Welcome to mirror list, hosted at ThFree Co, Russian Federation.

mesh_evaluate.cc « intern « blenkernel « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 9a199c9c768c3466703e9592d31df463a43d88b1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
/* SPDX-License-Identifier: GPL-2.0-or-later
 * Copyright 2001-2002 NaN Holding BV. All rights reserved. */

/** \file
 * \ingroup bke
 *
 * Functions to evaluate mesh data.
 */

#include <climits>

#include "MEM_guardedalloc.h"

#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_object_types.h"

#include "BLI_alloca.h"
#include "BLI_bitmap.h"
#include "BLI_edgehash.h"
#include "BLI_index_range.hh"
#include "BLI_math.h"
#include "BLI_span.hh"
#include "BLI_utildefines.h"
#include "BLI_virtual_array.hh"

#include "BKE_customdata.h"

#include "BKE_attribute.hh"
#include "BKE_mesh.h"
#include "BKE_multires.h"

using blender::MutableSpan;
using blender::Span;
using blender::VArray;

/* -------------------------------------------------------------------- */
/** \name Polygon Calculations
 * \{ */

/*
 * COMPUTE POLY NORMAL
 *
 * Computes the normal of a planar
 * polygon See Graphics Gems for
 * computing newell normal.
 */
static void mesh_calc_ngon_normal(const MPoly *mpoly,
                                  const MLoop *loopstart,
                                  const MVert *mvert,
                                  float normal[3])
{
  const int nverts = mpoly->totloop;
  const float *v_prev = mvert[loopstart[nverts - 1].v].co;
  const float *v_curr;

  zero_v3(normal);

  /* Newell's Method */
  for (int i = 0; i < nverts; i++) {
    v_curr = mvert[loopstart[i].v].co;
    add_newell_cross_v3_v3v3(normal, v_prev, v_curr);
    v_prev = v_curr;
  }

  if (UNLIKELY(normalize_v3(normal) == 0.0f)) {
    normal[2] = 1.0f; /* other axis set to 0.0 */
  }
}

void BKE_mesh_calc_poly_normal(const MPoly *mpoly,
                               const MLoop *loopstart,
                               const MVert *mvarray,
                               float r_no[3])
{
  if (mpoly->totloop > 4) {
    mesh_calc_ngon_normal(mpoly, loopstart, mvarray, r_no);
  }
  else if (mpoly->totloop == 3) {
    normal_tri_v3(
        r_no, mvarray[loopstart[0].v].co, mvarray[loopstart[1].v].co, mvarray[loopstart[2].v].co);
  }
  else if (mpoly->totloop == 4) {
    normal_quad_v3(r_no,
                   mvarray[loopstart[0].v].co,
                   mvarray[loopstart[1].v].co,
                   mvarray[loopstart[2].v].co,
                   mvarray[loopstart[3].v].co);
  }
  else { /* horrible, two sided face! */
    r_no[0] = 0.0;
    r_no[1] = 0.0;
    r_no[2] = 1.0;
  }
}
/* duplicate of function above _but_ takes coords rather than mverts */
static void mesh_calc_ngon_normal_coords(const MPoly *mpoly,
                                         const MLoop *loopstart,
                                         const float (*vertex_coords)[3],
                                         float r_normal[3])
{
  const int nverts = mpoly->totloop;
  const float *v_prev = vertex_coords[loopstart[nverts - 1].v];
  const float *v_curr;

  zero_v3(r_normal);

  /* Newell's Method */
  for (int i = 0; i < nverts; i++) {
    v_curr = vertex_coords[loopstart[i].v];
    add_newell_cross_v3_v3v3(r_normal, v_prev, v_curr);
    v_prev = v_curr;
  }

  if (UNLIKELY(normalize_v3(r_normal) == 0.0f)) {
    r_normal[2] = 1.0f; /* other axis set to 0.0 */
  }
}

void BKE_mesh_calc_poly_normal_coords(const MPoly *mpoly,
                                      const MLoop *loopstart,
                                      const float (*vertex_coords)[3],
                                      float r_no[3])
{
  if (mpoly->totloop > 4) {
    mesh_calc_ngon_normal_coords(mpoly, loopstart, vertex_coords, r_no);
  }
  else if (mpoly->totloop == 3) {
    normal_tri_v3(r_no,
                  vertex_coords[loopstart[0].v],
                  vertex_coords[loopstart[1].v],
                  vertex_coords[loopstart[2].v]);
  }
  else if (mpoly->totloop == 4) {
    normal_quad_v3(r_no,
                   vertex_coords[loopstart[0].v],
                   vertex_coords[loopstart[1].v],
                   vertex_coords[loopstart[2].v],
                   vertex_coords[loopstart[3].v]);
  }
  else { /* horrible, two sided face! */
    r_no[0] = 0.0;
    r_no[1] = 0.0;
    r_no[2] = 1.0;
  }
}

static void mesh_calc_ngon_center(const MPoly *mpoly,
                                  const MLoop *loopstart,
                                  const MVert *mvert,
                                  float cent[3])
{
  const float w = 1.0f / float(mpoly->totloop);

  zero_v3(cent);

  for (int i = 0; i < mpoly->totloop; i++) {
    madd_v3_v3fl(cent, mvert[(loopstart++)->v].co, w);
  }
}

void BKE_mesh_calc_poly_center(const MPoly *mpoly,
                               const MLoop *loopstart,
                               const MVert *mvarray,
                               float r_cent[3])
{
  if (mpoly->totloop == 3) {
    mid_v3_v3v3v3(r_cent,
                  mvarray[loopstart[0].v].co,
                  mvarray[loopstart[1].v].co,
                  mvarray[loopstart[2].v].co);
  }
  else if (mpoly->totloop == 4) {
    mid_v3_v3v3v3v3(r_cent,
                    mvarray[loopstart[0].v].co,
                    mvarray[loopstart[1].v].co,
                    mvarray[loopstart[2].v].co,
                    mvarray[loopstart[3].v].co);
  }
  else {
    mesh_calc_ngon_center(mpoly, loopstart, mvarray, r_cent);
  }
}

float BKE_mesh_calc_poly_area(const MPoly *mpoly, const MLoop *loopstart, const MVert *mvarray)
{
  if (mpoly->totloop == 3) {
    return area_tri_v3(
        mvarray[loopstart[0].v].co, mvarray[loopstart[1].v].co, mvarray[loopstart[2].v].co);
  }

  const MLoop *l_iter = loopstart;
  float(*vertexcos)[3] = (float(*)[3])BLI_array_alloca(vertexcos, size_t(mpoly->totloop));

  /* pack vertex cos into an array for area_poly_v3 */
  for (int i = 0; i < mpoly->totloop; i++, l_iter++) {
    copy_v3_v3(vertexcos[i], mvarray[l_iter->v].co);
  }

  /* finally calculate the area */
  float area = area_poly_v3((const float(*)[3])vertexcos, uint(mpoly->totloop));

  return area;
}

float BKE_mesh_calc_area(const Mesh *me)
{
  const Span<MVert> verts = me->verts();
  const Span<MPoly> polys = me->polys();
  const Span<MLoop> loops = me->loops();

  float total_area = 0.0f;
  for (const MPoly &poly : polys) {
    total_area += BKE_mesh_calc_poly_area(&poly, &loops[poly.loopstart], verts.data());
  }
  return total_area;
}

float BKE_mesh_calc_poly_uv_area(const MPoly *mpoly, const MLoopUV *uv_array)
{

  int i, l_iter = mpoly->loopstart;
  float area;
  float(*vertexcos)[2] = (float(*)[2])BLI_array_alloca(vertexcos, size_t(mpoly->totloop));

  /* pack vertex cos into an array for area_poly_v2 */
  for (i = 0; i < mpoly->totloop; i++, l_iter++) {
    copy_v2_v2(vertexcos[i], uv_array[l_iter].uv);
  }

  /* finally calculate the area */
  area = area_poly_v2(vertexcos, uint(mpoly->totloop));

  return area;
}

static float UNUSED_FUNCTION(mesh_calc_poly_volume_centroid)(const MPoly *mpoly,
                                                             const MLoop *loopstart,
                                                             const MVert *mvarray,
                                                             float r_cent[3])
{
  const float *v_pivot, *v_step1;
  float total_volume = 0.0f;

  zero_v3(r_cent);

  v_pivot = mvarray[loopstart[0].v].co;
  v_step1 = mvarray[loopstart[1].v].co;

  for (int i = 2; i < mpoly->totloop; i++) {
    const float *v_step2 = mvarray[loopstart[i].v].co;

    /* Calculate the 6x volume of the tetrahedron formed by the 3 vertices
     * of the triangle and the origin as the fourth vertex */
    const float tetra_volume = volume_tri_tetrahedron_signed_v3_6x(v_pivot, v_step1, v_step2);
    total_volume += tetra_volume;

    /* Calculate the centroid of the tetrahedron formed by the 3 vertices
     * of the triangle and the origin as the fourth vertex.
     * The centroid is simply the average of the 4 vertices.
     *
     * Note that the vector is 4x the actual centroid
     * so the division can be done once at the end. */
    for (uint j = 0; j < 3; j++) {
      r_cent[j] += tetra_volume * (v_pivot[j] + v_step1[j] + v_step2[j]);
    }

    v_step1 = v_step2;
  }

  return total_volume;
}

/**
 * A version of mesh_calc_poly_volume_centroid that takes an initial reference center,
 * use this to increase numeric stability as the quality of the result becomes
 * very low quality as the value moves away from 0.0, see: T65986.
 */
static float mesh_calc_poly_volume_centroid_with_reference_center(const MPoly *mpoly,
                                                                  const MLoop *loopstart,
                                                                  const MVert *mvarray,
                                                                  const float reference_center[3],
                                                                  float r_cent[3])
{
  /* See: mesh_calc_poly_volume_centroid for comments. */
  float v_pivot[3], v_step1[3];
  float total_volume = 0.0f;
  zero_v3(r_cent);
  sub_v3_v3v3(v_pivot, mvarray[loopstart[0].v].co, reference_center);
  sub_v3_v3v3(v_step1, mvarray[loopstart[1].v].co, reference_center);
  for (int i = 2; i < mpoly->totloop; i++) {
    float v_step2[3];
    sub_v3_v3v3(v_step2, mvarray[loopstart[i].v].co, reference_center);
    const float tetra_volume = volume_tri_tetrahedron_signed_v3_6x(v_pivot, v_step1, v_step2);
    total_volume += tetra_volume;
    for (uint j = 0; j < 3; j++) {
      r_cent[j] += tetra_volume * (v_pivot[j] + v_step1[j] + v_step2[j]);
    }
    copy_v3_v3(v_step1, v_step2);
  }
  return total_volume;
}

/**
 * \note
 * - Results won't be correct if polygon is non-planar.
 * - This has the advantage over #mesh_calc_poly_volume_centroid
 *   that it doesn't depend on solid geometry, instead it weights the surface by volume.
 */
static float mesh_calc_poly_area_centroid(const MPoly *mpoly,
                                          const MLoop *loopstart,
                                          const MVert *mvarray,
                                          float r_cent[3])
{
  float total_area = 0.0f;
  float v1[3], v2[3], v3[3], normal[3], tri_cent[3];

  BKE_mesh_calc_poly_normal(mpoly, loopstart, mvarray, normal);
  copy_v3_v3(v1, mvarray[loopstart[0].v].co);
  copy_v3_v3(v2, mvarray[loopstart[1].v].co);
  zero_v3(r_cent);

  for (int i = 2; i < mpoly->totloop; i++) {
    copy_v3_v3(v3, mvarray[loopstart[i].v].co);

    float tri_area = area_tri_signed_v3(v1, v2, v3, normal);
    total_area += tri_area;

    mid_v3_v3v3v3(tri_cent, v1, v2, v3);
    madd_v3_v3fl(r_cent, tri_cent, tri_area);

    copy_v3_v3(v2, v3);
  }

  mul_v3_fl(r_cent, 1.0f / total_area);

  return total_area;
}

void BKE_mesh_calc_poly_angles(const MPoly *mpoly,
                               const MLoop *loopstart,
                               const MVert *mvarray,
                               float angles[])
{
  float nor_prev[3];
  float nor_next[3];

  int i_this = mpoly->totloop - 1;
  int i_next = 0;

  sub_v3_v3v3(nor_prev, mvarray[loopstart[i_this - 1].v].co, mvarray[loopstart[i_this].v].co);
  normalize_v3(nor_prev);

  while (i_next < mpoly->totloop) {
    sub_v3_v3v3(nor_next, mvarray[loopstart[i_this].v].co, mvarray[loopstart[i_next].v].co);
    normalize_v3(nor_next);
    angles[i_this] = angle_normalized_v3v3(nor_prev, nor_next);

    /* step */
    copy_v3_v3(nor_prev, nor_next);
    i_this = i_next;
    i_next++;
  }
}

void BKE_mesh_poly_edgehash_insert(EdgeHash *ehash, const MPoly *mp, const MLoop *mloop)
{
  const MLoop *ml, *ml_next;
  int i = mp->totloop;

  ml_next = mloop;      /* first loop */
  ml = &ml_next[i - 1]; /* last loop */

  while (i-- != 0) {
    BLI_edgehash_reinsert(ehash, ml->v, ml_next->v, nullptr);

    ml = ml_next;
    ml_next++;
  }
}

void BKE_mesh_poly_edgebitmap_insert(uint *edge_bitmap, const MPoly *mp, const MLoop *mloop)
{
  const MLoop *ml;
  int i = mp->totloop;

  ml = mloop;

  while (i-- != 0) {
    BLI_BITMAP_ENABLE(edge_bitmap, ml->e);
    ml++;
  }
}

/** \} */

/* -------------------------------------------------------------------- */
/** \name Mesh Center Calculation
 * \{ */

bool BKE_mesh_center_median(const Mesh *me, float r_cent[3])
{
  const Span<MVert> verts = me->verts();
  zero_v3(r_cent);
  for (const MVert &vert : verts) {
    add_v3_v3(r_cent, vert.co);
  }
  /* otherwise we get NAN for 0 verts */
  if (me->totvert) {
    mul_v3_fl(r_cent, 1.0f / float(me->totvert));
  }
  return (me->totvert != 0);
}

bool BKE_mesh_center_median_from_polys(const Mesh *me, float r_cent[3])
{
  int tot = 0;
  const Span<MVert> verts = me->verts();
  const Span<MPoly> polys = me->polys();
  const Span<MLoop> loops = me->loops();
  zero_v3(r_cent);
  for (const MPoly &poly : polys) {
    int loopend = poly.loopstart + poly.totloop;
    for (int j = poly.loopstart; j < loopend; j++) {
      add_v3_v3(r_cent, verts[loops[j].v].co);
    }
    tot += poly.totloop;
  }
  /* otherwise we get NAN for 0 verts */
  if (me->totpoly) {
    mul_v3_fl(r_cent, 1.0f / float(tot));
  }
  return (me->totpoly != 0);
}

bool BKE_mesh_center_bounds(const Mesh *me, float r_cent[3])
{
  float min[3], max[3];
  INIT_MINMAX(min, max);
  if (BKE_mesh_minmax(me, min, max)) {
    mid_v3_v3v3(r_cent, min, max);
    return true;
  }

  return false;
}

bool BKE_mesh_center_of_surface(const Mesh *me, float r_cent[3])
{
  int i = me->totpoly;
  const MPoly *mpoly;
  float poly_area;
  float total_area = 0.0f;
  float poly_cent[3];
  const MVert *verts = BKE_mesh_verts(me);
  const MPoly *polys = BKE_mesh_polys(me);
  const MLoop *loops = BKE_mesh_loops(me);

  zero_v3(r_cent);

  /* calculate a weighted average of polygon centroids */
  for (mpoly = polys; i--; mpoly++) {
    poly_area = mesh_calc_poly_area_centroid(mpoly, loops + mpoly->loopstart, verts, poly_cent);

    madd_v3_v3fl(r_cent, poly_cent, poly_area);
    total_area += poly_area;
  }
  /* otherwise we get NAN for 0 polys */
  if (me->totpoly) {
    mul_v3_fl(r_cent, 1.0f / total_area);
  }

  /* zero area faces cause this, fallback to median */
  if (UNLIKELY(!is_finite_v3(r_cent))) {
    return BKE_mesh_center_median(me, r_cent);
  }

  return (me->totpoly != 0);
}

bool BKE_mesh_center_of_volume(const Mesh *me, float r_cent[3])
{
  int i = me->totpoly;
  const MPoly *mpoly;
  float poly_volume;
  float total_volume = 0.0f;
  float poly_cent[3];
  const MVert *verts = BKE_mesh_verts(me);
  const MPoly *polys = BKE_mesh_polys(me);
  const MLoop *loops = BKE_mesh_loops(me);

  /* Use an initial center to avoid numeric instability of geometry far away from the center. */
  float init_cent[3];
  const bool init_cent_result = BKE_mesh_center_median_from_polys(me, init_cent);

  zero_v3(r_cent);

  /* calculate a weighted average of polyhedron centroids */
  for (mpoly = polys; i--; mpoly++) {
    poly_volume = mesh_calc_poly_volume_centroid_with_reference_center(
        mpoly, loops + mpoly->loopstart, verts, init_cent, poly_cent);

    /* poly_cent is already volume-weighted, so no need to multiply by the volume */
    add_v3_v3(r_cent, poly_cent);
    total_volume += poly_volume;
  }
  /* otherwise we get NAN for 0 polys */
  if (total_volume != 0.0f) {
    /* multiply by 0.25 to get the correct centroid */
    /* no need to divide volume by 6 as the centroid is weighted by 6x the volume,
     * so it all cancels out. */
    mul_v3_fl(r_cent, 0.25f / total_volume);
  }

  /* this can happen for non-manifold objects, fallback to median */
  if (UNLIKELY(!is_finite_v3(r_cent))) {
    copy_v3_v3(r_cent, init_cent);
    return init_cent_result;
  }
  add_v3_v3(r_cent, init_cent);
  return (me->totpoly != 0);
}

/** \} */

/* -------------------------------------------------------------------- */
/** \name Mesh Volume Calculation
 * \{ */

static bool mesh_calc_center_centroid_ex(const MVert *mverts,
                                         int /*mverts_num*/,
                                         const MLoopTri *looptri,
                                         int looptri_num,
                                         const MLoop *mloop,
                                         float r_center[3])
{

  zero_v3(r_center);

  if (looptri_num == 0) {
    return false;
  }

  float totweight = 0.0f;
  const MLoopTri *lt;
  int i;
  for (i = 0, lt = looptri; i < looptri_num; i++, lt++) {
    const MVert *v1 = &mverts[mloop[lt->tri[0]].v];
    const MVert *v2 = &mverts[mloop[lt->tri[1]].v];
    const MVert *v3 = &mverts[mloop[lt->tri[2]].v];
    float area;

    area = area_tri_v3(v1->co, v2->co, v3->co);
    madd_v3_v3fl(r_center, v1->co, area);
    madd_v3_v3fl(r_center, v2->co, area);
    madd_v3_v3fl(r_center, v3->co, area);
    totweight += area;
  }
  if (totweight == 0.0f) {
    return false;
  }

  mul_v3_fl(r_center, 1.0f / (3.0f * totweight));

  return true;
}

void BKE_mesh_calc_volume(const MVert *mverts,
                          const int mverts_num,
                          const MLoopTri *looptri,
                          const int looptri_num,
                          const MLoop *mloop,
                          float *r_volume,
                          float r_center[3])
{
  const MLoopTri *lt;
  float center[3];
  float totvol;
  int i;

  if (r_volume) {
    *r_volume = 0.0f;
  }
  if (r_center) {
    zero_v3(r_center);
  }

  if (looptri_num == 0) {
    return;
  }

  if (!mesh_calc_center_centroid_ex(mverts, mverts_num, looptri, looptri_num, mloop, center)) {
    return;
  }

  totvol = 0.0f;

  for (i = 0, lt = looptri; i < looptri_num; i++, lt++) {
    const MVert *v1 = &mverts[mloop[lt->tri[0]].v];
    const MVert *v2 = &mverts[mloop[lt->tri[1]].v];
    const MVert *v3 = &mverts[mloop[lt->tri[2]].v];
    float vol;

    vol = volume_tetrahedron_signed_v3(center, v1->co, v2->co, v3->co);
    if (r_volume) {
      totvol += vol;
    }
    if (r_center) {
      /* averaging factor 1/3 is applied in the end */
      madd_v3_v3fl(r_center, v1->co, vol);
      madd_v3_v3fl(r_center, v2->co, vol);
      madd_v3_v3fl(r_center, v3->co, vol);
    }
  }

  /* NOTE: Depending on arbitrary centroid position,
   * totvol can become negative even for a valid mesh.
   * The true value is always the positive value.
   */
  if (r_volume) {
    *r_volume = fabsf(totvol);
  }
  if (r_center) {
    /* NOTE: Factor 1/3 is applied once for all vertices here.
     * This also automatically negates the vector if totvol is negative.
     */
    if (totvol != 0.0f) {
      mul_v3_fl(r_center, (1.0f / 3.0f) / totvol);
    }
  }
}

/** \} */

void BKE_mesh_mdisp_flip(MDisps *md, const bool use_loop_mdisp_flip)
{
  if (UNLIKELY(!md->totdisp || !md->disps)) {
    return;
  }

  const int sides = int(sqrt(md->totdisp));
  float(*co)[3] = md->disps;

  for (int x = 0; x < sides; x++) {
    float *co_a, *co_b;

    for (int y = 0; y < x; y++) {
      co_a = co[y * sides + x];
      co_b = co[x * sides + y];

      swap_v3_v3(co_a, co_b);
      SWAP(float, co_a[0], co_a[1]);
      SWAP(float, co_b[0], co_b[1]);

      if (use_loop_mdisp_flip) {
        co_a[2] *= -1.0f;
        co_b[2] *= -1.0f;
      }
    }

    co_a = co[x * sides + x];

    SWAP(float, co_a[0], co_a[1]);

    if (use_loop_mdisp_flip) {
      co_a[2] *= -1.0f;
    }
  }
}

void BKE_mesh_polygon_flip_ex(const MPoly *mpoly,
                              MLoop *mloop,
                              CustomData *ldata,
                              float (*lnors)[3],
                              MDisps *mdisp,
                              const bool use_loop_mdisp_flip)
{
  int loopstart = mpoly->loopstart;
  int loopend = loopstart + mpoly->totloop - 1;
  const bool loops_in_ldata = (CustomData_get_layer(ldata, CD_MLOOP) == mloop);

  if (mdisp) {
    for (int i = loopstart; i <= loopend; i++) {
      BKE_mesh_mdisp_flip(&mdisp[i], use_loop_mdisp_flip);
    }
  }

  /* Note that we keep same start vertex for flipped face. */

  /* We also have to update loops edge
   * (they will get their original 'other edge', that is,
   * the original edge of their original previous loop)... */
  uint prev_edge_index = mloop[loopstart].e;
  mloop[loopstart].e = mloop[loopend].e;

  for (loopstart++; loopend > loopstart; loopstart++, loopend--) {
    mloop[loopend].e = mloop[loopend - 1].e;
    SWAP(uint, mloop[loopstart].e, prev_edge_index);

    if (!loops_in_ldata) {
      SWAP(MLoop, mloop[loopstart], mloop[loopend]);
    }
    if (lnors) {
      swap_v3_v3(lnors[loopstart], lnors[loopend]);
    }
    CustomData_swap(ldata, loopstart, loopend);
  }
  /* Even if we did not swap the other 'pivot' loop, we need to set its swapped edge. */
  if (loopstart == loopend) {
    mloop[loopstart].e = prev_edge_index;
  }
}

void BKE_mesh_polygon_flip(const MPoly *mpoly, MLoop *mloop, CustomData *ldata)
{
  MDisps *mdisp = (MDisps *)CustomData_get_layer(ldata, CD_MDISPS);
  BKE_mesh_polygon_flip_ex(mpoly, mloop, ldata, nullptr, mdisp, true);
}

void BKE_mesh_polys_flip(const MPoly *mpoly, MLoop *mloop, CustomData *ldata, int totpoly)
{
  MDisps *mdisp = (MDisps *)CustomData_get_layer(ldata, CD_MDISPS);
  const MPoly *mp;
  int i;

  for (mp = mpoly, i = 0; i < totpoly; mp++, i++) {
    BKE_mesh_polygon_flip_ex(mp, mloop, ldata, nullptr, mdisp, true);
  }
}

/* -------------------------------------------------------------------- */
/** \name Mesh Flag Flushing
 * \{ */

void BKE_mesh_flush_hidden_from_verts(Mesh *me)
{
  using namespace blender;
  using namespace blender::bke;
  MutableAttributeAccessor attributes = me->attributes_for_write();

  const VArray<bool> hide_vert = attributes.lookup_or_default<bool>(
      ".hide_vert", ATTR_DOMAIN_POINT, false);
  if (hide_vert.is_single() && !hide_vert.get_internal_single()) {
    attributes.remove(".hide_edge");
    attributes.remove(".hide_poly");
    return;
  }
  const VArraySpan<bool> hide_vert_span{hide_vert};
  const Span<MEdge> edges = me->edges();
  const Span<MPoly> polys = me->polys();
  const Span<MLoop> loops = me->loops();

  /* Hide edges when either of their vertices are hidden. */
  SpanAttributeWriter<bool> hide_edge = attributes.lookup_or_add_for_write_only_span<bool>(
      ".hide_edge", ATTR_DOMAIN_EDGE);
  for (const int i : edges.index_range()) {
    const MEdge &edge = edges[i];
    hide_edge.span[i] = hide_vert_span[edge.v1] || hide_vert_span[edge.v2];
  }
  hide_edge.finish();

  /* Hide polygons when any of their vertices are hidden. */
  SpanAttributeWriter<bool> hide_poly = attributes.lookup_or_add_for_write_only_span<bool>(
      ".hide_poly", ATTR_DOMAIN_FACE);
  for (const int i : polys.index_range()) {
    const MPoly &poly = polys[i];
    const Span<MLoop> poly_loops = loops.slice(poly.loopstart, poly.totloop);
    hide_poly.span[i] = std::any_of(poly_loops.begin(), poly_loops.end(), [&](const MLoop &loop) {
      return hide_vert_span[loop.v];
    });
  }
  hide_poly.finish();
}

void BKE_mesh_flush_hidden_from_polys(Mesh *me)
{
  using namespace blender;
  using namespace blender::bke;
  MutableAttributeAccessor attributes = me->attributes_for_write();

  const VArray<bool> hide_poly = attributes.lookup_or_default<bool>(
      ".hide_poly", ATTR_DOMAIN_FACE, false);
  if (hide_poly.is_single() && !hide_poly.get_internal_single()) {
    attributes.remove(".hide_vert");
    attributes.remove(".hide_edge");
    return;
  }
  const VArraySpan<bool> hide_poly_span{hide_poly};
  const Span<MPoly> polys = me->polys();
  const Span<MLoop> loops = me->loops();
  SpanAttributeWriter<bool> hide_vert = attributes.lookup_or_add_for_write_only_span<bool>(
      ".hide_vert", ATTR_DOMAIN_POINT);
  SpanAttributeWriter<bool> hide_edge = attributes.lookup_or_add_for_write_only_span<bool>(
      ".hide_edge", ATTR_DOMAIN_EDGE);

  /* Hide all edges or vertices connected to hidden polygons. */
  for (const int i : polys.index_range()) {
    if (hide_poly_span[i]) {
      const MPoly &poly = polys[i];
      for (const MLoop &loop : loops.slice(poly.loopstart, poly.totloop)) {
        hide_vert.span[loop.v] = true;
        hide_edge.span[loop.e] = true;
      }
    }
  }
  /* Unhide vertices and edges connected to visible polygons. */
  for (const int i : polys.index_range()) {
    if (!hide_poly_span[i]) {
      const MPoly &poly = polys[i];
      for (const MLoop &loop : loops.slice(poly.loopstart, poly.totloop)) {
        hide_vert.span[loop.v] = false;
        hide_edge.span[loop.e] = false;
      }
    }
  }

  hide_vert.finish();
  hide_edge.finish();
}

void BKE_mesh_flush_select_from_polys(Mesh *me)
{
  using namespace blender::bke;
  MutableAttributeAccessor attributes = me->attributes_for_write();
  const VArray<bool> select_poly = attributes.lookup_or_default<bool>(
      ".select_poly", ATTR_DOMAIN_FACE, false);
  if (select_poly.is_single() && !select_poly.get_internal_single()) {
    attributes.remove(".select_vert");
    attributes.remove(".select_edge");
    return;
  }
  SpanAttributeWriter<bool> select_vert = attributes.lookup_or_add_for_write_only_span<bool>(
      ".select_vert", ATTR_DOMAIN_POINT);
  SpanAttributeWriter<bool> select_edge = attributes.lookup_or_add_for_write_only_span<bool>(
      ".select_edge", ATTR_DOMAIN_EDGE);

  /* Use generic domain interpolation to read the polygon attribute on the other domains.
   * Assume selected faces are not hidden and none of their vertices/edges are hidden. */
  attributes.lookup_or_default<bool>(".select_poly", ATTR_DOMAIN_POINT, false)
      .materialize(select_vert.span);
  attributes.lookup_or_default<bool>(".select_poly", ATTR_DOMAIN_EDGE, false)
      .materialize(select_edge.span);

  select_vert.finish();
  select_edge.finish();
}

static void mesh_flush_select_from_verts(const Span<MEdge> edges,
                                         const Span<MPoly> polys,
                                         const Span<MLoop> loops,
                                         const VArray<bool> &hide_edge,
                                         const VArray<bool> &hide_poly,
                                         const VArray<bool> &select_vert,
                                         MutableSpan<bool> select_edge,
                                         MutableSpan<bool> select_poly)
{
  /* Select visible edges that have both of their vertices selected. */
  for (const int i : edges.index_range()) {
    if (!hide_edge[i]) {
      const MEdge &edge = edges[i];
      select_edge[i] = select_vert[edge.v1] && select_vert[edge.v2];
    }
  }

  /* Select visible faces that have all of their vertices selected. */
  for (const int i : polys.index_range()) {
    if (!hide_poly[i]) {
      const MPoly &poly = polys[i];
      const Span<MLoop> poly_loops = loops.slice(poly.loopstart, poly.totloop);
      select_poly[i] = std::all_of(poly_loops.begin(), poly_loops.end(), [&](const MLoop &loop) {
        return select_vert[loop.v];
      });
    }
  }
}

void BKE_mesh_flush_select_from_verts(Mesh *me)
{
  using namespace blender::bke;
  MutableAttributeAccessor attributes = me->attributes_for_write();
  const VArray<bool> select_vert = attributes.lookup_or_default<bool>(
      ".select_vert", ATTR_DOMAIN_POINT, false);
  if (select_vert.is_single() && !select_vert.get_internal_single()) {
    attributes.remove(".select_edge");
    attributes.remove(".select_poly");
    return;
  }
  SpanAttributeWriter<bool> select_edge = attributes.lookup_or_add_for_write_only_span<bool>(
      ".select_edge", ATTR_DOMAIN_EDGE);
  SpanAttributeWriter<bool> select_poly = attributes.lookup_or_add_for_write_only_span<bool>(
      ".select_poly", ATTR_DOMAIN_FACE);
  mesh_flush_select_from_verts(
      me->edges(),
      me->polys(),
      me->loops(),
      attributes.lookup_or_default<bool>(".hide_edge", ATTR_DOMAIN_EDGE, false),
      attributes.lookup_or_default<bool>(".hide_poly", ATTR_DOMAIN_FACE, false),
      select_vert,
      select_edge.span,
      select_poly.span);
  select_edge.finish();
  select_poly.finish();
}

/** \} */

/* -------------------------------------------------------------------- */
/** \name Mesh Spatial Calculation
 * \{ */

void BKE_mesh_calc_relative_deform(const MPoly *mpoly,
                                   const int totpoly,
                                   const MLoop *mloop,
                                   const int totvert,

                                   const float (*vert_cos_src)[3],
                                   const float (*vert_cos_dst)[3],

                                   const float (*vert_cos_org)[3],
                                   float (*vert_cos_new)[3])
{
  const MPoly *mp;
  int i;

  int *vert_accum = (int *)MEM_calloc_arrayN(size_t(totvert), sizeof(*vert_accum), __func__);

  memset(vert_cos_new, '\0', sizeof(*vert_cos_new) * size_t(totvert));

  for (i = 0, mp = mpoly; i < totpoly; i++, mp++) {
    const MLoop *loopstart = mloop + mp->loopstart;

    for (int j = 0; j < mp->totloop; j++) {
      uint v_prev = loopstart[(mp->totloop + (j - 1)) % mp->totloop].v;
      uint v_curr = loopstart[j].v;
      uint v_next = loopstart[(j + 1) % mp->totloop].v;

      float tvec[3];

      transform_point_by_tri_v3(tvec,
                                vert_cos_dst[v_curr],
                                vert_cos_org[v_prev],
                                vert_cos_org[v_curr],
                                vert_cos_org[v_next],
                                vert_cos_src[v_prev],
                                vert_cos_src[v_curr],
                                vert_cos_src[v_next]);

      add_v3_v3(vert_cos_new[v_curr], tvec);
      vert_accum[v_curr] += 1;
    }
  }

  for (i = 0; i < totvert; i++) {
    if (vert_accum[i]) {
      mul_v3_fl(vert_cos_new[i], 1.0f / float(vert_accum[i]));
    }
    else {
      copy_v3_v3(vert_cos_new[i], vert_cos_org[i]);
    }
  }

  MEM_freeN(vert_accum);
}

/** \} */