Welcome to mirror list, hosted at ThFree Co, Russian Federation.

BLI_array.hh « blenlib « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 352bf379d4dd7fd717dbe34982b2aa04760ce5e0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
/*
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 */

#pragma once

/** \file
 * \ingroup bli
 *
 * A `blender::Array<T>` is a container for a fixed size array the size of which is NOT known at
 * compile time.
 *
 * If the size is known at compile time, `std::array<T, N>` should be used instead.
 *
 * blender::Array should usually be used instead of blender::Vector whenever the number of elements
 * is known at construction time. Note however, that blender::Array will default construct all
 * elements when initialized with the size-constructor. For trivial types, this does nothing. In
 * all other cases, this adds overhead.
 *
 * A main benefit of using Array over Vector is that it expresses the intent of the developer
 * better. It indicates that the size of the data structure is not expected to change. Furthermore,
 * you can be more certain that an array does not overallocate.
 *
 * blender::Array supports small object optimization to improve performance when the size turns out
 * to be small at run-time.
 */

#include "BLI_allocator.hh"
#include "BLI_index_range.hh"
#include "BLI_memory_utils.hh"
#include "BLI_span.hh"
#include "BLI_utildefines.h"

namespace blender {

template<
    /**
     * The type of the values stored in the array.
     */
    typename T,
    /**
     * The number of values that can be stored in the array, without doing a heap allocation.
     */
    int64_t InlineBufferCapacity = default_inline_buffer_capacity(sizeof(T)),
    /**
     * The allocator used by this array. Should rarely be changed, except when you don't want that
     * MEM_* functions are used internally.
     */
    typename Allocator = GuardedAllocator>
class Array {
 public:
  using value_type = T;
  using pointer = T *;
  using const_pointer = const T *;
  using reference = T &;
  using const_reference = const T &;
  using iterator = T *;
  using const_iterator = const T *;
  using size_type = int64_t;

 private:
  /** The beginning of the array. It might point into the inline buffer. */
  T *data_;

  /** Number of elements in the array. */
  int64_t size_;

  /** Used for allocations when the inline buffer is too small. */
  Allocator allocator_;

  /** A placeholder buffer that will remain uninitialized until it is used. */
  TypedBuffer<T, InlineBufferCapacity> inline_buffer_;

 public:
  /**
   * By default an empty array is created.
   */
  Array(Allocator allocator = {}) noexcept : allocator_(allocator)
  {
    data_ = inline_buffer_;
    size_ = 0;
  }

  Array(NoExceptConstructor, Allocator allocator = {}) noexcept : Array(allocator)
  {
  }

  /**
   * Create a new array that contains copies of all values.
   */
  template<typename U, typename std::enable_if_t<std::is_convertible_v<U, T>> * = nullptr>
  Array(Span<U> values, Allocator allocator = {}) : Array(NoExceptConstructor(), allocator)
  {
    const int64_t size = values.size();
    data_ = this->get_buffer_for_size(size);
    uninitialized_convert_n<U, T>(values.data(), size, data_);
    size_ = size;
  }

  /**
   * Create a new array that contains copies of all values.
   */
  template<typename U, typename std::enable_if_t<std::is_convertible_v<U, T>> * = nullptr>
  Array(const std::initializer_list<U> &values, Allocator allocator = {})
      : Array(Span<U>(values), allocator)
  {
  }

  Array(const std::initializer_list<T> &values, Allocator allocator = {})
      : Array(Span<T>(values), allocator)
  {
  }

  /**
   * Create a new array with the given size. All values will be default constructed. For trivial
   * types like int, default construction does nothing.
   *
   * We might want another version of this in the future, that does not do default construction
   * even for non-trivial types. This should not be the default though, because one can easily mess
   * up when dealing with uninitialized memory.
   */
  explicit Array(int64_t size, Allocator allocator = {}) : Array(NoExceptConstructor(), allocator)
  {
    data_ = this->get_buffer_for_size(size);
    default_construct_n(data_, size);
    size_ = size;
  }

  /**
   * Create a new array with the given size. All values will be initialized by copying the given
   * default.
   */
  Array(int64_t size, const T &value, Allocator allocator = {})
      : Array(NoExceptConstructor(), allocator)
  {
    BLI_assert(size >= 0);
    data_ = this->get_buffer_for_size(size);
    uninitialized_fill_n(data_, size, value);
    size_ = size;
  }

  /**
   * Create a new array with uninitialized elements. The caller is responsible for constructing the
   * elements. Moving, copying or destructing an Array with uninitialized elements invokes
   * undefined behavior.
   *
   * This should be used very rarely. Note, that the normal size-constructor also does not
   * initialize the elements when T is trivially constructible. Therefore, it only makes sense to
   * use this with non trivially constructible types.
   *
   * Usage:
   *  Array<std::string> my_strings(10, NoInitialization());
   */
  Array(int64_t size, NoInitialization, Allocator allocator = {})
      : Array(NoExceptConstructor(), allocator)
  {
    BLI_assert(size >= 0);
    data_ = this->get_buffer_for_size(size);
    size_ = size;
  }

  Array(const Array &other) : Array(other.as_span(), other.allocator_)
  {
  }

  Array(Array &&other) noexcept(std::is_nothrow_move_constructible_v<T>)
      : Array(NoExceptConstructor(), other.allocator_)
  {
    if (other.data_ == other.inline_buffer_) {
      uninitialized_relocate_n(other.data_, other.size_, data_);
    }
    else {
      data_ = other.data_;
    }
    size_ = other.size_;

    other.data_ = other.inline_buffer_;
    other.size_ = 0;
  }

  ~Array()
  {
    destruct_n(data_, size_);
    this->deallocate_if_not_inline(data_);
  }

  Array &operator=(const Array &other)
  {
    return copy_assign_container(*this, other);
  }

  Array &operator=(Array &&other) noexcept(std::is_nothrow_move_constructible_v<T>)
  {
    return move_assign_container(*this, std::move(other));
  }

  T &operator[](int64_t index)
  {
    BLI_assert(index >= 0);
    BLI_assert(index < size_);
    return data_[index];
  }

  const T &operator[](int64_t index) const
  {
    BLI_assert(index >= 0);
    BLI_assert(index < size_);
    return data_[index];
  }

  operator Span<T>() const
  {
    return Span<T>(data_, size_);
  }

  operator MutableSpan<T>()
  {
    return MutableSpan<T>(data_, size_);
  }

  template<typename U, typename std::enable_if_t<is_span_convertible_pointer_v<T, U>> * = nullptr>
  operator Span<U>() const
  {
    return Span<U>(data_, size_);
  }

  template<typename U, typename std::enable_if_t<is_span_convertible_pointer_v<T, U>> * = nullptr>
  operator MutableSpan<U>()
  {
    return MutableSpan<U>(data_, size_);
  }

  Span<T> as_span() const
  {
    return *this;
  }

  MutableSpan<T> as_mutable_span()
  {
    return *this;
  }

  /**
   * Returns the number of elements in the array.
   */
  int64_t size() const
  {
    return size_;
  }

  /**
   * Returns true when the number of elements in the array is zero.
   */
  bool is_empty() const
  {
    return size_ == 0;
  }

  /**
   * Copies the given value to every element in the array.
   */
  void fill(const T &value) const
  {
    initialized_fill_n(data_, size_, value);
  }

  /**
   * Return a reference to the first element in the array.
   * This invokes undefined behavior when the array is empty.
   */
  const T &first() const
  {
    BLI_assert(size_ > 0);
    return *data_;
  }
  T &first()
  {
    BLI_assert(size_ > 0);
    return *data_;
  }

  /**
   * Return a reference to the last element in the array.
   * This invokes undefined behavior when the array is empty.
   */
  const T &last() const
  {
    BLI_assert(size_ > 0);
    return *(data_ + size_ - 1);
  }
  T &last()
  {
    BLI_assert(size_ > 0);
    return *(data_ + size_ - 1);
  }

  /**
   * Get a pointer to the beginning of the array.
   */
  const T *data() const
  {
    return data_;
  }
  T *data()
  {
    return data_;
  }

  const T *begin() const
  {
    return data_;
  }
  const T *end() const
  {
    return data_ + size_;
  }

  T *begin()
  {
    return data_;
  }
  T *end()
  {
    return data_ + size_;
  }

  std::reverse_iterator<T *> rbegin()
  {
    return std::reverse_iterator<T *>(this->end());
  }
  std::reverse_iterator<T *> rend()
  {
    return std::reverse_iterator<T *>(this->begin());
  }

  std::reverse_iterator<const T *> rbegin() const
  {
    return std::reverse_iterator<T *>(this->end());
  }
  std::reverse_iterator<const T *> rend() const
  {
    return std::reverse_iterator<T *>(this->begin());
  }

  /**
   * Get an index range containing all valid indices for this array.
   */
  IndexRange index_range() const
  {
    return IndexRange(size_);
  }

  /**
   * Sets the size to zero. This should only be used when you have manually destructed all elements
   * in the array beforehand. Use with care.
   */
  void clear_without_destruct()
  {
    size_ = 0;
  }

  /**
   * Access the allocator used by this array.
   */
  Allocator &allocator()
  {
    return allocator_;
  }
  const Allocator &allocator() const
  {
    return allocator_;
  }

  /**
   * Get the value of the InlineBufferCapacity template argument. This is the number of elements
   * that can be stored without doing an allocation.
   */
  static int64_t inline_buffer_capacity()
  {
    return InlineBufferCapacity;
  }

  /**
   * Destruct values and create a new array of the given size. The values in the new array are
   * default constructed.
   */
  void reinitialize(const int64_t new_size)
  {
    BLI_assert(new_size >= 0);
    int64_t old_size = size_;

    destruct_n(data_, size_);
    size_ = 0;

    if (new_size <= old_size) {
      default_construct_n(data_, new_size);
    }
    else {
      T *new_data = this->get_buffer_for_size(new_size);
      try {
        default_construct_n(new_data, new_size);
      }
      catch (...) {
        this->deallocate_if_not_inline(new_data);
        throw;
      }
      this->deallocate_if_not_inline(data_);
      data_ = new_data;
    }

    size_ = new_size;
  }

 private:
  T *get_buffer_for_size(int64_t size)
  {
    if (size <= InlineBufferCapacity) {
      return inline_buffer_;
    }
    else {
      return this->allocate(size);
    }
  }

  T *allocate(int64_t size)
  {
    return static_cast<T *>(
        allocator_.allocate(static_cast<size_t>(size) * sizeof(T), alignof(T), AT));
  }

  void deallocate_if_not_inline(T *ptr)
  {
    if (ptr != inline_buffer_) {
      allocator_.deallocate(ptr);
    }
  }
};

/**
 * Same as a normal Array, but does not use Blender's guarded allocator. This is useful when
 * allocating memory with static storage duration.
 */
template<typename T, int64_t InlineBufferCapacity = default_inline_buffer_capacity(sizeof(T))>
using RawArray = Array<T, InlineBufferCapacity, RawAllocator>;

}  // namespace blender