Welcome to mirror list, hosted at ThFree Co, Russian Federation.

BLI_math_base.h « blenlib « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: c0c4594ddc03a4c70ced23788431a09d1e7589d5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
/* SPDX-License-Identifier: GPL-2.0-or-later
 * Copyright 2001-2002 NaN Holding BV. All rights reserved. */

#pragma once

/** \file
 * \ingroup bli
 */

#if defined(_MSC_VER) && !defined(_USE_MATH_DEFINES)
#  define _USE_MATH_DEFINES
#endif

#include "BLI_assert.h"
#include "BLI_math_inline.h"
#include "BLI_sys_types.h"
#include <math.h>

#ifndef M_PI
#  define M_PI 3.14159265358979323846 /* pi */
#endif
#ifndef M_PI_2
#  define M_PI_2 1.57079632679489661923 /* pi/2 */
#endif
#ifndef M_PI_4
#  define M_PI_4 0.78539816339744830962 /* pi/4 */
#endif
#ifndef M_SQRT2
#  define M_SQRT2 1.41421356237309504880 /* sqrt(2) */
#endif
#ifndef M_SQRT1_2
#  define M_SQRT1_2 0.70710678118654752440 /* 1/sqrt(2) */
#endif
#ifndef M_SQRT3
#  define M_SQRT3 1.73205080756887729352 /* sqrt(3) */
#endif
#ifndef M_SQRT1_3
#  define M_SQRT1_3 0.57735026918962576450 /* 1/sqrt(3) */
#endif
#ifndef M_1_PI
#  define M_1_PI 0.318309886183790671538 /* 1/pi */
#endif
#ifndef M_E
#  define M_E 2.7182818284590452354 /* e */
#endif
#ifndef M_LOG2E
#  define M_LOG2E 1.4426950408889634074 /* log_2 e */
#endif
#ifndef M_LOG10E
#  define M_LOG10E 0.43429448190325182765 /* log_10 e */
#endif
#ifndef M_LN2
#  define M_LN2 0.69314718055994530942 /* log_e 2 */
#endif
#ifndef M_LN10
#  define M_LN10 2.30258509299404568402 /* log_e 10 */
#endif

#if defined(__GNUC__)
#  define NAN_FLT __builtin_nanf("")
#else /* evil quiet NaN definition */
static const int NAN_INT = 0x7FC00000;
#  define NAN_FLT (*((float *)(&NAN_INT)))
#endif

#if BLI_MATH_DO_INLINE
#  include "intern/math_base_inline.c"
#endif

#ifdef BLI_MATH_GCC_WARN_PRAGMA
#  pragma GCC diagnostic push
#  pragma GCC diagnostic ignored "-Wredundant-decls"
#endif

#ifdef __cplusplus
extern "C" {
#endif

/******************************* Float ******************************/

/* `powf` is really slow for raising to integer powers. */

MINLINE float pow2f(float x);
MINLINE float pow3f(float x);
MINLINE float pow4f(float x);
MINLINE float pow7f(float x);

MINLINE float sqrt3f(float f);
MINLINE double sqrt3d(double d);

MINLINE float sqrtf_signed(float f);

MINLINE float saacosf(float f);
MINLINE float saasinf(float f);
MINLINE float sasqrtf(float f);
MINLINE float saacos(float fac);
MINLINE float saasin(float fac);
MINLINE float sasqrt(float fac);

MINLINE float interpf(float a, float b, float t);
MINLINE double interpd(double a, double b, double t);

MINLINE float ratiof(float min, float max, float pos);
MINLINE double ratiod(double min, double max, double pos);

/**
 * Map a normalized value, i.e. from interval [0, 1] to interval [a, b].
 */
MINLINE float scalenorm(float a, float b, float x);
/**
 * Map a normalized value, i.e. from interval [0, 1] to interval [a, b].
 */
MINLINE double scalenormd(double a, double b, double x);

/* NOTE: Compilers will upcast all types smaller than int to int when performing arithmetic
 * operation. */

MINLINE int square_s(short a);
MINLINE int square_uchar(unsigned char a);
MINLINE int cube_s(short a);
MINLINE int cube_uchar(unsigned char a);

MINLINE int square_i(int a);
MINLINE unsigned int square_uint(unsigned int a);
MINLINE float square_f(float a);
MINLINE double square_d(double a);

MINLINE int cube_i(int a);
MINLINE unsigned int cube_uint(unsigned int a);
MINLINE float cube_f(float a);
MINLINE double cube_d(double a);

MINLINE float min_ff(float a, float b);
MINLINE float max_ff(float a, float b);
MINLINE float min_fff(float a, float b, float c);
MINLINE float max_fff(float a, float b, float c);
MINLINE float min_ffff(float a, float b, float c, float d);
MINLINE float max_ffff(float a, float b, float c, float d);

MINLINE double min_dd(double a, double b);
MINLINE double max_dd(double a, double b);

MINLINE int min_ii(int a, int b);
MINLINE int max_ii(int a, int b);
MINLINE int min_iii(int a, int b, int c);
MINLINE int max_iii(int a, int b, int c);
MINLINE int min_iiii(int a, int b, int c, int d);
MINLINE int max_iiii(int a, int b, int c, int d);

MINLINE uint min_uu(uint a, uint b);
MINLINE uint max_uu(uint a, uint b);

MINLINE size_t min_zz(size_t a, size_t b);
MINLINE size_t max_zz(size_t a, size_t b);

MINLINE char min_cc(char a, char b);
MINLINE char max_cc(char a, char b);

MINLINE int clamp_i(int value, int min, int max);
MINLINE float clamp_f(float value, float min, float max);
MINLINE size_t clamp_z(size_t value, size_t min, size_t max);

/**
 * Almost-equal for IEEE floats, using absolute difference method.
 *
 * \param max_diff: the maximum absolute difference.
 */
MINLINE int compare_ff(float a, float b, float max_diff);
/**
 * Almost-equal for IEEE floats, using their integer representation
 * (mixing ULP and absolute difference methods).
 *
 * \param max_diff: is the maximum absolute difference (allows to take care of the near-zero area,
 * where relative difference methods cannot really work).
 * \param max_ulps: is the 'maximum number of floats + 1'
 * allowed between \a a and \a b to consider them equal.
 *
 * \see https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
 */
MINLINE int compare_ff_relative(float a, float b, float max_diff, int max_ulps);
MINLINE bool compare_threshold_relative(float value1, float value2, float thresh);

MINLINE float signf(float f);
MINLINE int signum_i_ex(float a, float eps);
MINLINE int signum_i(float a);

/**
 * Used for zoom values.
 */
MINLINE float power_of_2(float f);

/**
 * Returns number of (base ten) *significant* digits of integer part of given float
 * (negative in case of decimal-only floats, 0.01 returns -1 e.g.).
 */
MINLINE int integer_digits_f(float f);
/**
 * Returns number of (base ten) *significant* digits of integer part of given double
 * (negative in case of decimal-only floats, 0.01 returns -1 e.g.).
 */
MINLINE int integer_digits_d(double d);
MINLINE int integer_digits_i(int i);

/* These don't really fit anywhere but were being copied about a lot. */

MINLINE int is_power_of_2_i(int n);

MINLINE unsigned int log2_floor_u(unsigned int x);
MINLINE unsigned int log2_ceil_u(unsigned int x);

/**
 * Returns next (or previous) power of 2 or the input number if it is already a power of 2.
 */
MINLINE int power_of_2_max_i(int n);
MINLINE int power_of_2_min_i(int n);
MINLINE unsigned int power_of_2_max_u(unsigned int x);
MINLINE unsigned int power_of_2_min_u(unsigned int x);

/**
 * Integer division that rounds 0.5 up, particularly useful for color blending
 * with integers, to avoid gradual darkening when rounding down.
 */
MINLINE int divide_round_i(int a, int b);

/**
 * Integer division that returns the ceiling, instead of flooring like normal C division.
 */
MINLINE uint divide_ceil_u(uint a, uint b);
MINLINE uint64_t divide_ceil_ul(uint64_t a, uint64_t b);

/**
 * Returns \a a if it is a multiple of \a b or the next multiple or \a b after \b a .
 */
MINLINE uint ceil_to_multiple_u(uint a, uint b);
MINLINE uint64_t ceil_to_multiple_ul(uint64_t a, uint64_t b);

/**
 * modulo that handles negative numbers, works the same as Python's.
 */
MINLINE int mod_i(int i, int n);

/**
 * Round to closest even number, halfway cases are rounded away from zero.
 */
MINLINE float round_to_even(float f);

MINLINE signed char round_fl_to_char(float a);
MINLINE unsigned char round_fl_to_uchar(float a);
MINLINE short round_fl_to_short(float a);
MINLINE unsigned short round_fl_to_ushort(float a);
MINLINE int round_fl_to_int(float a);
MINLINE unsigned int round_fl_to_uint(float a);

MINLINE signed char round_db_to_char(double a);
MINLINE unsigned char round_db_to_uchar(double a);
MINLINE short round_db_to_short(double a);
MINLINE unsigned short round_db_to_ushort(double a);
MINLINE int round_db_to_int(double a);
MINLINE unsigned int round_db_to_uint(double a);

MINLINE signed char round_fl_to_char_clamp(float a);
MINLINE unsigned char round_fl_to_uchar_clamp(float a);
MINLINE short round_fl_to_short_clamp(float a);
MINLINE unsigned short round_fl_to_ushort_clamp(float a);
MINLINE int round_fl_to_int_clamp(float a);
MINLINE unsigned int round_fl_to_uint_clamp(float a);

MINLINE signed char round_db_to_char_clamp(double a);
MINLINE unsigned char round_db_to_uchar_clamp(double a);
MINLINE short round_db_to_short_clamp(double a);
MINLINE unsigned short round_db_to_ushort_clamp(double a);
MINLINE int round_db_to_int_clamp(double a);
MINLINE unsigned int round_db_to_uint_clamp(double a);

int pow_i(int base, int exp);

/**
 * \param ndigits: must be between 0 and 21.
 */
double double_round(double x, int ndigits);

/**
 * Floor to the nearest power of 10, e.g.:
 * - 15.0 -> 10.0
 * - 0.015 -> 0.01
 * - 1.0 -> 1.0
 *
 * \param f: Value to floor, must be over 0.0.
 * \note If we wanted to support signed values we could if this becomes necessary.
 */
float floor_power_of_10(float f);
/**
 * Ceiling to the nearest power of 10, e.g.:
 * - 15.0 -> 100.0
 * - 0.015 -> 0.1
 * - 1.0 -> 1.0
 *
 * \param f: Value to ceiling, must be over 0.0.
 * \note If we wanted to support signed values we could if this becomes necessary.
 */
float ceil_power_of_10(float f);

#ifdef BLI_MATH_GCC_WARN_PRAGMA
#  pragma GCC diagnostic pop
#endif

/* Asserts, some math functions expect normalized inputs
 * check the vector is unit length, or zero length (which can't be helped in some cases). */

#ifndef NDEBUG
/** \note 0.0001 is too small because normals may be converted from short's: see T34322. */
#  define BLI_ASSERT_UNIT_EPSILON 0.0002f
#  define BLI_ASSERT_UNIT_EPSILON_DB 0.0002
/**
 * \note Checks are flipped so NAN doesn't assert.
 * This is done because we're making sure the value was normalized and in the case we
 * don't want NAN to be raising asserts since there is nothing to be done in that case.
 */
#  define BLI_ASSERT_UNIT_V3(v) \
    { \
      const float _test_unit = len_squared_v3(v); \
      BLI_assert(!(fabsf(_test_unit - 1.0f) >= BLI_ASSERT_UNIT_EPSILON) || \
                 !(fabsf(_test_unit) >= BLI_ASSERT_UNIT_EPSILON)); \
    } \
    (void)0

#  define BLI_ASSERT_UNIT_V3_DB(v) \
    { \
      const double _test_unit = len_squared_v3_db(v); \
      BLI_assert(!(fabs(_test_unit - 1.0) >= BLI_ASSERT_UNIT_EPSILON_DB) || \
                 !(fabs(_test_unit) >= BLI_ASSERT_UNIT_EPSILON_DB)); \
    } \
    (void)0

#  define BLI_ASSERT_UNIT_V2(v) \
    { \
      const float _test_unit = len_squared_v2(v); \
      BLI_assert(!(fabsf(_test_unit - 1.0f) >= BLI_ASSERT_UNIT_EPSILON) || \
                 !(fabsf(_test_unit) >= BLI_ASSERT_UNIT_EPSILON)); \
    } \
    (void)0

#  define BLI_ASSERT_UNIT_QUAT(q) \
    { \
      const float _test_unit = dot_qtqt(q, q); \
      BLI_assert(!(fabsf(_test_unit - 1.0f) >= BLI_ASSERT_UNIT_EPSILON * 10) || \
                 !(fabsf(_test_unit) >= BLI_ASSERT_UNIT_EPSILON * 10)); \
    } \
    (void)0

#  define BLI_ASSERT_ZERO_M3(m) \
    { \
      BLI_assert(dot_vn_vn((const float *)m, (const float *)m, 9) != 0.0); \
    } \
    (void)0

#  define BLI_ASSERT_ZERO_M4(m) \
    { \
      BLI_assert(dot_vn_vn((const float *)m, (const float *)m, 16) != 0.0); \
    } \
    (void)0
#  define BLI_ASSERT_UNIT_M3(m) \
    { \
      BLI_ASSERT_UNIT_V3((m)[0]); \
      BLI_ASSERT_UNIT_V3((m)[1]); \
      BLI_ASSERT_UNIT_V3((m)[2]); \
    } \
    (void)0
#else
#  define BLI_ASSERT_UNIT_V2(v) (void)(v)
#  define BLI_ASSERT_UNIT_V3(v) (void)(v)
#  define BLI_ASSERT_UNIT_V3_DB(v) (void)(v)
#  define BLI_ASSERT_UNIT_QUAT(v) (void)(v)
#  define BLI_ASSERT_ZERO_M3(m) (void)(m)
#  define BLI_ASSERT_ZERO_M4(m) (void)(m)
#  define BLI_ASSERT_UNIT_M3(m) (void)(m)
#endif

#ifdef __cplusplus
}
#endif