Welcome to mirror list, hosted at ThFree Co, Russian Federation.

BLI_index_range.hh « blenlib « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: c259282ca644b3f54613d4c399d6d689ef1f8525 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
/* SPDX-License-Identifier: GPL-2.0-or-later */

#pragma once

/** \file
 * \ingroup bli
 *
 * A `blender::IndexRange` wraps an interval of non-negative integers. It can be used to reference
 * consecutive elements in an array. Furthermore, it can make for loops more convenient and less
 * error prone, especially when using nested loops.
 *
 * I'd argue that the second loop is more readable and less error prone than the first one. That is
 * not necessarily always the case, but often it is.
 *
 *  for (int64_t i = 0; i < 10; i++) {
 *    for (int64_t j = 0; j < 20; j++) {
 *       for (int64_t k = 0; k < 30; k++) {
 *
 *  for (int64_t i : IndexRange(10)) {
 *    for (int64_t j : IndexRange(20)) {
 *      for (int64_t k : IndexRange(30)) {
 *
 * Some containers like blender::Vector have an index_range() method. This will return the
 * IndexRange that contains all indices that can be used to access the container. This is
 * particularly useful when you want to iterate over the indices and the elements (much like
 * Python's enumerate(), just worse). Again, I think the second example here is better:
 *
 *  for (int64_t i = 0; i < my_vector_with_a_long_name.size(); i++) {
 *    do_something(i, my_vector_with_a_long_name[i]);
 *
 *  for (int64_t i : my_vector_with_a_long_name.index_range()) {
 *    do_something(i, my_vector_with_a_long_name[i]);
 *
 * Ideally this could be could be even closer to Python's enumerate(). We might get that in the
 * future with newer C++ versions.
 *
 * One other important feature is the as_span method. This method returns a Span<int64_t>
 * that contains the interval as individual numbers.
 */

#include <algorithm>
#include <atomic>
#include <cmath>
#include <iostream>

#include "BLI_utildefines.h"

namespace blender {

template<typename T> class Span;

class IndexRange {
 private:
  int64_t start_ = 0;
  int64_t size_ = 0;

 public:
  constexpr IndexRange() = default;

  constexpr explicit IndexRange(int64_t size) : start_(0), size_(size)
  {
    BLI_assert(size >= 0);
  }

  constexpr IndexRange(int64_t start, int64_t size) : start_(start), size_(size)
  {
    BLI_assert(start >= 0);
    BLI_assert(size >= 0);
  }

  class Iterator {
   public:
    using iterator_category = std::forward_iterator_tag;
    using value_type = int64_t;
    using pointer = const int64_t *;
    using reference = const int64_t &;
    using difference_type = std::ptrdiff_t;

   private:
    int64_t current_;

   public:
    constexpr explicit Iterator(int64_t current) : current_(current)
    {
    }

    constexpr Iterator &operator++()
    {
      current_++;
      return *this;
    }

    constexpr Iterator operator++(int)
    {
      Iterator copied_iterator = *this;
      ++(*this);
      return copied_iterator;
    }

    constexpr friend bool operator!=(const Iterator &a, const Iterator &b)
    {
      return a.current_ != b.current_;
    }

    constexpr friend bool operator==(const Iterator &a, const Iterator &b)
    {
      return a.current_ == b.current_;
    }

    constexpr int64_t operator*() const
    {
      return current_;
    }
  };

  constexpr Iterator begin() const
  {
    return Iterator(start_);
  }

  constexpr Iterator end() const
  {
    return Iterator(start_ + size_);
  }

  /**
   * Access an element in the range.
   */
  constexpr int64_t operator[](int64_t index) const
  {
    BLI_assert(index >= 0);
    BLI_assert(index < this->size());
    return start_ + index;
  }

  /**
   * Two ranges compare equal when they contain the same numbers.
   */
  constexpr friend bool operator==(IndexRange a, IndexRange b)
  {
    return (a.size_ == b.size_) && (a.start_ == b.start_ || a.size_ == 0);
  }
  constexpr friend bool operator!=(IndexRange a, IndexRange b)
  {
    return !(a == b);
  }

  /**
   * Get the amount of numbers in the range.
   */
  constexpr int64_t size() const
  {
    return size_;
  }

  /**
   * Returns true if the size is zero.
   */
  constexpr bool is_empty() const
  {
    return size_ == 0;
  }

  /**
   * Create a new range starting at the end of the current one.
   */
  constexpr IndexRange after(int64_t n) const
  {
    BLI_assert(n >= 0);
    return IndexRange(start_ + size_, n);
  }

  /**
   * Create a new range that ends at the start of the current one.
   */
  constexpr IndexRange before(int64_t n) const
  {
    BLI_assert(n >= 0);
    return IndexRange(start_ - n, n);
  }

  /**
   * Get the first element in the range.
   * Asserts when the range is empty.
   */
  constexpr int64_t first() const
  {
    BLI_assert(this->size() > 0);
    return start_;
  }

  /**
   * Get the nth last element in the range.
   * Asserts when the range is empty or when n is negative.
   */
  constexpr int64_t last(const int64_t n = 0) const
  {
    BLI_assert(n >= 0);
    BLI_assert(n < size_);
    BLI_assert(this->size() > 0);
    return start_ + size_ - 1 - n;
  }

  /**
   * Get the element one before the beginning. The returned value is undefined when the range is
   * empty, and the range must start after zero already.
   */
  constexpr int64_t one_before_start() const
  {
    BLI_assert(start_ > 0);
    return start_ - 1;
  }

  /**
   * Get the element one after the end. The returned value is undefined when the range is empty.
   */
  constexpr int64_t one_after_last() const
  {
    return start_ + size_;
  }

  /**
   * Get the first element in the range. The returned value is undefined when the range is empty.
   */
  constexpr int64_t start() const
  {
    return start_;
  }

  /**
   * Returns true when the range contains a certain number, otherwise false.
   */
  constexpr bool contains(int64_t value) const
  {
    return value >= start_ && value < start_ + size_;
  }

  /**
   * Returns a new range, that contains a sub-interval of the current one.
   */
  constexpr IndexRange slice(int64_t start, int64_t size) const
  {
    BLI_assert(start >= 0);
    BLI_assert(size >= 0);
    int64_t new_start = start_ + start;
    BLI_assert(new_start + size <= start_ + size_ || size == 0);
    return IndexRange(new_start, size);
  }
  constexpr IndexRange slice(IndexRange range) const
  {
    return this->slice(range.start(), range.size());
  }

  /**
   * Returns a new IndexRange that contains the intersection of the current one with the given
   * range. Returns empty range if there are no overlapping indices. The returned range is always
   * a valid slice of this range.
   */
  constexpr IndexRange intersect(IndexRange other) const
  {
    const int64_t old_end = start_ + size_;
    const int64_t new_start = std::min(old_end, std::max(start_, other.start_));
    const int64_t new_end = std::max(new_start, std::min(old_end, other.start_ + other.size_));
    return IndexRange(new_start, new_end - new_start);
  }

  /**
   * Returns a new IndexRange with n elements removed from the beginning of the range.
   * This invokes undefined behavior when n is negative.
   */
  constexpr IndexRange drop_front(int64_t n) const
  {
    BLI_assert(n >= 0);
    const int64_t new_size = std::max<int64_t>(0, size_ - n);
    return IndexRange(start_ + n, new_size);
  }

  /**
   * Returns a new IndexRange with n elements removed from the end of the range.
   * This invokes undefined behavior when n is negative.
   */
  constexpr IndexRange drop_back(int64_t n) const
  {
    BLI_assert(n >= 0);
    const int64_t new_size = std::max<int64_t>(0, size_ - n);
    return IndexRange(start_, new_size);
  }

  /**
   * Returns a new IndexRange that only contains the first n elements. This invokes undefined
   * behavior when n is negative.
   */
  constexpr IndexRange take_front(int64_t n) const
  {
    BLI_assert(n >= 0);
    const int64_t new_size = std::min<int64_t>(size_, n);
    return IndexRange(start_, new_size);
  }

  /**
   * Returns a new IndexRange that only contains the last n elements. This invokes undefined
   * behavior when n is negative.
   */
  constexpr IndexRange take_back(int64_t n) const
  {
    BLI_assert(n >= 0);
    const int64_t new_size = std::min<int64_t>(size_, n);
    return IndexRange(start_ + size_ - new_size, new_size);
  }

  /**
   * Move the range forward or backward within the larger array. The amount may be negative,
   * but its absolute value cannot be greater than the existing start of the range.
   */
  constexpr IndexRange shift(int64_t n) const
  {
    return IndexRange(start_ + n, size_);
  }

  /**
   * Get read-only access to a memory buffer that contains the range as actual numbers.
   */
  Span<int64_t> as_span() const;

  friend std::ostream &operator<<(std::ostream &stream, IndexRange range)
  {
    stream << "[" << range.start() << ", " << range.one_after_last() << ")";
    return stream;
  }

 private:
  static std::atomic<int64_t> s_current_array_size;
  static std::atomic<int64_t *> s_current_array;

  Span<int64_t> as_span_internal() const;
};

struct AlignedIndexRanges {
  IndexRange prefix;
  IndexRange aligned;
  IndexRange suffix;
};

/**
 * Split a range into three parts so that the boundaries of the middle part are aligned to some
 * power of two.
 *
 * This can be used when an algorithm can be optimized on aligned indices/memory. The algorithm
 * then needs a slow path for the beginning and end, and a fast path for the aligned elements.
 */
AlignedIndexRanges split_index_range_by_alignment(const IndexRange range, const int64_t alignment);

}  // namespace blender