Welcome to mirror list, hosted at ThFree Co, Russian Federation.

subdiv_ccg.c « intern « blenkernel « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 471cca53900e3724029afbc99115bfd99c60255a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
/*
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 *
 * The Original Code is Copyright (C) 2018 by Blender Foundation.
 * All rights reserved.
 */

/** \file
 * \ingroup bke
 */

#include "BKE_subdiv_ccg.h"

#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"

#include "MEM_guardedalloc.h"

#include "BLI_math_bits.h"
#include "BLI_math_vector.h"
#include "BLI_task.h"

#include "BKE_DerivedMesh.h"
#include "BKE_ccg.h"
#include "BKE_mesh.h"
#include "BKE_subdiv.h"
#include "BKE_subdiv_eval.h"

#include "opensubdiv_topology_refiner_capi.h"

/* =============================================================================
 * Various forward declarations.
 */

static void subdiv_ccg_average_all_boundaries_and_corners(SubdivCCG *subdiv_ccg, CCGKey *key);

static void subdiv_ccg_average_inner_face_grids(SubdivCCG *subdiv_ccg,
                                                CCGKey *key,
                                                SubdivCCGFace *face);

/* =============================================================================
 * Generally useful internal helpers.
 */

/* Number of floats in per-vertex elements.  */
static int num_element_float_get(const SubdivCCG *subdiv_ccg)
{
  /* We always have 3 floats for coordinate. */
  int num_floats = 3;
  if (subdiv_ccg->has_normal) {
    num_floats += 3;
  }
  if (subdiv_ccg->has_mask) {
    num_floats += 1;
  }
  return num_floats;
}

/* Per-vertex element size in bytes. */
static int element_size_bytes_get(const SubdivCCG *subdiv_ccg)
{
  return sizeof(float) * num_element_float_get(subdiv_ccg);
}

/* =============================================================================
 * Internal helpers for CCG creation.
 */

static void subdiv_ccg_init_layers(SubdivCCG *subdiv_ccg, const SubdivToCCGSettings *settings)
{
  /* CCG always contains coordinates. Rest of layers are coming after them. */
  int layer_offset = sizeof(float) * 3;
  /* Mask. */
  if (settings->need_mask) {
    subdiv_ccg->has_mask = true;
    subdiv_ccg->mask_offset = layer_offset;
    layer_offset += sizeof(float);
  }
  else {
    subdiv_ccg->has_mask = false;
    subdiv_ccg->mask_offset = -1;
  }
  /* Normals.
   *
   * NOTE: Keep them at the end, matching old CCGDM. Doesn't really matter
   * here, but some other area might in theory depend memory layout. */
  if (settings->need_normal) {
    subdiv_ccg->has_normal = true;
    subdiv_ccg->normal_offset = layer_offset;
    layer_offset += sizeof(float) * 3;
  }
  else {
    subdiv_ccg->has_normal = false;
    subdiv_ccg->normal_offset = -1;
  }
}

/* TODO(sergey): Make it more accessible function. */
static int topology_refiner_count_face_corners(OpenSubdiv_TopologyRefiner *topology_refiner)
{
  const int num_faces = topology_refiner->getNumFaces(topology_refiner);
  int num_corners = 0;
  for (int face_index = 0; face_index < num_faces; face_index++) {
    num_corners += topology_refiner->getNumFaceVertices(topology_refiner, face_index);
  }
  return num_corners;
}

/* NOTE: Grid size and layer flags are to be filled in before calling this
 * function. */
static void subdiv_ccg_alloc_elements(SubdivCCG *subdiv_ccg, Subdiv *subdiv)
{
  OpenSubdiv_TopologyRefiner *topology_refiner = subdiv->topology_refiner;
  const int element_size = element_size_bytes_get(subdiv_ccg);
  /* Allocate memory for surface grids. */
  const int num_faces = topology_refiner->getNumFaces(topology_refiner);
  const int num_grids = topology_refiner_count_face_corners(topology_refiner);
  const int grid_size = BKE_subdiv_grid_size_from_level(subdiv_ccg->level);
  const int grid_area = grid_size * grid_size;
  subdiv_ccg->num_grids = num_grids;
  subdiv_ccg->grids = MEM_calloc_arrayN(num_grids, sizeof(CCGElem *), "subdiv ccg grids");
  subdiv_ccg->grids_storage = MEM_calloc_arrayN(
      num_grids, ((size_t)grid_area) * element_size, "subdiv ccg grids storage");
  const size_t grid_size_in_bytes = (size_t)grid_area * element_size;
  for (int grid_index = 0; grid_index < num_grids; grid_index++) {
    const size_t grid_offset = grid_size_in_bytes * grid_index;
    subdiv_ccg->grids[grid_index] = (CCGElem *)&subdiv_ccg->grids_storage[grid_offset];
  }
  /* Grid material flags. */
  subdiv_ccg->grid_flag_mats = MEM_calloc_arrayN(
      num_grids, sizeof(DMFlagMat), "ccg grid material flags");
  /* Grid hidden flags. */
  subdiv_ccg->grid_hidden = MEM_calloc_arrayN(
      num_grids, sizeof(BLI_bitmap *), "ccg grid material flags");
  for (int grid_index = 0; grid_index < num_grids; grid_index++) {
    subdiv_ccg->grid_hidden[grid_index] = BLI_BITMAP_NEW(grid_area, "ccg grid hidden");
  }
  /* TODO(sergey): Allocate memory for loose elements. */
  /* Allocate memory for faces. */
  subdiv_ccg->num_faces = num_faces;
  if (num_faces) {
    subdiv_ccg->faces = MEM_calloc_arrayN(num_faces, sizeof(SubdivCCGFace), "Subdiv CCG faces");
    subdiv_ccg->grid_faces = MEM_calloc_arrayN(
        num_grids, sizeof(SubdivCCGFace *), "Subdiv CCG grid faces");
  }
}

/* =============================================================================
 * Grids evaluation.
 */

typedef struct CCGEvalGridsData {
  SubdivCCG *subdiv_ccg;
  Subdiv *subdiv;
  int *face_ptex_offset;
  SubdivCCGMaskEvaluator *mask_evaluator;
  SubdivCCGMaterialFlagsEvaluator *material_flags_evaluator;
} CCGEvalGridsData;

static void subdiv_ccg_eval_grid_element_limit(CCGEvalGridsData *data,
                                               const int ptex_face_index,
                                               const float u,
                                               const float v,
                                               unsigned char *element)
{
  Subdiv *subdiv = data->subdiv;
  SubdivCCG *subdiv_ccg = data->subdiv_ccg;
  if (subdiv->displacement_evaluator != NULL) {
    BKE_subdiv_eval_final_point(subdiv, ptex_face_index, u, v, (float *)element);
  }
  else if (subdiv_ccg->has_normal) {
    BKE_subdiv_eval_limit_point_and_normal(subdiv,
                                           ptex_face_index,
                                           u,
                                           v,
                                           (float *)element,
                                           (float *)(element + subdiv_ccg->normal_offset));
  }
  else {
    BKE_subdiv_eval_limit_point(subdiv, ptex_face_index, u, v, (float *)element);
  }
}

static void subdiv_ccg_eval_grid_element_mask(CCGEvalGridsData *data,
                                              const int ptex_face_index,
                                              const float u,
                                              const float v,
                                              unsigned char *element)
{
  SubdivCCG *subdiv_ccg = data->subdiv_ccg;
  if (!subdiv_ccg->has_mask) {
    return;
  }
  float *mask_value_ptr = (float *)(element + subdiv_ccg->mask_offset);
  if (data->mask_evaluator != NULL) {
    *mask_value_ptr = data->mask_evaluator->eval_mask(data->mask_evaluator, ptex_face_index, u, v);
  }
  else {
    *mask_value_ptr = 0.0f;
  }
}

static void subdiv_ccg_eval_grid_element(CCGEvalGridsData *data,
                                         const int ptex_face_index,
                                         const float u,
                                         const float v,
                                         unsigned char *element)
{
  subdiv_ccg_eval_grid_element_limit(data, ptex_face_index, u, v, element);
  subdiv_ccg_eval_grid_element_mask(data, ptex_face_index, u, v, element);
}

static void subdiv_ccg_eval_regular_grid(CCGEvalGridsData *data, const int face_index)
{
  SubdivCCG *subdiv_ccg = data->subdiv_ccg;
  const int ptex_face_index = data->face_ptex_offset[face_index];
  const int grid_size = subdiv_ccg->grid_size;
  const float grid_size_1_inv = 1.0f / (float)(grid_size - 1);
  const int element_size = element_size_bytes_get(subdiv_ccg);
  SubdivCCGFace *faces = subdiv_ccg->faces;
  SubdivCCGFace **grid_faces = subdiv_ccg->grid_faces;
  const SubdivCCGFace *face = &faces[face_index];
  for (int corner = 0; corner < face->num_grids; corner++) {
    const int grid_index = face->start_grid_index + corner;
    unsigned char *grid = (unsigned char *)subdiv_ccg->grids[grid_index];
    for (int y = 0; y < grid_size; y++) {
      const float grid_v = (float)y * grid_size_1_inv;
      for (int x = 0; x < grid_size; x++) {
        const float grid_u = (float)x * grid_size_1_inv;
        float u, v;
        BKE_subdiv_rotate_grid_to_quad(corner, grid_u, grid_v, &u, &v);
        const size_t grid_element_index = (size_t)y * grid_size + x;
        const size_t grid_element_offset = grid_element_index * element_size;
        subdiv_ccg_eval_grid_element(data, ptex_face_index, u, v, &grid[grid_element_offset]);
      }
    }
    /* Assign grid's face. */
    grid_faces[grid_index] = &faces[face_index];
    /* Assign material flags. */
    subdiv_ccg->grid_flag_mats[grid_index] = data->material_flags_evaluator->eval_material_flags(
        data->material_flags_evaluator, face_index);
  }
}

static void subdiv_ccg_eval_special_grid(CCGEvalGridsData *data, const int face_index)
{
  SubdivCCG *subdiv_ccg = data->subdiv_ccg;
  const int grid_size = subdiv_ccg->grid_size;
  const float grid_size_1_inv = 1.0f / (float)(grid_size - 1);
  const int element_size = element_size_bytes_get(subdiv_ccg);
  SubdivCCGFace *faces = subdiv_ccg->faces;
  SubdivCCGFace **grid_faces = subdiv_ccg->grid_faces;
  const SubdivCCGFace *face = &faces[face_index];
  for (int corner = 0; corner < face->num_grids; corner++) {
    const int grid_index = face->start_grid_index + corner;
    const int ptex_face_index = data->face_ptex_offset[face_index] + corner;
    unsigned char *grid = (unsigned char *)subdiv_ccg->grids[grid_index];
    for (int y = 0; y < grid_size; y++) {
      const float u = 1.0f - ((float)y * grid_size_1_inv);
      for (int x = 0; x < grid_size; x++) {
        const float v = 1.0f - ((float)x * grid_size_1_inv);
        const size_t grid_element_index = (size_t)y * grid_size + x;
        const size_t grid_element_offset = grid_element_index * element_size;
        subdiv_ccg_eval_grid_element(data, ptex_face_index, u, v, &grid[grid_element_offset]);
      }
    }
    /* Assign grid's face. */
    grid_faces[grid_index] = &faces[face_index];
    /* Assign material flags. */
    subdiv_ccg->grid_flag_mats[grid_index] = data->material_flags_evaluator->eval_material_flags(
        data->material_flags_evaluator, face_index);
  }
}

static void subdiv_ccg_eval_grids_task(void *__restrict userdata_v,
                                       const int face_index,
                                       const TaskParallelTLS *__restrict UNUSED(tls))
{
  CCGEvalGridsData *data = userdata_v;
  SubdivCCG *subdiv_ccg = data->subdiv_ccg;
  SubdivCCGFace *face = &subdiv_ccg->faces[face_index];
  if (face->num_grids == 4) {
    subdiv_ccg_eval_regular_grid(data, face_index);
  }
  else {
    subdiv_ccg_eval_special_grid(data, face_index);
  }
}

static bool subdiv_ccg_evaluate_grids(SubdivCCG *subdiv_ccg,
                                      Subdiv *subdiv,
                                      SubdivCCGMaskEvaluator *mask_evaluator,
                                      SubdivCCGMaterialFlagsEvaluator *material_flags_evaluator)
{
  OpenSubdiv_TopologyRefiner *topology_refiner = subdiv->topology_refiner;
  const int num_faces = topology_refiner->getNumFaces(topology_refiner);
  /* Initialize data passed to all the tasks. */
  CCGEvalGridsData data;
  data.subdiv_ccg = subdiv_ccg;
  data.subdiv = subdiv;
  data.face_ptex_offset = BKE_subdiv_face_ptex_offset_get(subdiv);
  data.mask_evaluator = mask_evaluator;
  data.material_flags_evaluator = material_flags_evaluator;
  /* Threaded grids evaluation. */
  TaskParallelSettings parallel_range_settings;
  BLI_parallel_range_settings_defaults(&parallel_range_settings);
  BLI_task_parallel_range(
      0, num_faces, &data, subdiv_ccg_eval_grids_task, &parallel_range_settings);
  /* If displacement is used, need to calculate normals after all final
   * coordinates are known. */
  if (subdiv->displacement_evaluator != NULL) {
    BKE_subdiv_ccg_recalc_normals(subdiv_ccg);
  }
  return true;
}

/* Initialize face descriptors, assuming memory for them was already
 * allocated. */
static void subdiv_ccg_init_faces(SubdivCCG *subdiv_ccg)
{
  Subdiv *subdiv = subdiv_ccg->subdiv;
  OpenSubdiv_TopologyRefiner *topology_refiner = subdiv->topology_refiner;
  const int num_faces = subdiv_ccg->num_faces;
  int corner_index = 0;
  for (int face_index = 0; face_index < num_faces; face_index++) {
    const int num_corners = topology_refiner->getNumFaceVertices(topology_refiner, face_index);
    subdiv_ccg->faces[face_index].num_grids = num_corners;
    subdiv_ccg->faces[face_index].start_grid_index = corner_index;
    corner_index += num_corners;
  }
}

/* TODO(sergey): Consider making it generic enough to be fit into BLI. */
typedef struct StaticOrHeapIntStorage {
  int static_storage[64];
  int static_storage_size;
  int *heap_storage;
  int heap_storage_size;
} StaticOrHeapIntStorage;

static void static_or_heap_storage_init(StaticOrHeapIntStorage *storage)
{
  storage->static_storage_size = sizeof(storage->static_storage) /
                                 sizeof(*storage->static_storage);
  storage->heap_storage = NULL;
  storage->heap_storage_size = 0;
}

static int *static_or_heap_storage_get(StaticOrHeapIntStorage *storage, int size)
{
  /* Requested size small enough to be fit into stack allocated memory. */
  if (size <= storage->static_storage_size) {
    return storage->static_storage;
  }
  /* Make sure heap ius big enough. */
  if (size > storage->heap_storage_size) {
    MEM_SAFE_FREE(storage->heap_storage);
    storage->heap_storage = MEM_malloc_arrayN(size, sizeof(int), "int storage");
    storage->heap_storage_size = size;
  }
  return storage->heap_storage;
}

static void static_or_heap_storage_free(StaticOrHeapIntStorage *storage)
{
  MEM_SAFE_FREE(storage->heap_storage);
}

static void subdiv_ccg_allocate_adjacent_edges(SubdivCCG *subdiv_ccg, const int num_edges)
{
  subdiv_ccg->num_adjacent_edges = num_edges;
  subdiv_ccg->adjacent_edges = MEM_calloc_arrayN(
      subdiv_ccg->num_adjacent_edges, sizeof(*subdiv_ccg->adjacent_edges), "ccg adjacent edges");
}

/* Returns storage where boundary elements are to be stored. */
static CCGElem **subdiv_ccg_adjacent_edge_add_face(SubdivCCG *subdiv_ccg,
                                                   SubdivCCGAdjacentEdge *adjacent_edge,
                                                   SubdivCCGFace *face)
{
  const int grid_size = subdiv_ccg->grid_size * 2;
  const int adjacent_face_index = adjacent_edge->num_adjacent_faces;
  ++adjacent_edge->num_adjacent_faces;
  /* Store new adjacent face. */
  adjacent_edge->faces = MEM_reallocN(
      adjacent_edge->faces, adjacent_edge->num_adjacent_faces * sizeof(*adjacent_edge->faces));
  adjacent_edge->faces[adjacent_face_index] = face;
  /* Allocate memory for the boundary elements. */
  adjacent_edge->boundary_elements = MEM_reallocN(adjacent_edge->boundary_elements,
                                                  adjacent_edge->num_adjacent_faces *
                                                      sizeof(*adjacent_edge->boundary_elements));
  adjacent_edge->boundary_elements[adjacent_face_index] = MEM_malloc_arrayN(
      grid_size * 2, sizeof(CCGElem *), "ccg adjacent boundary");
  return adjacent_edge->boundary_elements[adjacent_face_index];
}

static void subdiv_ccg_init_faces_edge_neighborhood(SubdivCCG *subdiv_ccg)
{
  Subdiv *subdiv = subdiv_ccg->subdiv;
  SubdivCCGFace *faces = subdiv_ccg->faces;
  OpenSubdiv_TopologyRefiner *topology_refiner = subdiv->topology_refiner;
  const int num_edges = topology_refiner->getNumEdges(topology_refiner);
  const int grid_size = subdiv_ccg->grid_size;
  if (num_edges == 0) {
    /* Early output, nothing to do in this case. */
    return;
  }
  subdiv_ccg_allocate_adjacent_edges(subdiv_ccg, num_edges);
  /* Initialize storage. */
  StaticOrHeapIntStorage face_vertices_storage;
  StaticOrHeapIntStorage face_edges_storage;
  static_or_heap_storage_init(&face_vertices_storage);
  static_or_heap_storage_init(&face_edges_storage);
  /* Key to access elements. */
  CCGKey key;
  BKE_subdiv_ccg_key_top_level(&key, subdiv_ccg);
  /* Store adjacency for all faces. */
  const int num_faces = subdiv_ccg->num_faces;
  for (int face_index = 0; face_index < num_faces; face_index++) {
    SubdivCCGFace *face = &faces[face_index];
    const int num_face_grids = face->num_grids;
    const int num_face_edges = num_face_grids;
    int *face_vertices = static_or_heap_storage_get(&face_vertices_storage, num_face_edges);
    topology_refiner->getFaceVertices(topology_refiner, face_index, face_vertices);
    /* Note that order of edges is same as order of MLoops, which also
     * means it's the same as order of grids. */
    int *face_edges = static_or_heap_storage_get(&face_edges_storage, num_face_edges);
    topology_refiner->getFaceEdges(topology_refiner, face_index, face_edges);
    /* Store grids adjacency for this edge. */
    for (int corner = 0; corner < num_face_edges; corner++) {
      const int vertex_index = face_vertices[corner];
      const int edge_index = face_edges[corner];
      int edge_vertices[2];
      topology_refiner->getEdgeVertices(topology_refiner, edge_index, edge_vertices);
      const bool is_edge_flipped = (edge_vertices[0] != vertex_index);
      /* Grid which is adjacent to the current corner. */
      const int current_grid_index = face->start_grid_index + corner;
      CCGElem *current_grid = subdiv_ccg->grids[current_grid_index];
      /* Grid which is adjacent to the next corner. */
      const int next_grid_index = face->start_grid_index + (corner + 1) % num_face_grids;
      CCGElem *next_grid = subdiv_ccg->grids[next_grid_index];
      /* Add new face to the adjacent edge. */
      SubdivCCGAdjacentEdge *adjacent_edge = &subdiv_ccg->adjacent_edges[edge_index];
      CCGElem **boundary_elements = subdiv_ccg_adjacent_edge_add_face(
          subdiv_ccg, adjacent_edge, face);
      /* Fill CCG elements along the edge. */
      int boundary_element_index = 0;
      if (is_edge_flipped) {
        for (int i = 0; i < grid_size; i++) {
          boundary_elements[boundary_element_index++] = CCG_grid_elem(
              &key, next_grid, grid_size - i - 1, grid_size - 1);
        }
        for (int i = 0; i < grid_size; i++) {
          boundary_elements[boundary_element_index++] = CCG_grid_elem(
              &key, current_grid, grid_size - 1, i);
        }
      }
      else {
        for (int i = 0; i < grid_size; i++) {
          boundary_elements[boundary_element_index++] = CCG_grid_elem(
              &key, current_grid, grid_size - 1, grid_size - i - 1);
        }
        for (int i = 0; i < grid_size; i++) {
          boundary_elements[boundary_element_index++] = CCG_grid_elem(
              &key, next_grid, i, grid_size - 1);
        }
      }
    }
  }
  /* Free possibly heap-allocated storage. */
  static_or_heap_storage_free(&face_vertices_storage);
  static_or_heap_storage_free(&face_edges_storage);
}

static void subdiv_ccg_allocate_adjacent_vertices(SubdivCCG *subdiv_ccg, const int num_vertices)
{
  subdiv_ccg->num_adjacent_vertices = num_vertices;
  subdiv_ccg->adjacent_vertices = MEM_calloc_arrayN(subdiv_ccg->num_adjacent_vertices,
                                                    sizeof(*subdiv_ccg->adjacent_vertices),
                                                    "ccg adjacent vertices");
}

/* Returns storage where corner elements are to be stored. This is a pointer
 * to the actual storage. */
static CCGElem **subdiv_ccg_adjacent_vertex_add_face(SubdivCCGAdjacentVertex *adjacent_vertex,
                                                     SubdivCCGFace *face)
{
  const int adjacent_face_index = adjacent_vertex->num_adjacent_faces;
  ++adjacent_vertex->num_adjacent_faces;
  /* Store new adjacent face. */
  adjacent_vertex->faces = MEM_reallocN(adjacent_vertex->faces,
                                        adjacent_vertex->num_adjacent_faces *
                                            sizeof(*adjacent_vertex->faces));
  adjacent_vertex->faces[adjacent_face_index] = face;
  /* Allocate memory for the boundary elements. */
  adjacent_vertex->corner_elements = MEM_reallocN(adjacent_vertex->corner_elements,
                                                  adjacent_vertex->num_adjacent_faces *
                                                      sizeof(*adjacent_vertex->corner_elements));
  return &adjacent_vertex->corner_elements[adjacent_face_index];
}

static void subdiv_ccg_init_faces_vertex_neighborhood(SubdivCCG *subdiv_ccg)
{
  Subdiv *subdiv = subdiv_ccg->subdiv;
  SubdivCCGFace *faces = subdiv_ccg->faces;
  OpenSubdiv_TopologyRefiner *topology_refiner = subdiv->topology_refiner;
  const int num_vertices = topology_refiner->getNumVertices(topology_refiner);
  const int grid_size = subdiv_ccg->grid_size;
  if (num_vertices == 0) {
    /* Early output, nothing to do in this case. */
    return;
  }
  subdiv_ccg_allocate_adjacent_vertices(subdiv_ccg, num_vertices);
  /* Initialize storage. */
  StaticOrHeapIntStorage face_vertices_storage;
  static_or_heap_storage_init(&face_vertices_storage);
  /* Key to access elements. */
  CCGKey key;
  BKE_subdiv_ccg_key_top_level(&key, subdiv_ccg);
  /* Store adjacency for all faces. */
  const int num_faces = subdiv_ccg->num_faces;
  for (int face_index = 0; face_index < num_faces; face_index++) {
    SubdivCCGFace *face = &faces[face_index];
    const int num_face_grids = face->num_grids;
    const int num_face_edges = num_face_grids;
    int *face_vertices = static_or_heap_storage_get(&face_vertices_storage, num_face_edges);
    topology_refiner->getFaceVertices(topology_refiner, face_index, face_vertices);
    for (int corner = 0; corner < num_face_edges; corner++) {
      const int vertex_index = face_vertices[corner];
      /* Grid which is adjacent to the current corner. */
      const int grid_index = face->start_grid_index + corner;
      CCGElem *grid = subdiv_ccg->grids[grid_index];
      /* Add new face to the adjacent edge. */
      SubdivCCGAdjacentVertex *adjacent_vertex = &subdiv_ccg->adjacent_vertices[vertex_index];
      CCGElem **corner_element = subdiv_ccg_adjacent_vertex_add_face(adjacent_vertex, face);
      *corner_element = CCG_grid_elem(&key, grid, grid_size - 1, grid_size - 1);
    }
  }
  /* Free possibly heap-allocated storage. */
  static_or_heap_storage_free(&face_vertices_storage);
}

static void subdiv_ccg_init_faces_neighborhood(SubdivCCG *subdiv_ccg)
{
  subdiv_ccg_init_faces_edge_neighborhood(subdiv_ccg);
  subdiv_ccg_init_faces_vertex_neighborhood(subdiv_ccg);
}

/* =============================================================================
 * Creation / evaluation.
 */

SubdivCCG *BKE_subdiv_to_ccg(Subdiv *subdiv,
                             const SubdivToCCGSettings *settings,
                             SubdivCCGMaskEvaluator *mask_evaluator,
                             SubdivCCGMaterialFlagsEvaluator *material_flags_evaluator)
{
  BKE_subdiv_stats_begin(&subdiv->stats, SUBDIV_STATS_SUBDIV_TO_CCG);
  SubdivCCG *subdiv_ccg = MEM_callocN(sizeof(SubdivCCG), "subdiv ccg");
  subdiv_ccg->subdiv = subdiv;
  subdiv_ccg->level = bitscan_forward_i(settings->resolution - 1);
  subdiv_ccg->grid_size = BKE_subdiv_grid_size_from_level(subdiv_ccg->level);
  subdiv_ccg_init_layers(subdiv_ccg, settings);
  subdiv_ccg_alloc_elements(subdiv_ccg, subdiv);
  subdiv_ccg_init_faces(subdiv_ccg);
  subdiv_ccg_init_faces_neighborhood(subdiv_ccg);
  if (!subdiv_ccg_evaluate_grids(subdiv_ccg, subdiv, mask_evaluator, material_flags_evaluator)) {
    BKE_subdiv_ccg_destroy(subdiv_ccg);
    BKE_subdiv_stats_end(&subdiv->stats, SUBDIV_STATS_SUBDIV_TO_CCG);
    return NULL;
  }
  BKE_subdiv_stats_end(&subdiv->stats, SUBDIV_STATS_SUBDIV_TO_CCG);
  return subdiv_ccg;
}

Mesh *BKE_subdiv_to_ccg_mesh(Subdiv *subdiv,
                             const SubdivToCCGSettings *settings,
                             const Mesh *coarse_mesh)
{
  /* Make sure evaluator is ready. */
  BKE_subdiv_stats_begin(&subdiv->stats, SUBDIV_STATS_SUBDIV_TO_CCG);
  if (!BKE_subdiv_eval_update_from_mesh(subdiv, coarse_mesh, NULL)) {
    if (coarse_mesh->totpoly) {
      return false;
    }
  }
  BKE_subdiv_stats_end(&subdiv->stats, SUBDIV_STATS_SUBDIV_TO_CCG);
  SubdivCCGMaskEvaluator mask_evaluator;
  bool has_mask = BKE_subdiv_ccg_mask_init_from_paint(&mask_evaluator, coarse_mesh);
  SubdivCCGMaterialFlagsEvaluator material_flags_evaluator;
  BKE_subdiv_ccg_material_flags_init_from_mesh(&material_flags_evaluator, coarse_mesh);
  SubdivCCG *subdiv_ccg = BKE_subdiv_to_ccg(
      subdiv, settings, has_mask ? &mask_evaluator : NULL, &material_flags_evaluator);
  if (has_mask) {
    mask_evaluator.free(&mask_evaluator);
  }
  material_flags_evaluator.free(&material_flags_evaluator);
  if (subdiv_ccg == NULL) {
    return NULL;
  }
  Mesh *result = BKE_mesh_new_nomain_from_template(coarse_mesh, 0, 0, 0, 0, 0);
  result->runtime.subdiv_ccg = subdiv_ccg;
  return result;
}

void BKE_subdiv_ccg_destroy(SubdivCCG *subdiv_ccg)
{
  const int num_grids = subdiv_ccg->num_grids;
  MEM_SAFE_FREE(subdiv_ccg->grids);
  MEM_SAFE_FREE(subdiv_ccg->grids_storage);
  MEM_SAFE_FREE(subdiv_ccg->edges);
  MEM_SAFE_FREE(subdiv_ccg->vertices);
  MEM_SAFE_FREE(subdiv_ccg->grid_flag_mats);
  if (subdiv_ccg->grid_hidden != NULL) {
    for (int grid_index = 0; grid_index < num_grids; grid_index++) {
      MEM_freeN(subdiv_ccg->grid_hidden[grid_index]);
    }
    MEM_freeN(subdiv_ccg->grid_hidden);
  }
  if (subdiv_ccg->subdiv != NULL) {
    BKE_subdiv_free(subdiv_ccg->subdiv);
  }
  MEM_SAFE_FREE(subdiv_ccg->faces);
  MEM_SAFE_FREE(subdiv_ccg->grid_faces);
  /* Free map of adjacent edges. */
  for (int i = 0; i < subdiv_ccg->num_adjacent_edges; i++) {
    SubdivCCGAdjacentEdge *adjacent_edge = &subdiv_ccg->adjacent_edges[i];
    for (int face_index = 0; face_index < adjacent_edge->num_adjacent_faces; face_index++) {
      MEM_SAFE_FREE(adjacent_edge->boundary_elements[face_index]);
    }
    MEM_SAFE_FREE(adjacent_edge->faces);
    MEM_SAFE_FREE(adjacent_edge->boundary_elements);
  }
  MEM_SAFE_FREE(subdiv_ccg->adjacent_edges);
  /* Free map of adjacent vertices. */
  for (int i = 0; i < subdiv_ccg->num_adjacent_vertices; i++) {
    SubdivCCGAdjacentVertex *adjacent_vertex = &subdiv_ccg->adjacent_vertices[i];
    MEM_SAFE_FREE(adjacent_vertex->faces);
    MEM_SAFE_FREE(adjacent_vertex->corner_elements);
  }
  MEM_SAFE_FREE(subdiv_ccg->adjacent_vertices);
  MEM_freeN(subdiv_ccg);
}

void BKE_subdiv_ccg_key(CCGKey *key, const SubdivCCG *subdiv_ccg, int level)
{
  key->level = level;
  key->elem_size = element_size_bytes_get(subdiv_ccg);
  key->grid_size = BKE_subdiv_grid_size_from_level(level);
  key->grid_area = key->grid_size * key->grid_size;
  key->grid_bytes = key->elem_size * key->grid_area;

  key->normal_offset = subdiv_ccg->normal_offset;
  key->mask_offset = subdiv_ccg->mask_offset;

  key->has_normals = subdiv_ccg->has_normal;
  key->has_mask = subdiv_ccg->has_mask;
}

void BKE_subdiv_ccg_key_top_level(CCGKey *key, const SubdivCCG *subdiv_ccg)
{
  BKE_subdiv_ccg_key(key, subdiv_ccg, subdiv_ccg->level);
}

/* =============================================================================
 * Normals.
 */

typedef struct RecalcInnerNormalsData {
  SubdivCCG *subdiv_ccg;
  CCGKey *key;
} RecalcInnerNormalsData;

typedef struct RecalcInnerNormalsTLSData {
  float (*face_normals)[3];
} RecalcInnerNormalsTLSData;

/* Evaluate high-res face normals, for faces which corresponds to grid elements
 *
 *   {(x, y), {x + 1, y}, {x + 1, y + 1}, {x, y + 1}}
 *
 * The result is stored in normals storage from TLS. */
static void subdiv_ccg_recalc_inner_face_normals(SubdivCCG *subdiv_ccg,
                                                 CCGKey *key,
                                                 RecalcInnerNormalsTLSData *tls,
                                                 const int grid_index)
{
  const int grid_size = subdiv_ccg->grid_size;
  const int grid_size_1 = grid_size - 1;
  CCGElem *grid = subdiv_ccg->grids[grid_index];
  if (tls->face_normals == NULL) {
    tls->face_normals = MEM_malloc_arrayN(
        grid_size_1 * grid_size_1, 3 * sizeof(float), "CCG TLS normals");
  }
  for (int y = 0; y < grid_size - 1; y++) {
    for (int x = 0; x < grid_size - 1; x++) {
      CCGElem *grid_elements[4] = {
          CCG_grid_elem(key, grid, x, y + 1),
          CCG_grid_elem(key, grid, x + 1, y + 1),
          CCG_grid_elem(key, grid, x + 1, y),
          CCG_grid_elem(key, grid, x, y),
      };
      float *co[4] = {
          CCG_elem_co(key, grid_elements[0]),
          CCG_elem_co(key, grid_elements[1]),
          CCG_elem_co(key, grid_elements[2]),
          CCG_elem_co(key, grid_elements[3]),
      };
      const int face_index = y * grid_size_1 + x;
      float *face_normal = tls->face_normals[face_index];
      normal_quad_v3(face_normal, co[0], co[1], co[2], co[3]);
    }
  }
}

/* Average normals at every grid element, using adjacent faces normals. */
static void subdiv_ccg_average_inner_face_normals(SubdivCCG *subdiv_ccg,
                                                  CCGKey *key,
                                                  RecalcInnerNormalsTLSData *tls,
                                                  const int grid_index)
{
  const int grid_size = subdiv_ccg->grid_size;
  const int grid_size_1 = grid_size - 1;
  CCGElem *grid = subdiv_ccg->grids[grid_index];
  const float(*face_normals)[3] = tls->face_normals;
  for (int y = 0; y < grid_size; y++) {
    for (int x = 0; x < grid_size; x++) {
      float normal_acc[3] = {0.0f, 0.0f, 0.0f};
      int counter = 0;
      /* Accumulate normals of all adjacent faces. */
      if (x < grid_size_1 && y < grid_size_1) {
        add_v3_v3(normal_acc, face_normals[y * grid_size_1 + x]);
        counter++;
      }
      if (x >= 1) {
        if (y < grid_size_1) {
          add_v3_v3(normal_acc, face_normals[y * grid_size_1 + (x - 1)]);
          counter++;
        }
        if (y >= 1) {
          add_v3_v3(normal_acc, face_normals[(y - 1) * grid_size_1 + (x - 1)]);
          counter++;
        }
      }
      if (y >= 1 && x < grid_size_1) {
        add_v3_v3(normal_acc, face_normals[(y - 1) * grid_size_1 + x]);
        counter++;
      }
      /* Normalize and store. */
      mul_v3_v3fl(CCG_grid_elem_no(key, grid, x, y), normal_acc, 1.0f / (float)counter);
    }
  }
}

static void subdiv_ccg_recalc_inner_normal_task(void *__restrict userdata_v,
                                                const int grid_index,
                                                const TaskParallelTLS *__restrict tls_v)
{
  RecalcInnerNormalsData *data = userdata_v;
  RecalcInnerNormalsTLSData *tls = tls_v->userdata_chunk;
  subdiv_ccg_recalc_inner_face_normals(data->subdiv_ccg, data->key, tls, grid_index);
  subdiv_ccg_average_inner_face_normals(data->subdiv_ccg, data->key, tls, grid_index);
}

static void subdiv_ccg_recalc_inner_normal_finalize(void *__restrict UNUSED(userdata),
                                                    void *__restrict tls_v)
{
  RecalcInnerNormalsTLSData *tls = tls_v;
  MEM_SAFE_FREE(tls->face_normals);
}

/* Recalculate normals which corresponds to non-boundaries elements of grids. */
static void subdiv_ccg_recalc_inner_grid_normals(SubdivCCG *subdiv_ccg)
{
  CCGKey key;
  BKE_subdiv_ccg_key_top_level(&key, subdiv_ccg);
  RecalcInnerNormalsData data = {
      .subdiv_ccg = subdiv_ccg,
      .key = &key,
  };
  RecalcInnerNormalsTLSData tls_data = {NULL};
  TaskParallelSettings parallel_range_settings;
  BLI_parallel_range_settings_defaults(&parallel_range_settings);
  parallel_range_settings.userdata_chunk = &tls_data;
  parallel_range_settings.userdata_chunk_size = sizeof(tls_data);
  parallel_range_settings.func_finalize = subdiv_ccg_recalc_inner_normal_finalize;
  BLI_task_parallel_range(0,
                          subdiv_ccg->num_grids,
                          &data,
                          subdiv_ccg_recalc_inner_normal_task,
                          &parallel_range_settings);
}

void BKE_subdiv_ccg_recalc_normals(SubdivCCG *subdiv_ccg)
{
  if (!subdiv_ccg->has_normal) {
    /* Grids don't have normals, can do early output. */
    return;
  }
  subdiv_ccg_recalc_inner_grid_normals(subdiv_ccg);
  BKE_subdiv_ccg_average_grids(subdiv_ccg);
}

typedef struct RecalcModifiedInnerNormalsData {
  SubdivCCG *subdiv_ccg;
  CCGKey *key;
  SubdivCCGFace **effected_ccg_faces;
} RecalcModifiedInnerNormalsData;

static void subdiv_ccg_recalc_modified_inner_normal_task(void *__restrict userdata_v,
                                                         const int face_index,
                                                         const TaskParallelTLS *__restrict tls_v)
{
  RecalcModifiedInnerNormalsData *data = userdata_v;
  SubdivCCG *subdiv_ccg = data->subdiv_ccg;
  CCGKey *key = data->key;
  RecalcInnerNormalsTLSData *tls = tls_v->userdata_chunk;
  SubdivCCGFace **faces = data->effected_ccg_faces;
  SubdivCCGFace *face = faces[face_index];
  const int num_face_grids = face->num_grids;
  for (int i = 0; i < num_face_grids; i++) {
    const int grid_index = face->start_grid_index + i;
    subdiv_ccg_recalc_inner_face_normals(data->subdiv_ccg, data->key, tls, grid_index);
    subdiv_ccg_average_inner_face_normals(data->subdiv_ccg, data->key, tls, grid_index);
  }
  subdiv_ccg_average_inner_face_grids(subdiv_ccg, key, face);
}

static void subdiv_ccg_recalc_modified_inner_normal_finalize(void *__restrict UNUSED(userdata),
                                                             void *__restrict tls_v)
{
  RecalcInnerNormalsTLSData *tls = tls_v;
  MEM_SAFE_FREE(tls->face_normals);
}

static void subdiv_ccg_recalc_modified_inner_grid_normals(SubdivCCG *subdiv_ccg,
                                                          struct CCGFace **effected_faces,
                                                          int num_effected_faces)
{
  CCGKey key;
  BKE_subdiv_ccg_key_top_level(&key, subdiv_ccg);
  RecalcModifiedInnerNormalsData data = {
      .subdiv_ccg = subdiv_ccg,
      .key = &key,
      .effected_ccg_faces = (SubdivCCGFace **)effected_faces,
  };
  RecalcInnerNormalsTLSData tls_data = {NULL};
  TaskParallelSettings parallel_range_settings;
  BLI_parallel_range_settings_defaults(&parallel_range_settings);
  parallel_range_settings.userdata_chunk = &tls_data;
  parallel_range_settings.userdata_chunk_size = sizeof(tls_data);
  parallel_range_settings.func_finalize = subdiv_ccg_recalc_modified_inner_normal_finalize;
  BLI_task_parallel_range(0,
                          num_effected_faces,
                          &data,
                          subdiv_ccg_recalc_modified_inner_normal_task,
                          &parallel_range_settings);
}

void BKE_subdiv_ccg_update_normals(SubdivCCG *subdiv_ccg,
                                   struct CCGFace **effected_faces,
                                   int num_effected_faces)
{
  if (!subdiv_ccg->has_normal) {
    /* Grids don't have normals, can do early output. */
    return;
  }
  if (num_effected_faces == 0) {
    /* No faces changed, so nothing to do here. */
    return;
  }
  subdiv_ccg_recalc_modified_inner_grid_normals(subdiv_ccg, effected_faces, num_effected_faces);
  /* TODO(sergey): Only average elements which are adjacent to modified
   * faces. */
  CCGKey key;
  BKE_subdiv_ccg_key_top_level(&key, subdiv_ccg);
  subdiv_ccg_average_all_boundaries_and_corners(subdiv_ccg, &key);
}

/* =============================================================================
 * Boundary averaging/stitching.
 */

typedef struct AverageInnerGridsData {
  SubdivCCG *subdiv_ccg;
  CCGKey *key;
} AverageInnerGridsData;

static void average_grid_element_value_v3(float a[3], float b[3])
{
  add_v3_v3(a, b);
  mul_v3_fl(a, 0.5f);
  copy_v3_v3(b, a);
}

static void average_grid_element(SubdivCCG *subdiv_ccg,
                                 CCGKey *key,
                                 CCGElem *grid_element_a,
                                 CCGElem *grid_element_b)
{
  average_grid_element_value_v3(CCG_elem_co(key, grid_element_a),
                                CCG_elem_co(key, grid_element_b));
  if (subdiv_ccg->has_normal) {
    average_grid_element_value_v3(CCG_elem_no(key, grid_element_a),
                                  CCG_elem_no(key, grid_element_b));
  }
  if (subdiv_ccg->has_mask) {
    float mask = (*CCG_elem_mask(key, grid_element_a) + *CCG_elem_mask(key, grid_element_b)) *
                 0.5f;
    *CCG_elem_mask(key, grid_element_a) = mask;
    *CCG_elem_mask(key, grid_element_b) = mask;
  }
}

/* Accumulator to hold data during averaging. */
typedef struct GridElementAccumulator {
  float co[3];
  float no[3];
  float mask;
} GridElementAccumulator;

static void element_accumulator_init(GridElementAccumulator *accumulator)
{
  zero_v3(accumulator->co);
  zero_v3(accumulator->no);
  accumulator->mask = 0.0f;
}

static void element_accumulator_add(GridElementAccumulator *accumulator,
                                    const SubdivCCG *subdiv_ccg,
                                    CCGKey *key,
                                    /*const*/ CCGElem *grid_element)
{
  add_v3_v3(accumulator->co, CCG_elem_co(key, grid_element));
  if (subdiv_ccg->has_normal) {
    add_v3_v3(accumulator->no, CCG_elem_no(key, grid_element));
  }
  if (subdiv_ccg->has_mask) {
    accumulator->mask += *CCG_elem_mask(key, grid_element);
  }
}

static void element_accumulator_mul_fl(GridElementAccumulator *accumulator, const float f)
{
  mul_v3_fl(accumulator->co, f);
  mul_v3_fl(accumulator->no, f);
  accumulator->mask *= f;
}

static void element_accumulator_copy(SubdivCCG *subdiv_ccg,
                                     CCGKey *key,
                                     CCGElem *destination,
                                     const GridElementAccumulator *accumulator)
{
  copy_v3_v3(CCG_elem_co(key, destination), accumulator->co);
  if (subdiv_ccg->has_normal) {
    copy_v3_v3(CCG_elem_no(key, destination), accumulator->no);
  }
  if (subdiv_ccg->has_mask) {
    *CCG_elem_mask(key, destination) = accumulator->mask;
  }
}

static void subdiv_ccg_average_inner_face_grids(SubdivCCG *subdiv_ccg,
                                                CCGKey *key,
                                                SubdivCCGFace *face)
{
  CCGElem **grids = subdiv_ccg->grids;
  const int num_face_grids = face->num_grids;
  const int grid_size = subdiv_ccg->grid_size;
  CCGElem *prev_grid = grids[face->start_grid_index + num_face_grids - 1];
  /* Average boundary between neighbor grid. */
  for (int corner = 0; corner < num_face_grids; corner++) {
    CCGElem *grid = grids[face->start_grid_index + corner];
    for (int i = 1; i < grid_size; i++) {
      CCGElem *prev_grid_element = CCG_grid_elem(key, prev_grid, i, 0);
      CCGElem *grid_element = CCG_grid_elem(key, grid, 0, i);
      average_grid_element(subdiv_ccg, key, prev_grid_element, grid_element);
    }
    prev_grid = grid;
  }
  /* Average all grids centers into a single accumulator, and share it.
   * Guarantees correct and smooth averaging in the center. */
  GridElementAccumulator center_accumulator;
  element_accumulator_init(&center_accumulator);
  for (int corner = 0; corner < num_face_grids; corner++) {
    CCGElem *grid = grids[face->start_grid_index + corner];
    CCGElem *grid_center_element = CCG_grid_elem(key, grid, 0, 0);
    element_accumulator_add(&center_accumulator, subdiv_ccg, key, grid_center_element);
  }
  element_accumulator_mul_fl(&center_accumulator, 1.0f / (float)num_face_grids);
  for (int corner = 0; corner < num_face_grids; corner++) {
    CCGElem *grid = grids[face->start_grid_index + corner];
    CCGElem *grid_center_element = CCG_grid_elem(key, grid, 0, 0);
    element_accumulator_copy(subdiv_ccg, key, grid_center_element, &center_accumulator);
  }
}

static void subdiv_ccg_average_inner_grids_task(void *__restrict userdata_v,
                                                const int face_index,
                                                const TaskParallelTLS *__restrict UNUSED(tls_v))
{
  AverageInnerGridsData *data = userdata_v;
  SubdivCCG *subdiv_ccg = data->subdiv_ccg;
  CCGKey *key = data->key;
  SubdivCCGFace *faces = subdiv_ccg->faces;
  SubdivCCGFace *face = &faces[face_index];
  subdiv_ccg_average_inner_face_grids(subdiv_ccg, key, face);
}

typedef struct AverageGridsBoundariesData {
  SubdivCCG *subdiv_ccg;
  CCGKey *key;
} AverageGridsBoundariesData;

typedef struct AverageGridsBoundariesTLSData {
  GridElementAccumulator *accumulators;
} AverageGridsBoundariesTLSData;

static void subdiv_ccg_average_grids_boundary(SubdivCCG *subdiv_ccg,
                                              CCGKey *key,
                                              SubdivCCGAdjacentEdge *adjacent_edge,
                                              AverageGridsBoundariesTLSData *tls)
{
  const int num_adjacent_faces = adjacent_edge->num_adjacent_faces;
  const int grid_size2 = subdiv_ccg->grid_size * 2;
  if (num_adjacent_faces == 1) {
    /* Nothing to average with. */
    return;
  }
  if (tls->accumulators == NULL) {
    tls->accumulators = MEM_calloc_arrayN(
        sizeof(GridElementAccumulator), grid_size2, "average accumulators");
  }
  else {
    for (int i = 1; i < grid_size2 - 1; i++) {
      element_accumulator_init(&tls->accumulators[i]);
    }
  }
  for (int face_index = 0; face_index < num_adjacent_faces; face_index++) {
    for (int i = 1; i < grid_size2 - 1; i++) {
      CCGElem *grid_element = adjacent_edge->boundary_elements[face_index][i];
      element_accumulator_add(&tls->accumulators[i], subdiv_ccg, key, grid_element);
    }
  }
  for (int i = 1; i < grid_size2 - 1; i++) {
    element_accumulator_mul_fl(&tls->accumulators[i], 1.0f / (float)num_adjacent_faces);
  }
  /* Copy averaged value to all the other faces. */
  for (int face_index = 0; face_index < num_adjacent_faces; face_index++) {
    for (int i = 1; i < grid_size2 - 1; i++) {
      CCGElem *grid_element = adjacent_edge->boundary_elements[face_index][i];
      element_accumulator_copy(subdiv_ccg, key, grid_element, &tls->accumulators[i]);
    }
  }
}

static void subdiv_ccg_average_grids_boundaries_task(void *__restrict userdata_v,
                                                     const int adjacent_edge_index,
                                                     const TaskParallelTLS *__restrict tls_v)
{
  AverageGridsBoundariesData *data = userdata_v;
  AverageGridsBoundariesTLSData *tls = tls_v->userdata_chunk;
  SubdivCCG *subdiv_ccg = data->subdiv_ccg;
  CCGKey *key = data->key;
  SubdivCCGAdjacentEdge *adjacent_edge = &subdiv_ccg->adjacent_edges[adjacent_edge_index];
  subdiv_ccg_average_grids_boundary(subdiv_ccg, key, adjacent_edge, tls);
}

static void subdiv_ccg_average_grids_boundaries_finalize(void *__restrict UNUSED(userdata),
                                                         void *__restrict tls_v)
{
  AverageGridsBoundariesTLSData *tls = tls_v;
  MEM_SAFE_FREE(tls->accumulators);
}

typedef struct AverageGridsCornerData {
  SubdivCCG *subdiv_ccg;
  CCGKey *key;
} AverageGridsCornerData;

static void subdiv_ccg_average_grids_corners(SubdivCCG *subdiv_ccg,
                                             CCGKey *key,
                                             SubdivCCGAdjacentVertex *adjacent_vertex)
{
  const int num_adjacent_faces = adjacent_vertex->num_adjacent_faces;
  if (num_adjacent_faces == 1) {
    /* Nothing to average with. */
    return;
  }
  GridElementAccumulator accumulator;
  element_accumulator_init(&accumulator);
  for (int face_index = 0; face_index < num_adjacent_faces; face_index++) {
    CCGElem *grid_element = adjacent_vertex->corner_elements[face_index];
    element_accumulator_add(&accumulator, subdiv_ccg, key, grid_element);
  }
  element_accumulator_mul_fl(&accumulator, 1.0f / (float)num_adjacent_faces);
  /* Copy averaged value to all the other faces. */
  for (int face_index = 0; face_index < num_adjacent_faces; face_index++) {
    CCGElem *grid_element = adjacent_vertex->corner_elements[face_index];
    element_accumulator_copy(subdiv_ccg, key, grid_element, &accumulator);
  }
}

static void subdiv_ccg_average_grids_corners_task(void *__restrict userdata_v,
                                                  const int adjacent_vertex_index,
                                                  const TaskParallelTLS *__restrict UNUSED(tls_v))
{
  AverageGridsCornerData *data = userdata_v;
  SubdivCCG *subdiv_ccg = data->subdiv_ccg;
  CCGKey *key = data->key;
  SubdivCCGAdjacentVertex *adjacent_vertex = &subdiv_ccg->adjacent_vertices[adjacent_vertex_index];
  subdiv_ccg_average_grids_corners(subdiv_ccg, key, adjacent_vertex);
}

static void subdiv_ccg_average_all_boundaries(SubdivCCG *subdiv_ccg, CCGKey *key)
{
  TaskParallelSettings parallel_range_settings;
  BLI_parallel_range_settings_defaults(&parallel_range_settings);
  AverageGridsBoundariesData boundaries_data = {
      .subdiv_ccg = subdiv_ccg,
      .key = key,
  };
  AverageGridsBoundariesTLSData tls_data = {NULL};
  parallel_range_settings.userdata_chunk = &tls_data;
  parallel_range_settings.userdata_chunk_size = sizeof(tls_data);
  parallel_range_settings.func_finalize = subdiv_ccg_average_grids_boundaries_finalize;
  BLI_task_parallel_range(0,
                          subdiv_ccg->num_adjacent_edges,
                          &boundaries_data,
                          subdiv_ccg_average_grids_boundaries_task,
                          &parallel_range_settings);
}

static void subdiv_ccg_average_all_corners(SubdivCCG *subdiv_ccg, CCGKey *key)
{
  TaskParallelSettings parallel_range_settings;
  BLI_parallel_range_settings_defaults(&parallel_range_settings);
  AverageGridsCornerData corner_data = {
      .subdiv_ccg = subdiv_ccg,
      .key = key,
  };
  BLI_task_parallel_range(0,
                          subdiv_ccg->num_adjacent_vertices,
                          &corner_data,
                          subdiv_ccg_average_grids_corners_task,
                          &parallel_range_settings);
}

static void subdiv_ccg_average_all_boundaries_and_corners(SubdivCCG *subdiv_ccg, CCGKey *key)
{
  subdiv_ccg_average_all_boundaries(subdiv_ccg, key);
  subdiv_ccg_average_all_corners(subdiv_ccg, key);
}

void BKE_subdiv_ccg_average_grids(SubdivCCG *subdiv_ccg)
{
  CCGKey key;
  BKE_subdiv_ccg_key_top_level(&key, subdiv_ccg);
  TaskParallelSettings parallel_range_settings;
  BLI_parallel_range_settings_defaults(&parallel_range_settings);
  /* Average inner boundaries of grids (within one face), across faces
   * from different face-corners. */
  AverageInnerGridsData inner_data = {
      .subdiv_ccg = subdiv_ccg,
      .key = &key,
  };
  BLI_task_parallel_range(0,
                          subdiv_ccg->num_faces,
                          &inner_data,
                          subdiv_ccg_average_inner_grids_task,
                          &parallel_range_settings);
  subdiv_ccg_average_all_boundaries_and_corners(subdiv_ccg, &key);
}

typedef struct StitchFacesInnerGridsData {
  SubdivCCG *subdiv_ccg;
  CCGKey *key;
  struct CCGFace **effected_ccg_faces;
} StitchFacesInnerGridsData;

static void subdiv_ccg_stitch_face_inner_grids_task(
    void *__restrict userdata_v,
    const int face_index,
    const TaskParallelTLS *__restrict UNUSED(tls_v))
{
  StitchFacesInnerGridsData *data = userdata_v;
  SubdivCCG *subdiv_ccg = data->subdiv_ccg;
  CCGKey *key = data->key;
  struct CCGFace **effected_ccg_faces = data->effected_ccg_faces;
  struct CCGFace *effected_ccg_face = effected_ccg_faces[face_index];
  SubdivCCGFace *face = (SubdivCCGFace *)effected_ccg_face;
  subdiv_ccg_average_inner_face_grids(subdiv_ccg, key, face);
}

void BKE_subdiv_ccg_average_stitch_faces(SubdivCCG *subdiv_ccg,
                                         struct CCGFace **effected_faces,
                                         int num_effected_faces)
{
  CCGKey key;
  BKE_subdiv_ccg_key_top_level(&key, subdiv_ccg);
  StitchFacesInnerGridsData data = {
      .subdiv_ccg = subdiv_ccg,
      .key = &key,
      .effected_ccg_faces = effected_faces,
  };
  TaskParallelSettings parallel_range_settings;
  BLI_parallel_range_settings_defaults(&parallel_range_settings);
  BLI_task_parallel_range(0,
                          num_effected_faces,
                          &data,
                          subdiv_ccg_stitch_face_inner_grids_task,
                          &parallel_range_settings);
  /* TODO(sergey): Only average elements which are adjacent to modified
   * faces. */
  subdiv_ccg_average_all_boundaries_and_corners(subdiv_ccg, &key);
}

void BKE_subdiv_ccg_topology_counters(const SubdivCCG *subdiv_ccg,
                                      int *r_num_vertices,
                                      int *r_num_edges,
                                      int *r_num_faces,
                                      int *r_num_loops)
{
  const int num_grids = subdiv_ccg->num_grids;
  const int grid_size = subdiv_ccg->grid_size;
  const int grid_area = grid_size * grid_size;
  const int num_edges_per_grid = 2 * (grid_size * (grid_size - 1));
  *r_num_vertices = num_grids * grid_area;
  *r_num_edges = num_grids * num_edges_per_grid;
  *r_num_faces = num_grids * (grid_size - 1) * (grid_size - 1);
  *r_num_loops = *r_num_faces * 4;
}