert;
	for (mv = mvert; i--; mv++) {
		mv->flag &= (char)~SELECT;
	}

	i = totedge;
	for (med = medge; i--; med++) {
		med->flag &= ~SELECT;
	}

	i = totpoly;
	for (mp = mpoly; i--; mp++) {
		/* assume if its selected its not hidden and none of its verts/edges are hidden
		 * (a common assumption)*/
		if (mp->flag & ME_FACE_SEL) {
			const MLoop *ml;
			int j;
			j = mp->totloop;
			for (ml = &mloop[mp->loopstart]; j--; ml++) {
				mvert[ml->v].flag |= SELECT;
				medge[ml->e].flag |= SELECT;
			}
		}
	}
}
void BKE_mesh_flush_select_from_polys(Mesh *me)
{
	BKE_mesh_flush_select_from_polys_ex(me->mvert, me->totvert,
	                                 me->mloop,
	                                 me->medge, me->totedge,
	                                 me->mpoly, me->totpoly);
}

void BKE_mesh_flush_select_from_verts_ex(const MVert *mvert, const int UNUSED(totvert),
                                         const MLoop *mloop,
                                         MEdge *medge,       const int totedge,
                                         MPoly *mpoly,       const int totpoly)
{
	MEdge *med;
	MPoly *mp;
	int i;

	/* edges */
	i = totedge;
	for (med = medge; i--; med++) {
		if ((med->flag & ME_HIDE) == 0) {
			if ((mvert[med->v1].flag & SELECT) && (mvert[med->v2].flag & SELECT)) {
				med->flag |= SELECT;
			}
			else {
				med->flag &= ~SELECT;
			}
		}
	}

	/* polys */
	i = totpoly;
	for (mp = mpoly; i--; mp++) {
		if ((mp->flag & ME_HIDE) == 0) {
			bool ok = true;
			const MLoop *ml;
			int j;
			j = mp->totloop;
			for (ml = &mloop[mp->loopstart]; j--; ml++) {
				if ((mvert[ml->v].flag & SELECT) == 0) {
					ok = false;
					break;
				}
			}

			if (ok) {
				mp->flag |= ME_FACE_SEL;
			}
			else {
				mp->flag &= (char)~ME_FACE_SEL;
			}
		}
	}
}
void BKE_mesh_flush_select_from_verts(Mesh *me)
{
	BKE_mesh_flush_select_from_verts_ex(me->mvert, me->totvert,
	                                    me->mloop,
	                                    me->medge, me->totedge,
	                                    me->mpoly, me->totpoly);
}
/** \} */

/* -------------------------------------------------------------------- */

/** \name Mesh Spatial Calculation
 * \{ */

/**
 * This function takes the difference between 2 vertex-coord-arrays
 * (\a vert_cos_src, \a vert_cos_dst),
 * and applies the difference to \a vert_cos_new relative to \a vert_cos_org.
 *
 * \param vert_cos_src reference deform source.
 * \param vert_cos_dst reference deform destination.
 *
 * \param vert_cos_org reference for the output location.
 * \param vert_cos_new resulting coords.
 */
void BKE_mesh_calc_relative_deform(
        const MPoly *mpoly, const int totpoly,
        const MLoop *mloop, const int totvert,

        const float (*vert_cos_src)[3],
        const float (*vert_cos_dst)[3],

        const float (*vert_cos_org)[3],
              float (*vert_cos_new)[3])
{
	const MPoly *mp;
	int i;

	int *vert_accum = MEM_callocN(sizeof(*vert_accum) * (size_t)totvert, __func__);

	memset(vert_cos_new, '\0', sizeof(*vert_cos_new) * (size_t)totvert);

	for (i = 0, mp = mpoly; i < totpoly; i++, mp++) {
		const MLoop *loopstart = mloop + mp->loopstart;
		int j;

		for (j = 0; j < mp->totloop; j++) {
			unsigned int v_prev = loopstart[(mp->totloop + (j - 1)) % mp->totloop].v;
			unsigned int v_curr = loopstart[j].v;
			unsigned int v_next = loopstart[(j + 1) % mp->totloop].v;

			float tvec[3];

			transform_point_by_tri_v3(
			        tvec, vert_cos_dst[v_curr],
			        vert_cos_org[v_prev], vert_cos_org[v_curr], vert_cos_org[v_next],
			        vert_cos_src[v_prev], vert_cos_src[v_curr], vert_cos_src[v_next]);

			add_v3_v3(vert_cos_new[v_curr], tvec);
			vert_accum[v_curr] += 1;
		}
	}

	for (i = 0; i < totvert; i++) {
		if (vert_accum[i]) {
			mul_v3_fl(vert_cos_new[i], 1.0f / (float)vert_accum[i]);
		}
		else {
			copy_v3_v3(vert_cos_new[i], vert_cos_org[i]);
		}
	}

	MEM_freeN(vert_accum);
}
/** \} */