Welcome to mirror list, hosted at ThFree Co, Russian Federation.

mesh_tessellate.cc « intern « blenkernel « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: eaef90dec9b28d06fed9f9af7dfb70a46bdf5ea6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
/* SPDX-License-Identifier: GPL-2.0-or-later
 * Copyright 2001-2002 NaN Holding BV. All rights reserved. */

/** \file
 * \ingroup bke
 *
 * This file contains code for polygon tessellation
 * (creating triangles from polygons).
 *
 * \see bmesh_mesh_tessellate.c for the #BMesh equivalent of this file.
 */

#include <climits>

#include "MEM_guardedalloc.h"

#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"

#include "BLI_math.h"
#include "BLI_memarena.h"
#include "BLI_polyfill_2d.h"
#include "BLI_task.h"
#include "BLI_utildefines.h"

#include "BKE_customdata.h"
#include "BKE_mesh.h" /* Own include. */

#include "BLI_strict_flags.h"

/** Compared against total loops. */
#define MESH_FACE_TESSELLATE_THREADED_LIMIT 4096

/* -------------------------------------------------------------------- */
/** \name Loop Tessellation
 *
 * Fill in #MLoopTri data-structure.
 * \{ */

/**
 * \param face_normal: This will be optimized out as a constant.
 */
BLI_INLINE void mesh_calc_tessellation_for_face_impl(const MLoop *mloop,
                                                     const MPoly *mpoly,
                                                     const float (*positions)[3],
                                                     uint poly_index,
                                                     MLoopTri *mlt,
                                                     MemArena **pf_arena_p,
                                                     const bool face_normal,
                                                     const float normal_precalc[3])
{
  const uint mp_loopstart = uint(mpoly[poly_index].loopstart);
  const uint mp_totloop = uint(mpoly[poly_index].totloop);

#define ML_TO_MLT(i1, i2, i3) \
  { \
    ARRAY_SET_ITEMS(mlt->tri, mp_loopstart + i1, mp_loopstart + i2, mp_loopstart + i3); \
    mlt->poly = poly_index; \
  } \
  ((void)0)

  switch (mp_totloop) {
    case 3: {
      ML_TO_MLT(0, 1, 2);
      break;
    }
    case 4: {
      ML_TO_MLT(0, 1, 2);
      MLoopTri *mlt_a = mlt++;
      ML_TO_MLT(0, 2, 3);
      MLoopTri *mlt_b = mlt;

      if (UNLIKELY(face_normal ? is_quad_flip_v3_first_third_fast_with_normal(
                                     /* Simpler calculation (using the normal). */
                                     positions[mloop[mlt_a->tri[0]].v],
                                     positions[mloop[mlt_a->tri[1]].v],
                                     positions[mloop[mlt_a->tri[2]].v],
                                     positions[mloop[mlt_b->tri[2]].v],
                                     normal_precalc) :
                                 is_quad_flip_v3_first_third_fast(
                                     /* Expensive calculation (no normal). */
                                     positions[mloop[mlt_a->tri[0]].v],
                                     positions[mloop[mlt_a->tri[1]].v],
                                     positions[mloop[mlt_a->tri[2]].v],
                                     positions[mloop[mlt_b->tri[2]].v]))) {
        /* Flip out of degenerate 0-2 state. */
        mlt_a->tri[2] = mlt_b->tri[2];
        mlt_b->tri[0] = mlt_a->tri[1];
      }
      break;
    }
    default: {
      const MLoop *ml;
      float axis_mat[3][3];

      /* Calculate `axis_mat` to project verts to 2D. */
      if (face_normal == false) {
        float normal[3];
        const float *co_curr, *co_prev;

        zero_v3(normal);

        /* Calc normal, flipped: to get a positive 2D cross product. */
        ml = mloop + mp_loopstart;
        co_prev = positions[ml[mp_totloop - 1].v];
        for (uint j = 0; j < mp_totloop; j++, ml++) {
          co_curr = positions[ml->v];
          add_newell_cross_v3_v3v3(normal, co_prev, co_curr);
          co_prev = co_curr;
        }
        if (UNLIKELY(normalize_v3(normal) == 0.0f)) {
          normal[2] = 1.0f;
        }
        axis_dominant_v3_to_m3_negate(axis_mat, normal);
      }
      else {
        axis_dominant_v3_to_m3_negate(axis_mat, normal_precalc);
      }

      const uint totfilltri = mp_totloop - 2;

      MemArena *pf_arena = *pf_arena_p;
      if (UNLIKELY(pf_arena == nullptr)) {
        pf_arena = *pf_arena_p = BLI_memarena_new(BLI_MEMARENA_STD_BUFSIZE, __func__);
      }

      uint(*tris)[3] = static_cast<uint(*)[3]>(
          BLI_memarena_alloc(pf_arena, sizeof(*tris) * size_t(totfilltri)));
      float(*projverts)[2] = static_cast<float(*)[2]>(
          BLI_memarena_alloc(pf_arena, sizeof(*projverts) * size_t(mp_totloop)));

      ml = mloop + mp_loopstart;
      for (uint j = 0; j < mp_totloop; j++, ml++) {
        mul_v2_m3v3(projverts[j], axis_mat, positions[ml->v]);
      }

      BLI_polyfill_calc_arena(projverts, mp_totloop, 1, tris, pf_arena);

      /* Apply fill. */
      for (uint j = 0; j < totfilltri; j++, mlt++) {
        const uint *tri = tris[j];
        ML_TO_MLT(tri[0], tri[1], tri[2]);
      }

      BLI_memarena_clear(pf_arena);

      break;
    }
  }
#undef ML_TO_MLT
}

static void mesh_calc_tessellation_for_face(const MLoop *mloop,
                                            const MPoly *mpoly,
                                            const float (*positions)[3],
                                            uint poly_index,
                                            MLoopTri *mlt,
                                            MemArena **pf_arena_p)
{
  mesh_calc_tessellation_for_face_impl(
      mloop, mpoly, positions, poly_index, mlt, pf_arena_p, false, nullptr);
}

static void mesh_calc_tessellation_for_face_with_normal(const MLoop *mloop,
                                                        const MPoly *mpoly,
                                                        const float (*positions)[3],
                                                        uint poly_index,
                                                        MLoopTri *mlt,
                                                        MemArena **pf_arena_p,
                                                        const float normal_precalc[3])
{
  mesh_calc_tessellation_for_face_impl(
      mloop, mpoly, positions, poly_index, mlt, pf_arena_p, true, normal_precalc);
}

static void mesh_recalc_looptri__single_threaded(const MLoop *mloop,
                                                 const MPoly *mpoly,
                                                 const float (*positions)[3],
                                                 int totloop,
                                                 int totpoly,
                                                 MLoopTri *mlooptri,
                                                 const float (*poly_normals)[3])
{
  MemArena *pf_arena = nullptr;
  const MPoly *mp = mpoly;
  uint tri_index = 0;

  if (poly_normals != nullptr) {
    for (uint poly_index = 0; poly_index < uint(totpoly); poly_index++, mp++) {
      mesh_calc_tessellation_for_face_with_normal(mloop,
                                                  mpoly,
                                                  positions,
                                                  poly_index,
                                                  &mlooptri[tri_index],
                                                  &pf_arena,
                                                  poly_normals[poly_index]);
      tri_index += uint(mp->totloop - 2);
    }
  }
  else {
    for (uint poly_index = 0; poly_index < uint(totpoly); poly_index++, mp++) {
      mesh_calc_tessellation_for_face(
          mloop, mpoly, positions, poly_index, &mlooptri[tri_index], &pf_arena);
      tri_index += uint(mp->totloop - 2);
    }
  }

  if (pf_arena) {
    BLI_memarena_free(pf_arena);
    pf_arena = nullptr;
  }
  BLI_assert(tri_index == uint(poly_to_tri_count(totpoly, totloop)));
  UNUSED_VARS_NDEBUG(totloop);
}

struct TessellationUserData {
  const MLoop *mloop;
  const MPoly *mpoly;
  const float (*positions)[3];

  /** Output array. */
  MLoopTri *mlooptri;

  /** Optional pre-calculated polygon normals array. */
  const float (*poly_normals)[3];
};

struct TessellationUserTLS {
  MemArena *pf_arena;
};

static void mesh_calc_tessellation_for_face_fn(void *__restrict userdata,
                                               const int index,
                                               const TaskParallelTLS *__restrict tls)
{
  const TessellationUserData *data = static_cast<const TessellationUserData *>(userdata);
  TessellationUserTLS *tls_data = static_cast<TessellationUserTLS *>(tls->userdata_chunk);
  const int tri_index = poly_to_tri_count(index, data->mpoly[index].loopstart);
  mesh_calc_tessellation_for_face_impl(data->mloop,
                                       data->mpoly,
                                       data->positions,
                                       uint(index),
                                       &data->mlooptri[tri_index],
                                       &tls_data->pf_arena,
                                       false,
                                       nullptr);
}

static void mesh_calc_tessellation_for_face_with_normal_fn(void *__restrict userdata,
                                                           const int index,
                                                           const TaskParallelTLS *__restrict tls)
{
  const TessellationUserData *data = static_cast<const TessellationUserData *>(userdata);
  TessellationUserTLS *tls_data = static_cast<TessellationUserTLS *>(tls->userdata_chunk);
  const int tri_index = poly_to_tri_count(index, data->mpoly[index].loopstart);
  mesh_calc_tessellation_for_face_impl(data->mloop,
                                       data->mpoly,
                                       data->positions,
                                       uint(index),
                                       &data->mlooptri[tri_index],
                                       &tls_data->pf_arena,
                                       true,
                                       data->poly_normals[index]);
}

static void mesh_calc_tessellation_for_face_free_fn(const void *__restrict /*userdata*/,
                                                    void *__restrict tls_v)
{
  TessellationUserTLS *tls_data = static_cast<TessellationUserTLS *>(tls_v);
  if (tls_data->pf_arena) {
    BLI_memarena_free(tls_data->pf_arena);
  }
}

static void mesh_recalc_looptri__multi_threaded(const MLoop *mloop,
                                                const MPoly *mpoly,
                                                const float (*positions)[3],
                                                int /*totloop*/,
                                                int totpoly,
                                                MLoopTri *mlooptri,
                                                const float (*poly_normals)[3])
{
  struct TessellationUserTLS tls_data_dummy = {nullptr};

  struct TessellationUserData data {
  };
  data.mloop = mloop;
  data.mpoly = mpoly;
  data.positions = positions;
  data.mlooptri = mlooptri;
  data.poly_normals = poly_normals;

  TaskParallelSettings settings;
  BLI_parallel_range_settings_defaults(&settings);

  settings.userdata_chunk = &tls_data_dummy;
  settings.userdata_chunk_size = sizeof(tls_data_dummy);

  settings.func_free = mesh_calc_tessellation_for_face_free_fn;

  BLI_task_parallel_range(0,
                          totpoly,
                          &data,
                          poly_normals ? mesh_calc_tessellation_for_face_with_normal_fn :
                                         mesh_calc_tessellation_for_face_fn,
                          &settings);
}

void BKE_mesh_recalc_looptri(const MLoop *mloop,
                             const MPoly *mpoly,
                             const float (*positions)[3],
                             int totloop,
                             int totpoly,
                             MLoopTri *mlooptri)
{
  if (totloop < MESH_FACE_TESSELLATE_THREADED_LIMIT) {
    mesh_recalc_looptri__single_threaded(
        mloop, mpoly, positions, totloop, totpoly, mlooptri, nullptr);
  }
  else {
    mesh_recalc_looptri__multi_threaded(
        mloop, mpoly, positions, totloop, totpoly, mlooptri, nullptr);
  }
}

void BKE_mesh_recalc_looptri_with_normals(const MLoop *mloop,
                                          const MPoly *mpoly,
                                          const float (*positions)[3],
                                          int totloop,
                                          int totpoly,
                                          MLoopTri *mlooptri,
                                          const float (*poly_normals)[3])
{
  BLI_assert(poly_normals != nullptr);
  if (totloop < MESH_FACE_TESSELLATE_THREADED_LIMIT) {
    mesh_recalc_looptri__single_threaded(
        mloop, mpoly, positions, totloop, totpoly, mlooptri, poly_normals);
  }
  else {
    mesh_recalc_looptri__multi_threaded(
        mloop, mpoly, positions, totloop, totpoly, mlooptri, poly_normals);
  }
}

/** \} */