Welcome to mirror list, hosted at ThFree Co, Russian Federation.

particle_child.c « intern « blenkernel « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: a890812cfc4825764a49a3deff7cd646494f337f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
/* SPDX-License-Identifier: GPL-2.0-or-later
 * Copyright Blender Foundation. All rights reserved. */

/** \file
 * \ingroup bke
 */

#include "BLI_math.h"
#include "BLI_noise.h"

#include "DNA_material_types.h"
#include "DNA_object_types.h"

#include "BKE_colortools.h"
#include "BKE_particle.h"

#include "particle_private.h"

/* ------------------------------------------------------------------------- */

typedef struct ParticlePathIterator {
  ParticleCacheKey *key;
  int index;
  float time;

  ParticleCacheKey *parent_key;
  float parent_rotation[4];
} ParticlePathIterator;

static void psys_path_iter_get(ParticlePathIterator *iter,
                               ParticleCacheKey *keys,
                               int totkeys,
                               ParticleCacheKey *parent,
                               int index)
{
  BLI_assert(index >= 0 && index < totkeys);

  iter->key = keys + index;
  iter->index = index;
  iter->time = (float)index / (float)(totkeys - 1);

  if (parent) {
    iter->parent_key = parent + index;
    if (index > 0) {
      mul_qt_qtqt(iter->parent_rotation, iter->parent_key->rot, parent->rot);
    }
    else {
      copy_qt_qt(iter->parent_rotation, parent->rot);
    }
  }
  else {
    iter->parent_key = NULL;
    unit_qt(iter->parent_rotation);
  }
}

typedef struct ParticlePathModifier {
  struct ParticlePathModifier *next, *prev;

  void (*apply)(ParticleCacheKey *keys, int totkeys, ParticleCacheKey *parent_keys);
} ParticlePathModifier;

/* ------------------------------------------------------------------------- */

static void do_kink_spiral_deform(ParticleKey *state,
                                  const float dir[3],
                                  const float kink[3],
                                  float time,
                                  float freq,
                                  float shape,
                                  float amplitude,
                                  const float spiral_start[3])
{
  float result[3];

  CLAMP(time, 0.0f, 1.0f);

  copy_v3_v3(result, state->co);

  {
    /* Creates a logarithmic spiral:
     *   r(theta) = a * exp(b * theta)
     *
     * The "density" parameter b is defined by the shape parameter
     * and goes up to the Golden Spiral for 1.0
     * https://en.wikipedia.org/wiki/Golden_spiral
     */
    const float b = shape * (1.0f + sqrtf(5.0f)) / (float)M_PI * 0.25f;
    /* angle of the spiral against the curve (rotated opposite to make a smooth transition) */
    const float start_angle = ((b != 0.0f) ? atanf(1.0f / b) : (float)-M_PI_2) +
                              (b > 0.0f ? -(float)M_PI_2 : (float)M_PI_2);

    float spiral_axis[3], rot[3][3];
    float vec[3];

    float theta = freq * time * 2.0f * (float)M_PI;
    float radius = amplitude * expf(b * theta);

    /* a bit more intuitive than using negative frequency for this */
    if (amplitude < 0.0f) {
      theta = -theta;
    }

    cross_v3_v3v3(spiral_axis, dir, kink);
    normalize_v3(spiral_axis);

    mul_v3_v3fl(vec, kink, -radius);

    axis_angle_normalized_to_mat3(rot, spiral_axis, theta);
    mul_m3_v3(rot, vec);

    madd_v3_v3fl(vec, kink, amplitude);

    axis_angle_normalized_to_mat3(rot, spiral_axis, -start_angle);
    mul_m3_v3(rot, vec);

    add_v3_v3v3(result, spiral_start, vec);
  }

  copy_v3_v3(state->co, result);
}

static void do_kink_spiral(ParticleThreadContext *ctx,
                           ParticleTexture *ptex,
                           const float parent_orco[3],
                           ChildParticle *cpa,
                           const float orco[3],
                           float hairmat[4][4],
                           ParticleCacheKey *keys,
                           ParticleCacheKey *parent_keys,
                           int *r_totkeys,
                           float *r_max_length)
{
  struct ParticleSettings *part = ctx->sim.psys->part;
  const int seed = ctx->sim.psys->child_seed + (int)(cpa - ctx->sim.psys->child);
  const int totkeys = ctx->segments + 1;
  const int extrakeys = ctx->extra_segments;

  float kink_amp_random = part->kink_amp_random;
  float kink_amp = part->kink_amp *
                   (1.0f - kink_amp_random * psys_frand(ctx->sim.psys, 93541 + seed));
  float kink_freq = part->kink_freq;
  float kink_shape = part->kink_shape;
  float kink_axis_random = part->kink_axis_random;

  ParticlePathIterator iter;
  ParticleCacheKey *key;
  int k;

  float dir[3];
  float spiral_start[3] = {0.0f, 0.0f, 0.0f};
  float spiral_start_time = 0.0f;
  float spiral_par_co[3] = {0.0f, 0.0f, 0.0f};
  float spiral_par_vel[3] = {0.0f, 0.0f, 0.0f};
  float spiral_par_rot[4] = {1.0f, 0.0f, 0.0f, 0.0f};
  float totlen;
  float cut_time;
  int start_index = 0, end_index = 0;
  float kink_base[3];

  kink_amp *= ptex->kink_amp;
  kink_freq *= ptex->kink_freq;

  cut_time = (totkeys - 1) * ptex->length;
  zero_v3(spiral_start);

  for (k = 0, key = keys; k < totkeys - 1; k++, key++) {
    if ((float)(k + 1) >= cut_time) {
      float fac = cut_time - (float)k;
      ParticleCacheKey *par = parent_keys + k;

      start_index = k + 1;
      end_index = start_index + extrakeys;

      spiral_start_time = ((float)k + fac) / (float)(totkeys - 1);
      interp_v3_v3v3(spiral_start, key->co, (key + 1)->co, fac);

      interp_v3_v3v3(spiral_par_co, par->co, (par + 1)->co, fac);
      interp_v3_v3v3(spiral_par_vel, par->vel, (par + 1)->vel, fac);
      interp_qt_qtqt(spiral_par_rot, par->rot, (par + 1)->rot, fac);

      break;
    }
  }

  zero_v3(dir);

  zero_v3(kink_base);
  kink_base[part->kink_axis] = 1.0f;
  mul_mat3_m4_v3(ctx->sim.ob->obmat, kink_base);

  /* Fill in invariant part of modifier context. */
  ParticleChildModifierContext modifier_ctx = {NULL};
  modifier_ctx.thread_ctx = ctx;
  modifier_ctx.sim = &ctx->sim;
  modifier_ctx.ptex = ptex;
  modifier_ctx.cpa = cpa;
  modifier_ctx.orco = orco;
  modifier_ctx.parent_keys = parent_keys;

  for (k = 0, key = keys; k < end_index; k++, key++) {
    float par_time;
    float *par_co, *par_vel, *par_rot;

    psys_path_iter_get(&iter, keys, end_index, NULL, k);
    if (k < start_index) {
      sub_v3_v3v3(dir, (key + 1)->co, key->co);
      normalize_v3(dir);

      par_time = (float)k / (float)(totkeys - 1);
      par_co = parent_keys[k].co;
      par_vel = parent_keys[k].vel;
      par_rot = parent_keys[k].rot;
    }
    else {
      float spiral_time = (float)(k - start_index) / (float)(extrakeys - 1);
      float kink[3], tmp[3];

      /* use same time value for every point on the spiral */
      par_time = spiral_start_time;
      par_co = spiral_par_co;
      par_vel = spiral_par_vel;
      par_rot = spiral_par_rot;

      project_v3_v3v3(tmp, kink_base, dir);
      sub_v3_v3v3(kink, kink_base, tmp);
      normalize_v3(kink);

      if (kink_axis_random > 0.0f) {
        float a = kink_axis_random * (psys_frand(ctx->sim.psys, 7112 + seed) * 2.0f - 1.0f) *
                  (float)M_PI;
        float rot[3][3];

        axis_angle_normalized_to_mat3(rot, dir, a);
        mul_m3_v3(rot, kink);
      }

      do_kink_spiral_deform((ParticleKey *)key,
                            dir,
                            kink,
                            spiral_time,
                            kink_freq,
                            kink_shape,
                            kink_amp,
                            spiral_start);
    }

    /* Fill in variant part of modifier context. */
    modifier_ctx.par_co = par_co;
    modifier_ctx.par_vel = par_vel;
    modifier_ctx.par_rot = par_rot;
    modifier_ctx.par_orco = parent_orco;

    /* Apply different deformations to the child path/ */
    do_child_modifiers(&modifier_ctx, hairmat, (ParticleKey *)key, par_time);
  }

  totlen = 0.0f;
  for (k = 0, key = keys; k < end_index - 1; k++, key++) {
    totlen += len_v3v3((key + 1)->co, key->co);
  }

  *r_totkeys = end_index;
  *r_max_length = totlen;
}

/* ------------------------------------------------------------------------- */

static bool check_path_length(int k,
                              ParticleCacheKey *keys,
                              ParticleCacheKey *key,
                              float max_length,
                              float step_length,
                              float *cur_length,
                              float dvec[3])
{
  if (*cur_length + step_length > max_length) {
    sub_v3_v3v3(dvec, key->co, (key - 1)->co);
    mul_v3_fl(dvec, (max_length - *cur_length) / step_length);
    add_v3_v3v3(key->co, (key - 1)->co, dvec);
    keys->segments = k;
    /* something over the maximum step value */
    return false;
  }

  *cur_length += step_length;
  return true;
}

void psys_apply_child_modifiers(ParticleThreadContext *ctx,
                                struct ListBase *modifiers,
                                ChildParticle *cpa,
                                ParticleTexture *ptex,
                                const float orco[3],
                                float hairmat[4][4],
                                ParticleCacheKey *keys,
                                ParticleCacheKey *parent_keys,
                                const float parent_orco[3])
{
  struct ParticleSettings *part = ctx->sim.psys->part;
  struct Material *ma = ctx->ma;
  const bool draw_col_ma = (part->draw_col == PART_DRAW_COL_MAT);
  const bool use_length_check = !ELEM(part->kink, PART_KINK_SPIRAL);

  ParticlePathModifier *mod;
  ParticleCacheKey *key;
  int totkeys, k;
  float max_length;

  /* TODO: for the future: use true particle modifiers that work on the whole curve. */

  (void)modifiers;
  (void)mod;

  if (part->kink == PART_KINK_SPIRAL) {
    do_kink_spiral(
        ctx, ptex, parent_orco, cpa, orco, hairmat, keys, parent_keys, &totkeys, &max_length);
    keys->segments = totkeys - 1;
  }
  else {
    /* Fill in invariant part of modifier context. */
    ParticleChildModifierContext modifier_ctx = {NULL};
    modifier_ctx.thread_ctx = ctx;
    modifier_ctx.sim = &ctx->sim;
    modifier_ctx.ptex = ptex;
    modifier_ctx.cpa = cpa;
    modifier_ctx.orco = orco;
    modifier_ctx.parent_keys = parent_keys;

    totkeys = ctx->segments + 1;
    max_length = ptex->length;

    for (k = 0, key = keys; k < totkeys; k++, key++) {
      ParticlePathIterator iter;
      psys_path_iter_get(&iter, keys, totkeys, parent_keys, k);

      ParticleKey *par = (ParticleKey *)iter.parent_key;

      /* Fill in variant part of modifier context. */
      modifier_ctx.par_co = par->co;
      modifier_ctx.par_vel = par->vel;
      modifier_ctx.par_rot = iter.parent_rotation;
      modifier_ctx.par_orco = parent_orco;

      /* Apply different deformations to the child path. */
      do_child_modifiers(&modifier_ctx, hairmat, (ParticleKey *)key, iter.time);
    }
  }

  {
    const float step_length = 1.0f / (float)(totkeys - 1);
    float cur_length = 0.0f;

    if (max_length <= 0.0f) {
      keys->segments = -1;
      totkeys = 0;
    }

    /* we have to correct velocity because of kink & clump */
    for (k = 0, key = keys; k < totkeys; k++, key++) {
      if (k >= 2) {
        sub_v3_v3v3((key - 1)->vel, key->co, (key - 2)->co);
        mul_v3_fl((key - 1)->vel, 0.5);
      }

      if (use_length_check && k > 0) {
        float dvec[3];
        /* check if path needs to be cut before actual end of data points */
        if (!check_path_length(k, keys, key, max_length, step_length, &cur_length, dvec)) {
          /* last key */
          sub_v3_v3v3(key->vel, key->co, (key - 1)->co);
          if (ma && draw_col_ma) {
            copy_v3_v3(key->col, &ma->r);
          }
          break;
        }
      }
      if (k == totkeys - 1) {
        /* last key */
        sub_v3_v3v3(key->vel, key->co, (key - 1)->co);
      }

      if (ma && draw_col_ma) {
        copy_v3_v3(key->col, &ma->r);
      }
    }
  }
}

/* ------------------------------------------------------------------------- */

void do_kink(ParticleKey *state,
             const float par_co[3],
             const float par_vel[3],
             const float par_rot[4],
             float time,
             float freq,
             float shape,
             float amplitude,
             float flat,
             short type,
             short axis,
             float obmat[4][4],
             int smooth_start)
{
  float kink[3] = {1.0f, 0.0f, 0.0f}, par_vec[3];
  float t, dt = 1.0f, result[3];

  if (ELEM(type, PART_KINK_NO, PART_KINK_SPIRAL)) {
    return;
  }

  CLAMP(time, 0.0f, 1.0f);

  if (shape != 0.0f && !ELEM(type, PART_KINK_BRAID)) {
    if (shape < 0.0f) {
      time = (float)pow(time, 1.0f + shape);
    }
    else {
      time = (float)pow(time, 1.0f / (1.0f - shape));
    }
  }

  t = time * freq * (float)M_PI;

  if (smooth_start) {
    dt = fabsf(t);
    /* smooth the beginning of kink */
    CLAMP(dt, 0.0f, (float)M_PI);
    dt = sinf(dt / 2.0f);
  }

  if (!ELEM(type, PART_KINK_RADIAL)) {
    float temp[3];

    kink[axis] = 1.0f;

    if (obmat) {
      mul_mat3_m4_v3(obmat, kink);
    }

    mul_qt_v3(par_rot, kink);

    /* make sure kink is normal to strand */
    project_v3_v3v3(temp, kink, par_vel);
    sub_v3_v3(kink, temp);
    normalize_v3(kink);
  }

  copy_v3_v3(result, state->co);
  sub_v3_v3v3(par_vec, par_co, state->co);

  switch (type) {
    case PART_KINK_CURL: {
      float curl_offset[3];
      float q1[4] = {1.0f, 0.0f, 0.0f, 0.0f};

      /* rotate kink vector around strand tangent */
      mul_v3_v3fl(curl_offset, kink, amplitude);
      axis_angle_to_quat(q1, par_vel, t);
      mul_qt_v3(q1, curl_offset);

      interp_v3_v3v3(par_vec, state->co, par_co, flat);
      add_v3_v3v3(result, par_vec, curl_offset);
      break;
    }
    case PART_KINK_RADIAL: {
      if (flat > 0.0f) {
        float proj[3];
        /* flatten along strand */
        project_v3_v3v3(proj, par_vec, par_vel);
        madd_v3_v3fl(result, proj, flat);
      }

      madd_v3_v3fl(result, par_vec, -amplitude * sinf(t));
      break;
    }
    case PART_KINK_WAVE: {
      madd_v3_v3fl(result, kink, amplitude * sinf(t));

      if (flat > 0.0f) {
        float proj[3];
        /* flatten along wave */
        project_v3_v3v3(proj, par_vec, kink);
        madd_v3_v3fl(result, proj, flat);

        /* flatten along strand */
        project_v3_v3v3(proj, par_vec, par_vel);
        madd_v3_v3fl(result, proj, flat);
      }
      break;
    }
    case PART_KINK_BRAID: {
      float y_vec[3] = {0.0f, 1.0f, 0.0f};
      float z_vec[3] = {0.0f, 0.0f, 1.0f};
      float vec_one[3], state_co[3];
      float inp_y, inp_z, length;

      if (par_rot) {
        mul_qt_v3(par_rot, y_vec);
        mul_qt_v3(par_rot, z_vec);
      }

      negate_v3(par_vec);
      normalize_v3_v3(vec_one, par_vec);

      inp_y = dot_v3v3(y_vec, vec_one);
      inp_z = dot_v3v3(z_vec, vec_one);

      if (inp_y > 0.5f) {
        copy_v3_v3(state_co, y_vec);

        mul_v3_fl(y_vec, amplitude * cosf(t));
        mul_v3_fl(z_vec, amplitude / 2.0f * sinf(2.0f * t));
      }
      else if (inp_z > 0.0f) {
        mul_v3_v3fl(state_co, z_vec, sinf((float)M_PI / 3.0f));
        madd_v3_v3fl(state_co, y_vec, -0.5f);

        mul_v3_fl(y_vec, -amplitude * cosf(t + (float)M_PI / 3.0f));
        mul_v3_fl(z_vec, amplitude / 2.0f * cosf(2.0f * t + (float)M_PI / 6.0f));
      }
      else {
        mul_v3_v3fl(state_co, z_vec, -sinf((float)M_PI / 3.0f));
        madd_v3_v3fl(state_co, y_vec, -0.5f);

        mul_v3_fl(y_vec, amplitude * -sinf(t + (float)M_PI / 6.0f));
        mul_v3_fl(z_vec, amplitude / 2.0f * -sinf(2.0f * t + (float)M_PI / 3.0f));
      }

      mul_v3_fl(state_co, amplitude);
      add_v3_v3(state_co, par_co);
      sub_v3_v3v3(par_vec, state->co, state_co);

      length = normalize_v3(par_vec);
      mul_v3_fl(par_vec, MIN2(length, amplitude / 2.0f));

      add_v3_v3v3(state_co, par_co, y_vec);
      add_v3_v3(state_co, z_vec);
      add_v3_v3(state_co, par_vec);

      shape = 2.0f * (float)M_PI * (1.0f + shape);

      if (t < shape) {
        shape = t / shape;
        shape = (float)sqrt((double)shape);
        interp_v3_v3v3(result, result, state_co, shape);
      }
      else {
        copy_v3_v3(result, state_co);
      }
      break;
    }
  }

  /* blend the start of the kink */
  if (dt < 1.0f) {
    interp_v3_v3v3(state->co, state->co, result, dt);
  }
  else {
    copy_v3_v3(state->co, result);
  }
}

static float do_clump_level(float result[3],
                            const float co[3],
                            const float par_co[3],
                            float time,
                            float clumpfac,
                            float clumppow,
                            float pa_clump,
                            CurveMapping *clumpcurve)
{
  float clump = 0.0f;

  if (clumpcurve) {
    clump = pa_clump *
            (1.0f - clamp_f(BKE_curvemapping_evaluateF(clumpcurve, 0, time), 0.0f, 1.0f));

    interp_v3_v3v3(result, co, par_co, clump);
  }
  else if (clumpfac != 0.0f) {
    float cpow;

    if (clumppow < 0.0f) {
      cpow = 1.0f + clumppow;
    }
    else {
      cpow = 1.0f + 9.0f * clumppow;
    }

    if (clumpfac < 0.0f) { /* clump roots instead of tips */
      clump = -clumpfac * pa_clump * (float)pow(1.0 - (double)time, (double)cpow);
    }
    else {
      clump = clumpfac * pa_clump * (float)pow((double)time, (double)cpow);
    }

    interp_v3_v3v3(result, co, par_co, clump);
  }

  return clump;
}

float do_clump(ParticleKey *state,
               const float par_co[3],
               float time,
               const float orco_offset[3],
               float clumpfac,
               float clumppow,
               float pa_clump,
               bool use_clump_noise,
               float clump_noise_size,
               CurveMapping *clumpcurve)
{
  float clump;

  if (use_clump_noise && clump_noise_size != 0.0f) {
    float center[3], noisevec[3];
    float da[4], pa[12];

    mul_v3_v3fl(noisevec, orco_offset, 1.0f / clump_noise_size);
    BLI_noise_voronoi(noisevec[0], noisevec[1], noisevec[2], da, pa, 1.0f, 0);
    mul_v3_fl(&pa[0], clump_noise_size);
    add_v3_v3v3(center, par_co, &pa[0]);

    do_clump_level(state->co, state->co, center, time, clumpfac, clumppow, pa_clump, clumpcurve);
  }

  clump = do_clump_level(
      state->co, state->co, par_co, time, clumpfac, clumppow, pa_clump, clumpcurve);

  return clump;
}

static void do_rough(const float loc[3],
                     const float mat[4][4],
                     float t,
                     float fac,
                     float size,
                     float thres,
                     ParticleKey *state)
{
  float rough[3];
  float rco[3];

  if (thres != 0.0f) {
    if (fabsf((float)(-1.5f + loc[0] + loc[1] + loc[2])) < 1.5f * thres) {
      return;
    }
  }

  copy_v3_v3(rco, loc);
  mul_v3_fl(rco, t);
  rough[0] = -1.0f + 2.0f * BLI_noise_generic_turbulence(size, rco[0], rco[1], rco[2], 2, 0, 2);
  rough[1] = -1.0f + 2.0f * BLI_noise_generic_turbulence(size, rco[1], rco[2], rco[0], 2, 0, 2);
  rough[2] = -1.0f + 2.0f * BLI_noise_generic_turbulence(size, rco[2], rco[0], rco[1], 2, 0, 2);

  madd_v3_v3fl(state->co, mat[0], fac * rough[0]);
  madd_v3_v3fl(state->co, mat[1], fac * rough[1]);
  madd_v3_v3fl(state->co, mat[2], fac * rough[2]);
}

static void do_rough_end(
    const float loc[3], const float mat[4][4], float t, float fac, float shape, ParticleKey *state)
{
  float rough[2];
  float roughfac;

  roughfac = fac * (float)pow((double)t, shape);
  copy_v2_v2(rough, loc);
  rough[0] = -1.0f + 2.0f * rough[0];
  rough[1] = -1.0f + 2.0f * rough[1];
  mul_v2_fl(rough, roughfac);

  madd_v3_v3fl(state->co, mat[0], rough[0]);
  madd_v3_v3fl(state->co, mat[1], rough[1]);
}

static void do_rough_curve(const float loc[3],
                           const float mat[4][4],
                           float time,
                           float fac,
                           float size,
                           CurveMapping *roughcurve,
                           ParticleKey *state)
{
  float rough[3];
  float rco[3];

  if (!roughcurve) {
    return;
  }

  fac *= clamp_f(BKE_curvemapping_evaluateF(roughcurve, 0, time), 0.0f, 1.0f);

  copy_v3_v3(rco, loc);
  mul_v3_fl(rco, time);
  rough[0] = -1.0f + 2.0f * BLI_noise_generic_turbulence(size, rco[0], rco[1], rco[2], 2, 0, 2);
  rough[1] = -1.0f + 2.0f * BLI_noise_generic_turbulence(size, rco[1], rco[2], rco[0], 2, 0, 2);
  rough[2] = -1.0f + 2.0f * BLI_noise_generic_turbulence(size, rco[2], rco[0], rco[1], 2, 0, 2);

  madd_v3_v3fl(state->co, mat[0], fac * rough[0]);
  madd_v3_v3fl(state->co, mat[1], fac * rough[1]);
  madd_v3_v3fl(state->co, mat[2], fac * rough[2]);
}

static int twist_num_segments(const ParticleChildModifierContext *modifier_ctx)
{
  ParticleThreadContext *thread_ctx = modifier_ctx->thread_ctx;
  return (thread_ctx != NULL) ? thread_ctx->segments : modifier_ctx->sim->psys->part->draw_step;
}

static void twist_get_axis(const ParticleChildModifierContext *modifier_ctx,
                           const float time,
                           float r_axis[3])
{
  const int num_segments = twist_num_segments(modifier_ctx);
  const int index = clamp_i(time * num_segments, 0, num_segments);
  if (index > 0) {
    sub_v3_v3v3(
        r_axis, modifier_ctx->parent_keys[index].co, modifier_ctx->parent_keys[index - 1].co);
  }
  else {
    sub_v3_v3v3(
        r_axis, modifier_ctx->parent_keys[index + 1].co, modifier_ctx->parent_keys[index].co);
  }
}

static float BKE_curvemapping_integrate_clamped(CurveMapping *curve,
                                                float start,
                                                float end,
                                                float step)
{
  float integral = 0.0f;
  float x = start;
  while (x < end) {
    float y = BKE_curvemapping_evaluateF(curve, 0, x);
    y = clamp_f(y, 0.0f, 1.0f);
    /* TODO(sergey): Clamp last step to end. */
    integral += y * step;
    x += step;
  }
  return integral;
}

static void do_twist(const ParticleChildModifierContext *modifier_ctx,
                     ParticleKey *state,
                     const float time)
{
  ParticleThreadContext *thread_ctx = modifier_ctx->thread_ctx;
  ParticleSimulationData *sim = modifier_ctx->sim;
  ParticleTexture *ptex = modifier_ctx->ptex;
  ParticleSettings *part = sim->psys->part;
  /* Early output checks. */
  if (modifier_ctx->parent_keys == NULL) {
    /* Cannot get axis of rotation... */
    return;
  }
  if (part->childtype != PART_CHILD_PARTICLES) {
    /* Interpolated children behave weird with twist. */
    return;
  }
  if (part->twist == 0.0f) {
    /* No twist along the strand. */
    return;
  }
  /* Dependent on whether it's threaded update or not, curve comes
   * from different places.
   */
  CurveMapping *twist_curve = NULL;
  if (part->child_flag & PART_CHILD_USE_TWIST_CURVE) {
    twist_curve = (thread_ctx != NULL) ? thread_ctx->twistcurve : part->twistcurve;
  }
  /* Axis of rotation. */
  float axis[3];
  twist_get_axis(modifier_ctx, time, axis);
  /* Angle of rotation. */
  float angle = part->twist;
  if (ptex != NULL) {
    angle *= (ptex->twist - 0.5f) * 2.0f;
  }
  if (twist_curve != NULL) {
    const int num_segments = twist_num_segments(modifier_ctx);
    angle *= BKE_curvemapping_integrate_clamped(twist_curve, 0.0f, time, 1.0f / num_segments);
  }
  else {
    angle *= time;
  }
  /* Perform rotation around parent curve. */
  float vec[3];
  sub_v3_v3v3(vec, state->co, modifier_ctx->par_co);
  rotate_v3_v3v3fl(state->co, vec, axis, angle * 2.0f * M_PI);
  add_v3_v3(state->co, modifier_ctx->par_co);
}

void do_child_modifiers(const ParticleChildModifierContext *modifier_ctx,
                        float mat[4][4],
                        ParticleKey *state,
                        float t)
{
  ParticleThreadContext *ctx = modifier_ctx->thread_ctx;
  ParticleSimulationData *sim = modifier_ctx->sim;
  ParticleTexture *ptex = modifier_ctx->ptex;
  ChildParticle *cpa = modifier_ctx->cpa;
  ParticleSettings *part = sim->psys->part;
  CurveMapping *clumpcurve = NULL, *roughcurve = NULL;
  int i = cpa - sim->psys->child;
  int guided = 0;

  if (part->child_flag & PART_CHILD_USE_CLUMP_CURVE) {
    clumpcurve = (ctx != NULL) ? ctx->clumpcurve : part->clumpcurve;
  }
  if (part->child_flag & PART_CHILD_USE_ROUGH_CURVE) {
    roughcurve = (ctx != NULL) ? ctx->roughcurve : part->roughcurve;
  }

  float kink_amp = part->kink_amp;
  float kink_amp_clump = part->kink_amp_clump;
  float kink_freq = part->kink_freq;
  float rough1 = part->rough1;
  float rough2 = part->rough2;
  float rough_end = part->rough_end;
  const bool smooth_start = (sim->psys->part->childtype == PART_CHILD_FACES);

  if (ptex) {
    kink_amp *= ptex->kink_amp;
    kink_freq *= ptex->kink_freq;
    rough1 *= ptex->rough1;
    rough2 *= ptex->rough2;
    rough_end *= ptex->roughe;
  }

  do_twist(modifier_ctx, state, t);

  if (part->flag & PART_CHILD_EFFECT) {
    /* state is safe to cast, since only co and vel are used */
    guided = do_guides(sim->depsgraph,
                       sim->psys->part,
                       sim->psys->effectors,
                       (ParticleKey *)state,
                       cpa->parent,
                       t);
  }

  if (guided == 0) {
    float orco_offset[3];
    float clump;

    sub_v3_v3v3(orco_offset, modifier_ctx->orco, modifier_ctx->par_orco);
    clump = do_clump(state,
                     modifier_ctx->par_co,
                     t,
                     orco_offset,
                     part->clumpfac,
                     part->clumppow,
                     ptex ? ptex->clump : 1.0f,
                     part->child_flag & PART_CHILD_USE_CLUMP_NOISE,
                     part->clump_noise_size,
                     clumpcurve);

    if (kink_freq != 0.0f) {
      kink_amp *= (1.0f - kink_amp_clump * clump);

      do_kink(state,
              modifier_ctx->par_co,
              modifier_ctx->par_vel,
              modifier_ctx->par_rot,
              t,
              kink_freq,
              part->kink_shape,
              kink_amp,
              part->kink_flat,
              part->kink,
              part->kink_axis,
              sim->ob->obmat,
              smooth_start);
    }
  }

  if (roughcurve) {
    do_rough_curve(modifier_ctx->orco, mat, t, rough1, part->rough1_size, roughcurve, state);
  }
  else {
    if (rough1 > 0.0f) {
      do_rough(modifier_ctx->orco, mat, t, rough1, part->rough1_size, 0.0, state);
    }

    if (rough2 > 0.0f) {
      float vec[3];
      psys_frand_vec(sim->psys, i + 27, vec);
      do_rough(vec, mat, t, rough2, part->rough2_size, part->rough2_thres, state);
    }

    if (rough_end > 0.0f) {
      float vec[3];
      psys_frand_vec(sim->psys, i + 27, vec);
      do_rough_end(vec, mat, t, rough_end, part->rough_end_shape, state);
    }
  }
}