Welcome to mirror list, hosted at ThFree Co, Russian Federation.

subdiv_mesh.c « intern « blenkernel « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 8a58605ba195d592b3b09d1a28fe5582dfbf5a52 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
/*
 * ***** BEGIN GPL LICENSE BLOCK *****
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 *
 * The Original Code is Copyright (C) 2018 by Blender Foundation.
 * All rights reserved.
 *
 * Contributor(s): Sergey Sharybin.
 *
 * ***** END GPL LICENSE BLOCK *****
 */

/** \file blender/blenkernel/intern/subdiv_mesh.c
 *  \ingroup bke
 */

#include "BKE_subdiv.h"

#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"

#include "BLI_alloca.h"
#include "BLI_math_vector.h"
#include "BLI_task.h"

#include "BKE_mesh.h"

/* TODO(sergey): Somehow move this to subdiv code? */
static int mpoly_ptex_faces_count_get(const MPoly *mp)
{
	if (mp->totloop == 4) {
		return 1;
	}
	else {
		return mp->totloop;
	}
}

static int num_edges_per_ptex_get(const int resolution)
{
	return 2 * (resolution - 1) * resolution;
}

static int num_polys_per_ptex_get(const int resolution)
{
	return (resolution - 1) * (resolution - 1);
}

typedef struct SubdivMeshContext {
	const Mesh *coarse_mesh;
	Subdiv *subdiv;
	Mesh *subdiv_mesh;
	const SubdivToMeshSettings *settings;
	/* Cached custom data arrays for fastter access. */
	int *vert_origindex;
	int *edge_origindex;
	int *loop_origindex;
	int *poly_origindex;
	/* UV layers interpolation. */
	int num_uv_layers;
	MLoopUV *uv_layers[MAX_MTFACE];
} SubdivMeshContext;

typedef struct LoopsOfPtex {
	/* First loop of the ptex, starts at ptex (0, 0) and goes in u direction. */
	const MLoop *first_loop;
	/* Last loop of the ptex, starts at ptex (0, 0) and goes in v direction. */
	const MLoop *last_loop;
	/* For quad coarse faces only. */
	const MLoop *second_loop;
	const MLoop *third_loop;
} LoopsOfPtex;

static void loops_of_ptex_get(
        const SubdivMeshContext *ctx,
        LoopsOfPtex *loops_of_ptex,
        const MPoly *coarse_poly,
        const int ptex_face_index)
{
	const MLoop *coarse_mloop = ctx->coarse_mesh->mloop;
	const int first_ptex_loop_index = coarse_poly->loopstart + ptex_face_index;
	/* Loop which look in the (opposite) V direction of the current
	 * ptex face.
	 *
	 * TOOD(sergey): Get rid of using module on every iteration.
	 */
	const int last_ptex_loop_index =
	        coarse_poly->loopstart +
	        (ptex_face_index + coarse_poly->totloop - 1) % coarse_poly->totloop;
	loops_of_ptex->first_loop = &coarse_mloop[first_ptex_loop_index];
	loops_of_ptex->last_loop = &coarse_mloop[last_ptex_loop_index];
	if (coarse_poly->totloop == 4) {
		loops_of_ptex->second_loop = loops_of_ptex->first_loop + 1;
		loops_of_ptex->third_loop = loops_of_ptex->first_loop + 2;
	}
	else {
		loops_of_ptex->second_loop = NULL;
		loops_of_ptex->third_loop = NULL;
	}
}

typedef struct EdgesOfPtex {
	/* First edge of the ptex, starts at ptex (0, 0) and goes in u direction. */
	const MEdge *first_edge;
	/* Last edge of the ptex, starts at ptex (0, 0) and goes in v direction. */
	const MEdge *last_edge;
	/* For quad coarse faces only. */
	const MEdge *second_edge;
	const MEdge *third_edge;
} EdgesOfPtex;

static void edges_of_ptex_get(
        const SubdivMeshContext *ctx,
        EdgesOfPtex *edges_of_ptex,
        const MPoly *coarse_poly,
        const int ptex_face_index)
{
	const MEdge *coarse_medge = ctx->coarse_mesh->medge;
	LoopsOfPtex loops_of_ptex;
	loops_of_ptex_get(ctx, &loops_of_ptex, coarse_poly, ptex_face_index);
	edges_of_ptex->first_edge = &coarse_medge[loops_of_ptex.first_loop->e];
	edges_of_ptex->last_edge = &coarse_medge[loops_of_ptex.last_loop->e];
	if (coarse_poly->totloop == 4) {
		edges_of_ptex->second_edge =
		        &coarse_medge[loops_of_ptex.second_loop->e];
		edges_of_ptex->third_edge =
		        &coarse_medge[loops_of_ptex.third_loop->e];
	}
	else {
		edges_of_ptex->second_edge = NULL;
		edges_of_ptex->third_edge = NULL;
	}
}

/* TODO(sergey): Somehow de-duplicate with loops storage, without too much
 * exception cases all over the code.
 */

typedef struct VerticesForInterpolation {
	/* This field points to a vertex data which is to be used for interpolation.
	 * The idea is to avoid unnecessary allocations for regular faces, where
	 * we can simply 
	 */
	const CustomData *vertex_data;
	/* Vertices data calculated for ptex corners. There are always 4 elements
	 * in this custom data, aligned the following way:
	 *
	 *   index 0 -> uv (0, 0)
	 *   index 1 -> uv (0, 1)
	 *   index 2 -> uv (1, 1)
	 *   index 3 -> uv (1, 0)
	 *
	 * Is allocated for non-regular faces (triangles and n-gons).
	 */
	CustomData vertex_data_storage;
	bool vertex_data_storage_allocated;
	/* Infices within vertex_data to interpolate for. The indices are aligned
	 * with uv coordinates in a similar way as indices in loop_data_storage.
	 */
	int vertex_indices[4];
} VerticesForInterpolation;

static void vertex_interpolation_init(
        const SubdivMeshContext *ctx,
        VerticesForInterpolation *vertex_interpolation,
		const MPoly *coarse_poly)
{
	const Mesh *coarse_mesh = ctx->coarse_mesh;
	const MLoop *coarse_mloop = coarse_mesh->mloop;
	if (coarse_poly->totloop == 4) {
		vertex_interpolation->vertex_data = &coarse_mesh->vdata;
		vertex_interpolation->vertex_indices[0] =
		        coarse_mloop[coarse_poly->loopstart + 0].v;
		vertex_interpolation->vertex_indices[1] =
		        coarse_mloop[coarse_poly->loopstart + 1].v;
		vertex_interpolation->vertex_indices[2] =
		        coarse_mloop[coarse_poly->loopstart + 2].v;
		vertex_interpolation->vertex_indices[3] =
		        coarse_mloop[coarse_poly->loopstart + 3].v;
		vertex_interpolation->vertex_data_storage_allocated = false;
	}
	else {
		vertex_interpolation->vertex_data =
		        &vertex_interpolation->vertex_data_storage;
		/* Allocate storage for loops corresponding to ptex corners. */
		CustomData_copy(&ctx->coarse_mesh->vdata,
		                &vertex_interpolation->vertex_data_storage,
		                CD_MASK_EVERYTHING,
		                CD_CALLOC,
		                4);
		/* Initialize indices. */
		vertex_interpolation->vertex_indices[0] = 0;
		vertex_interpolation->vertex_indices[1] = 1;
		vertex_interpolation->vertex_indices[2] = 2;
		vertex_interpolation->vertex_indices[3] = 3;
		vertex_interpolation->vertex_data_storage_allocated = true;
		/* Interpolate center of poly right away, it stays unchanged for all
		 * ptex faces.
		 */
		const float weight = 1.0f / (float)coarse_poly->totloop;
		float *weights = BLI_array_alloca(weights, coarse_poly->totloop);
		int *indices = BLI_array_alloca(indices, coarse_poly->totloop);
		for (int i = 0; i < coarse_poly->totloop; ++i) {
			weights[i] = weight;
			indices[i] = coarse_poly->loopstart + i;
		}
		CustomData_interp(&coarse_mesh->vdata,
		                  &vertex_interpolation->vertex_data_storage,
		                  indices,
		                  weights, NULL,
		                  coarse_poly->totloop,
		                  2);
	}
}

static void vertex_interpolation_from_ptex(
        const SubdivMeshContext *ctx,
        VerticesForInterpolation *vertex_interpolation,
        const MPoly *coarse_poly,
        const int ptex_face_index)
{
	if (coarse_poly->totloop == 4) {
		/* Nothing to do, all indices and data is already assigned. */
	} else {
		const CustomData *vertex_data = &ctx->coarse_mesh->vdata;
		const Mesh *coarse_mesh = ctx->coarse_mesh;
		const MLoop *coarse_mloop = coarse_mesh->mloop;
		LoopsOfPtex loops_of_ptex;
		loops_of_ptex_get(ctx, &loops_of_ptex, coarse_poly, ptex_face_index);
		/* Ptex face corner corresponds to a poly loop with same index. */
		CustomData_copy_data(
		        vertex_data,
		        &vertex_interpolation->vertex_data_storage,
		        coarse_mloop[coarse_poly->loopstart + ptex_face_index].v,
		        0,
		        1);
		/* Interpolate remaining ptex face corners, which hits loops
		 * middle points.
		 *
		 * TODO(sergey): Re-use one of interpolation results from previous
		 * iteration.
		 */
		const float weights[2] = {0.5f, 0.5f};
		const int first_indices[2] = {
		        coarse_mloop[loops_of_ptex.first_loop - coarse_mloop].v,
		        coarse_mloop[(loops_of_ptex.first_loop + 1 - coarse_mloop) %
		                coarse_poly->totloop].v};
		const int last_indices[2] = {
		        coarse_mloop[loops_of_ptex.last_loop - coarse_mloop].v,
		        coarse_mloop[loops_of_ptex.first_loop - coarse_mloop].v};
		CustomData_interp(vertex_data,
		                  &vertex_interpolation->vertex_data_storage,
		                  first_indices,
		                  weights, NULL,
		                  2,
		                  1);
		CustomData_interp(vertex_data,
		                  &vertex_interpolation->vertex_data_storage,
		                  last_indices,
		                  weights, NULL,
		                  2,
		                  3);
	}
}

static void vertex_interpolation_end(
        VerticesForInterpolation *vertex_interpolation)
{
	if (vertex_interpolation->vertex_data_storage_allocated) {
		CustomData_free(&vertex_interpolation->vertex_data_storage, 4);
	}
}

typedef struct LoopsForInterpolation {
 /* This field points to a loop data which is to be used for interpolation.
	 * The idea is to avoid unnecessary allocations for regular faces, where
	 * we can simply 
	 */
	const CustomData *loop_data;
	/* Loops data calculated for ptex corners. There are always 4 elements
	 * in this custom data, aligned the following way:
	 *
	 *   index 0 -> uv (0, 0)
	 *   index 1 -> uv (0, 1)
	 *   index 2 -> uv (1, 1)
	 *   index 3 -> uv (1, 0)
	 *
	 * Is allocated for non-regular faces (triangles and n-gons).
	 */
	CustomData loop_data_storage;
	bool loop_data_storage_allocated;
	/* Infices within loop_data to interpolate for. The indices are aligned with
	 * uv coordinates in a similar way as indices in loop_data_storage.
	 */
	int loop_indices[4];
} LoopsForInterpolation;

static void loop_interpolation_init(
        const SubdivMeshContext *ctx,
        LoopsForInterpolation *loop_interpolation,
		const MPoly *coarse_poly)
{
	const Mesh *coarse_mesh = ctx->coarse_mesh;
	if (coarse_poly->totloop == 4) {
		loop_interpolation->loop_data = &coarse_mesh->ldata;
		loop_interpolation->loop_indices[0] = coarse_poly->loopstart + 0;
		loop_interpolation->loop_indices[1] = coarse_poly->loopstart + 1;
		loop_interpolation->loop_indices[2] = coarse_poly->loopstart + 2;
		loop_interpolation->loop_indices[3] = coarse_poly->loopstart + 3;
		loop_interpolation->loop_data_storage_allocated = false;
	}
	else {
		loop_interpolation->loop_data = &loop_interpolation->loop_data_storage;
		/* Allocate storage for loops corresponding to ptex corners. */
		CustomData_copy(&ctx->coarse_mesh->ldata,
		                &loop_interpolation->loop_data_storage,
		                CD_MASK_EVERYTHING,
		                CD_CALLOC,
		                4);
		/* Initialize indices. */
		loop_interpolation->loop_indices[0] = 0;
		loop_interpolation->loop_indices[1] = 1;
		loop_interpolation->loop_indices[2] = 2;
		loop_interpolation->loop_indices[3] = 3;
		loop_interpolation->loop_data_storage_allocated = true;
		/* Interpolate center of poly right away, it stays unchanged for all
		 * ptex faces.
		 */
		const float weight = 1.0f / (float)coarse_poly->totloop;
		float *weights = BLI_array_alloca(weights, coarse_poly->totloop);
		int *indices = BLI_array_alloca(indices, coarse_poly->totloop);
		for (int i = 0; i < coarse_poly->totloop; ++i) {
			weights[i] = weight;
			indices[i] = coarse_poly->loopstart + i;
		}
		CustomData_interp(&coarse_mesh->ldata,
		                  &loop_interpolation->loop_data_storage,
		                  indices,
		                  weights, NULL,
		                  coarse_poly->totloop,
		                  2);
	}
}

static void loop_interpolation_from_ptex(
        const SubdivMeshContext *ctx,
        LoopsForInterpolation *loop_interpolation,
        const MPoly *coarse_poly,
        const int ptex_face_index)
{
	if (coarse_poly->totloop == 4) {
		/* Nothing to do, all indices and data is already assigned. */
	} else {
		const CustomData *loop_data = &ctx->coarse_mesh->ldata;
		const Mesh *coarse_mesh = ctx->coarse_mesh;
		const MLoop *coarse_mloop = coarse_mesh->mloop;
		LoopsOfPtex loops_of_ptex;
		loops_of_ptex_get(ctx, &loops_of_ptex, coarse_poly, ptex_face_index);
		/* Ptex face corner corresponds to a poly loop with same index. */
		CustomData_copy_data(loop_data,
		                     &loop_interpolation->loop_data_storage,
		                     coarse_poly->loopstart + ptex_face_index,
		                     0,
		                     1);
		/* Interpolate remaining ptex face corners, which hits loops
		 * middle points.
		 *
		 * TODO(sergey): Re-use one of interpolation results from previous
		 * iteration.
		 */
		const float weights[2] = {0.5f, 0.5f};
		const int first_indices[2] = {
		        loops_of_ptex.first_loop - coarse_mloop,
		        (loops_of_ptex.first_loop + 1 - coarse_mloop) %
		                coarse_poly->totloop};
		const int last_indices[2] = {
		        loops_of_ptex.last_loop - coarse_mloop,
		        loops_of_ptex.first_loop - coarse_mloop};
		CustomData_interp(loop_data,
		                  &loop_interpolation->loop_data_storage,
		                  first_indices,
		                  weights, NULL,
		                  2,
		                  1);
		CustomData_interp(loop_data,
		                  &loop_interpolation->loop_data_storage,
		                  last_indices,
		                  weights, NULL,
		                  2,
		                  3);
	}
}

static void loop_interpolation_end(LoopsForInterpolation *loop_interpolation)
{
	if (loop_interpolation->loop_data_storage_allocated) {
		CustomData_free(&loop_interpolation->loop_data_storage, 4);
	}
}

static void subdiv_copy_vertex_data(
        const SubdivMeshContext *ctx,
        MVert *subdiv_vertex,
        const VerticesForInterpolation *vertex_interpolation,
        const float u, const float v)
{
	const int subdiv_vertex_index = subdiv_vertex - ctx->subdiv_mesh->mvert;
	const float weights[4] = {(1.0f - u) * (1.0f - v),
	                          u * (1.0f - v),
	                          u * v,
	                          (1.0f - u) * v};
	CustomData_interp(vertex_interpolation->vertex_data,
	                  &ctx->subdiv_mesh->vdata,
	                  vertex_interpolation->vertex_indices,
	                  weights, NULL,
	                  4,
	                  subdiv_vertex_index);
	/* TODO(sergey): Set ORIGINDEX. */
}

static void subdiv_evaluate_vertices(SubdivMeshContext *ctx,
                                     const int poly_index)
{
	Subdiv *subdiv = ctx->subdiv;
	const int resolution = ctx->settings->resolution;
	const int resolution2 = resolution * resolution;
	const float inv_resolution_1 = 1.0f / (float)(resolution - 1);
	/* Base/coarse mesh information. */
	const Mesh *coarse_mesh = ctx->coarse_mesh;
	const MPoly *coarse_polyoly = coarse_mesh->mpoly;
	const MPoly *coarse_poly = &coarse_polyoly[poly_index];
	const int num_poly_ptex_faces = mpoly_ptex_faces_count_get(coarse_poly);
	/* Hi-poly subdivided mesh. */
	Mesh *subdiv_mesh = ctx->subdiv_mesh;
	MVert *subdiv_vertert = subdiv_mesh->mvert;
	const int ptex_face_index = subdiv->face_ptex_offset[poly_index];
	/* Actual evaluation. */
	VerticesForInterpolation vertex_interpolation;
	vertex_interpolation_init(ctx, &vertex_interpolation, coarse_poly);
	MVert *subdiv_vert = &subdiv_vertert[ptex_face_index * resolution2];
	for (int ptex_of_poly_index = 0;
	     ptex_of_poly_index < num_poly_ptex_faces;
	     ptex_of_poly_index++)
	{
		vertex_interpolation_from_ptex(ctx,
		                               &vertex_interpolation,
		                               coarse_poly,
		                               ptex_of_poly_index);
		const int current_ptex_face_index =
		        ptex_face_index + ptex_of_poly_index;
		BKE_subdiv_eval_limit_patch_resolution_point_and_short_normal(
		        subdiv,
		        current_ptex_face_index,
		        resolution,
		        subdiv_vert, offsetof(MVert, co), sizeof(MVert),
		        subdiv_vert, offsetof(MVert, no), sizeof(MVert));
		for (int y = 0; y < resolution; y++) {
			const float v = y * inv_resolution_1;
			for (int x = 0; x < resolution; x++, subdiv_vert++) {
				const float u = x * inv_resolution_1;
				subdiv_copy_vertex_data(ctx,
				                        subdiv_vert,
				                        &vertex_interpolation,
				                        u, v);
			}
		}
	}
	vertex_interpolation_end(&vertex_interpolation);
}

static void subdiv_copy_edge_data(SubdivMeshContext *ctx,
	                              MEdge *subdiv_edge,
                                  const MEdge *coarse_edge)
{
	if (coarse_edge == NULL) {
		subdiv_edge->crease = 0;
		subdiv_edge->bweight = 0;
		subdiv_edge->flag = 0;
		return;
	}
	const int coarse_edge_index = coarse_edge - ctx->coarse_mesh->medge;
	const int subdiv_edge_index = subdiv_edge - ctx->subdiv_mesh->medge;
	CustomData_copy_data(&ctx->coarse_mesh->edata,
	                     &ctx->subdiv_mesh->edata,
	                     coarse_edge_index,
	                     subdiv_edge_index,
	                     1);
	if (ctx->edge_origindex != NULL) {
		ctx->edge_origindex[subdiv_edge_index] = coarse_edge_index;
	}
}

static MEdge *subdiv_create_edges_row(SubdivMeshContext *ctx,
                                      MEdge *subdiv_edge,
                                      const MEdge *coarse_edge,
                                      const int start_vertex_index,
                                      const int resolution)
{
	int vertex_index = start_vertex_index;
	for (int edge_index = 0;
	     edge_index < resolution - 1;
	     edge_index++, subdiv_edge++)
	{
		subdiv_copy_edge_data(ctx, subdiv_edge, coarse_edge);
		subdiv_edge->v1 = vertex_index;
		subdiv_edge->v2 = vertex_index + 1;
		vertex_index += 1;
	}
	return subdiv_edge;
}

static MEdge *subdiv_create_edges_column(SubdivMeshContext *ctx,
                                         MEdge *subdiv_edge,
                                         const MEdge *coarse_start_edge,
                                         const MEdge *coarse_end_edge,
                                         const int start_vertex_index,
                                         const int resolution)
{
	int vertex_index = start_vertex_index;
	for (int edge_index = 0;
	     edge_index < resolution;
	     edge_index++, subdiv_edge++)
	{
		const MEdge *coarse_edge = NULL;
		if (edge_index == 0) {
			coarse_edge = coarse_start_edge;
		}
		else if (edge_index == resolution - 1) {
			coarse_edge = coarse_end_edge;
		}
		subdiv_copy_edge_data(ctx, subdiv_edge, coarse_edge);
		subdiv_edge->v1 = vertex_index;
		subdiv_edge->v2 = vertex_index + resolution;
		vertex_index += 1;
	}
	return subdiv_edge;
}

static void subdiv_create_edges(SubdivMeshContext *ctx, int poly_index)
{
	Subdiv *subdiv = ctx->subdiv;
	const int resolution = ctx->settings->resolution;
	const int resolution2 = resolution * resolution;
	const int ptex_face_index = subdiv->face_ptex_offset[poly_index];
	const int num_edges_per_ptex = num_edges_per_ptex_get(resolution);
	const int start_edge_index = ptex_face_index * num_edges_per_ptex;
	/* Base/coarse mesh information. */
	const Mesh *coarse_mesh = ctx->coarse_mesh;
	const MPoly *coarse_polyoly = coarse_mesh->mpoly;
	const MPoly *coarse_poly = &coarse_polyoly[poly_index];
	const int num_poly_ptex_faces = mpoly_ptex_faces_count_get(coarse_poly);
	/* Hi-poly subdivided mesh. */
	Mesh *subdiv_mesh = ctx->subdiv_mesh;
	MEdge *subdiv_medge = subdiv_mesh->medge;
	MEdge *subdiv_edge = &subdiv_medge[start_edge_index];
	const int start_poly_vertex_index = ptex_face_index * resolution2;
	/* Consider a subdivision of base face at level 1:
	 *
	 *  y
	 *  ^
	 *  |   (6) ---- (7) ---- (8)
	 *  |    |        |        |
	 *  |   (3) ---- (4) ---- (5)
	 *  |    |        |        |
	 *  |   (0) ---- (1) ---- (2)
	 *  o---------------------------> x
	 *
	 * This is illustrate which parts of geometry is created by code below.
	 */
	for (int i = 0; i < num_poly_ptex_faces; i++) {
		const int start_ptex_face_vertex_index =
		        start_poly_vertex_index + i * resolution2;
		EdgesOfPtex edges_of_ptex;
		edges_of_ptex_get(ctx, &edges_of_ptex, coarse_poly, i);
		/* Create bottom row of edges (0-1, 1-2). */
		subdiv_edge = subdiv_create_edges_row(ctx,
		                                      subdiv_edge,
		                                      edges_of_ptex.first_edge,
	                                          start_ptex_face_vertex_index,
		                                      resolution);
		/* Create remaining edges. */
		for (int row = 0; row < resolution - 1; row++) {
			const int start_row_vertex_index =
			    start_ptex_face_vertex_index + row * resolution;
			/* Create vertical columns.
			 *
			 * At first iteration it will be edges (0-3. 1-4, 2-5), then it
			 * will be (3-6, 4-7, 5-8) and so on.
			 */
			subdiv_edge = subdiv_create_edges_column(
			        ctx,
			        subdiv_edge,
			        edges_of_ptex.last_edge,
			        edges_of_ptex.second_edge,
			        start_row_vertex_index,
			        resolution);
			/* Create horizontal edge row.
			 *
			 * At first iteration it will be edges (3-4, 4-5), then it will be
			 * (6-7, 7-8) and so on.
			 */
			subdiv_edge = subdiv_create_edges_row(
			        ctx,
			        subdiv_edge,
			        (row == resolution - 2) ? edges_of_ptex.third_edge
			                                : NULL,
			        start_row_vertex_index + resolution,
			        resolution);
		}
	}
}

static void subdiv_copy_loop_data(
        const SubdivMeshContext *ctx,
        MLoop *subdiv_loop,
        const LoopsForInterpolation *loop_interpolation,
        const float u, const float v)
{
	const int subdiv_loop_index = subdiv_loop - ctx->subdiv_mesh->mloop;
	const float weights[4] = {(1.0f - u) * (1.0f - v),
	                          u * (1.0f - v),
	                          u * v,
	                          (1.0f - u) * v};
	CustomData_interp(loop_interpolation->loop_data,
	                  &ctx->subdiv_mesh->ldata,
	                  loop_interpolation->loop_indices,
	                  weights, NULL,
	                  4,
	                  subdiv_loop_index);
	/* TODO(sergey): Set ORIGINDEX. */
}

static void subdiv_eval_uv_layer(SubdivMeshContext *ctx,
                                 MLoop *subdiv_loop,
                                 const int ptex_face_index,
                                 const float u, const float v,
                                 const float inv_resolution_1)
{
	if (ctx->num_uv_layers == 0) {
		return;
	}
	Subdiv *subdiv = ctx->subdiv;
	const int mloop_index = subdiv_loop - ctx->subdiv_mesh->mloop;
	const float du = inv_resolution_1;
	const float dv = inv_resolution_1;
	for (int layer_index = 0; layer_index < ctx->num_uv_layers; layer_index++) {
		MLoopUV *subdiv_loopuv = &ctx->uv_layers[layer_index][mloop_index];
		BKE_subdiv_eval_face_varying(subdiv,
		                             ptex_face_index,
		                             u, v,
		                             subdiv_loopuv[0].uv);
		BKE_subdiv_eval_face_varying(subdiv,
		                             ptex_face_index,
		                             u + du, v,
		                             subdiv_loopuv[1].uv);
		BKE_subdiv_eval_face_varying(subdiv,
		                             ptex_face_index,
		                             u + du, v + dv,
		                             subdiv_loopuv[2].uv);
		BKE_subdiv_eval_face_varying(subdiv,
		                             ptex_face_index,
		                             u, v + dv,
		                             subdiv_loopuv[3].uv);
		/* TODO(sergey): Currently evaluator only has single UV layer, so can
		 * not evaluate more than that. Need to be solved.
		 */
		break;
	}
}

static void subdiv_create_loops(SubdivMeshContext *ctx, int poly_index)
{
	Subdiv *subdiv = ctx->subdiv;
	const int resolution = ctx->settings->resolution;
	const int resolution2 = resolution * resolution;
	const float inv_resolution_1 = 1.0f / (float)(resolution - 1);
	const int ptex_face_index = subdiv->face_ptex_offset[poly_index];
	const int num_edges_per_ptex = num_edges_per_ptex_get(resolution);
	const int start_edge_index = ptex_face_index * num_edges_per_ptex;
	const int num_polys_per_ptex = num_polys_per_ptex_get(resolution);
	const int start_poly_index = ptex_face_index * num_polys_per_ptex;
	const int start_loop_index = 4 * start_poly_index;
	const int start_vert_index = ptex_face_index * resolution2;
	const float du = inv_resolution_1;
	const float dv = inv_resolution_1;
	/* Base/coarse mesh information. */
	const Mesh *coarse_mesh = ctx->coarse_mesh;
	const MPoly *coarse_polyoly = coarse_mesh->mpoly;
	const MPoly *coarse_poly = &coarse_polyoly[poly_index];
	const int num_poly_ptex_faces = mpoly_ptex_faces_count_get(coarse_poly);
	/* Hi-poly subdivided mesh. */
	Mesh *subdiv_mesh = ctx->subdiv_mesh;
	MLoop *subdiv_loopoop = subdiv_mesh->mloop;
	MLoop *subdiv_loop = &subdiv_loopoop[start_loop_index];
	LoopsForInterpolation loop_interpolation;
	loop_interpolation_init(ctx, &loop_interpolation, coarse_poly);
	for (int ptex_of_poly_index = 0;
	     ptex_of_poly_index < num_poly_ptex_faces;
	     ptex_of_poly_index++)
	{
		loop_interpolation_from_ptex(ctx,
		                             &loop_interpolation,
		                             coarse_poly,
		                             ptex_of_poly_index);
		const int current_ptex_face_index =
		        ptex_face_index + ptex_of_poly_index;
		for (int y = 0; y < resolution - 1; y++) {
			const float v = y * inv_resolution_1;
			for (int x = 0; x < resolution - 1; x++, subdiv_loop += 4) {
				const float u = x * inv_resolution_1;
				/* Vertex indicies ordered counter-clockwise. */
				const int v0 = start_vert_index +
				               (ptex_of_poly_index * resolution2) +
				               (y * resolution + x);
				const int v1 = v0 + 1;
				const int v2 = v0 + resolution + 1;
				const int v3 = v0 + resolution;
				/* Edge indicies ordered counter-clockwise. */
				const int e0 = start_edge_index +
				               (ptex_of_poly_index * num_edges_per_ptex) +
				               (y * (2 * resolution - 1) + x);
				const int e1 = e0 + resolution;
				const int e2 = e0 + (2 * resolution - 1);
				const int e3 = e0 + resolution - 1;
				/* Initialize 4 loops of corresponding hi-poly poly. */
				/* TODO(sergey): For ptex boundaries we should use loops from
				 * coarse mesh.
				 */
				subdiv_copy_loop_data(ctx,
				                      &subdiv_loop[0],
				                      &loop_interpolation,
				                      u, v);
				subdiv_loop[0].v = v0;
				subdiv_loop[0].e = e0;
				subdiv_copy_loop_data(ctx,
				                      &subdiv_loop[1],
				                      &loop_interpolation,
				                      u + du, v);
				subdiv_loop[1].v = v1;
				subdiv_loop[1].e = e1;
				subdiv_copy_loop_data(ctx,
				                      &subdiv_loop[2],
				                      &loop_interpolation,
				                      u + du, v + dv);
				subdiv_loop[2].v = v2;
				subdiv_loop[2].e = e2;
				subdiv_copy_loop_data(ctx,
				                      &subdiv_loop[3],
				                      &loop_interpolation,
				                      u, v + dv);
				subdiv_loop[3].v = v3;
				subdiv_loop[3].e = e3;
				/* Interpolate UV layers using OpenSubdiv. */
				subdiv_eval_uv_layer(ctx,
				                     subdiv_loop,
				                     current_ptex_face_index,
				                     u, v,
				                     inv_resolution_1);
			}
		}
	}
	loop_interpolation_end(&loop_interpolation);
}

static void subdiv_copy_poly_data(const SubdivMeshContext *ctx,
                                  MPoly *subdiv_poly,
                                  const MPoly *coarse_poly)
{
	const int coarse_poly_index = coarse_poly - ctx->coarse_mesh->mpoly;
	const int subdiv_poly_index = subdiv_poly - ctx->subdiv_mesh->mpoly;
	CustomData_copy_data(&ctx->coarse_mesh->pdata,
	                     &ctx->subdiv_mesh->pdata,
	                     coarse_poly_index,
	                     subdiv_poly_index,
	                     1);
	if (ctx->poly_origindex != NULL) {
		ctx->poly_origindex[subdiv_poly_index] = coarse_poly_index;
	}
}

static void subdiv_create_polys(SubdivMeshContext *ctx, int poly_index)
{
	Subdiv *subdiv = ctx->subdiv;
	const int resolution = ctx->settings->resolution;
	const int ptex_face_index = subdiv->face_ptex_offset[poly_index];
	const int num_polys_per_ptex = num_polys_per_ptex_get(resolution);
	const int num_loops_per_ptex = 4 * num_polys_per_ptex;
	const int start_poly_index = ptex_face_index * num_polys_per_ptex;
	const int start_loop_index = 4 * start_poly_index;
	/* Base/coarse mesh information. */
	const Mesh *coarse_mesh = ctx->coarse_mesh;
	const MPoly *coarse_polyoly = coarse_mesh->mpoly;
	const MPoly *coarse_poly = &coarse_polyoly[poly_index];
	const int num_poly_ptex_faces = mpoly_ptex_faces_count_get(coarse_poly);
	/* Hi-poly subdivided mesh. */
	Mesh *subdiv_mesh = ctx->subdiv_mesh;
	MPoly *subdiv_mpoly = subdiv_mesh->mpoly;
	MPoly *subdiv_mp = &subdiv_mpoly[start_poly_index];
	for (int ptex_of_poly_index = 0;
	     ptex_of_poly_index < num_poly_ptex_faces;
	     ptex_of_poly_index++)
	{
		for (int subdiv_poly_index = 0;
		     subdiv_poly_index < num_polys_per_ptex;
		     subdiv_poly_index++, subdiv_mp++)
		{
			subdiv_copy_poly_data(ctx, subdiv_mp, coarse_poly);
			subdiv_mp->loopstart = start_loop_index +
			                       (ptex_of_poly_index * num_loops_per_ptex) +
			                       (subdiv_poly_index * 4);
			subdiv_mp->totloop = 4;
		}
	}
}

static void subdiv_eval_task(
        void *__restrict userdata,
        const int poly_index,
        const ParallelRangeTLS *__restrict UNUSED(tls))
{
	SubdivMeshContext *data = userdata;
	/* Evaluate hi-poly vertex coordinates and normals. */
	subdiv_evaluate_vertices(data, poly_index);
	/* Create mesh geometry for the given base poly index. */
	subdiv_create_edges(data, poly_index);
	subdiv_create_loops(data, poly_index);
	subdiv_create_polys(data, poly_index);
}

static void cache_uv_layers(SubdivMeshContext *ctx)
{
	Mesh *subdiv_mesh = ctx->subdiv_mesh;
	ctx->num_uv_layers =
	        CustomData_number_of_layers(&subdiv_mesh->ldata, CD_MLOOPUV);
	for (int layer_index = 0; layer_index < ctx->num_uv_layers; ++layer_index) {
		ctx->uv_layers[layer_index] = CustomData_get_layer_n(
		        &subdiv_mesh->ldata, CD_MLOOPUV, layer_index);
	}
}

static void cache_custom_data_layers(SubdivMeshContext *ctx)
{
	Mesh *subdiv_mesh = ctx->subdiv_mesh;
	/* Pointers to original indices layers. */
	ctx->vert_origindex = CustomData_get_layer(
	        &subdiv_mesh->vdata, CD_ORIGINDEX);
	ctx->edge_origindex = CustomData_get_layer(
	        &subdiv_mesh->edata, CD_ORIGINDEX);
	ctx->loop_origindex = CustomData_get_layer(
	        &subdiv_mesh->ldata, CD_ORIGINDEX);
	ctx->poly_origindex = CustomData_get_layer(
	        &subdiv_mesh->pdata, CD_ORIGINDEX);
	/* UV layers interpolation. */
	cache_uv_layers(ctx);
}

Mesh *BKE_subdiv_to_mesh(
        Subdiv *subdiv,
        const SubdivToMeshSettings *settings,
        const Mesh *coarse_mesh)
{
	/* Make sure evaluator is up to date with possible new topology, and that
	 * is is refined for the new positions of coarse vertices.
	 */
	BKE_subdiv_eval_update_from_mesh(subdiv, coarse_mesh);
	const int resolution = settings->resolution;
	const int resolution2 = resolution * resolution;
	const int num_result_verts = subdiv->num_ptex_faces * resolution2;
	const int num_result_edges =
			subdiv->num_ptex_faces * num_edges_per_ptex_get(resolution);
	const int num_result_polys =
			subdiv->num_ptex_faces * num_polys_per_ptex_get(resolution);
	const int num_result_loops = 4 * num_result_polys;
	/* Create mesh and its arrays. */
	Mesh *result = BKE_mesh_new_nomain_from_template(
	        coarse_mesh,
	        num_result_verts,
	        num_result_edges,
	        0,
	        num_result_loops,
	        num_result_polys);
	/* Evaluate subdivisions of base faces in threads. */
	SubdivMeshContext ctx;
	ctx.coarse_mesh = coarse_mesh;
	ctx.subdiv = subdiv;
	ctx.subdiv_mesh = result;
	ctx.settings = settings;
	cache_custom_data_layers(&ctx);
	/* Multi-threaded evaluation. */
	ParallelRangeSettings parallel_range_settings;
	BLI_parallel_range_settings_defaults(&parallel_range_settings);
	BLI_task_parallel_range(0, coarse_mesh->totpoly,
	                        &ctx,
	                        subdiv_eval_task,
	                        &parallel_range_settings);
	return result;
}