Welcome to mirror list, hosted at ThFree Co, Russian Federation.

BLI_math_solvers.h « blenlib « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: ca413d2b49cfb042c64e5f43a128445eb6cd430a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
/*
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 *
 * The Original Code is Copyright (C) 2015 by Blender Foundation
 * All rights reserved.
 */

#pragma once

/** \file
 * \ingroup bli
 */

#include "BLI_compiler_attrs.h"
#include "BLI_math_inline.h"

#ifdef __cplusplus
extern "C" {
#endif

#ifdef BLI_MATH_GCC_WARN_PRAGMA
#  pragma GCC diagnostic push
#  pragma GCC diagnostic ignored "-Wredundant-decls"
#endif

/* -------------------------------------------------------------------- */
/** \name Eigen Solvers
 * \{ */

/**
 * \brief Compute the eigen values and/or vectors of given 3D symmetric (aka adjoint) matrix.
 *
 * \param m3: the 3D symmetric matrix.
 * \return r_eigen_values the computed eigen values (NULL if not needed).
 * \return r_eigen_vectors the computed eigen vectors (NULL if not needed).
 */
bool BLI_eigen_solve_selfadjoint_m3(const float m3[3][3],
                                    float r_eigen_values[3],
                                    float r_eigen_vectors[3][3]);

/**
 * \brief Compute the SVD (Singular Values Decomposition) of given 3D matrix (m3 = USV*).
 *
 * \param m3: the matrix to decompose.
 * \return r_U the computed left singular vector of \a m3 (NULL if not needed).
 * \return r_S the computed singular values of \a m3 (NULL if not needed).
 * \return r_V the computed right singular vector of \a m3 (NULL if not needed).
 */
void BLI_svd_m3(const float m3[3][3], float r_U[3][3], float r_S[3], float r_V[3][3]);

/** \} */

/* -------------------------------------------------------------------- */
/** \name Simple Solvers
 * \{ */

/**
 * \brief Solve a tridiagonal system of equations:
 *
 * a[i] * r_x[i-1] + b[i] * r_x[i] + c[i] * r_x[i+1] = d[i]
 *
 * Ignores a[0] and c[count-1]. Uses the Thomas algorithm, e.g. see wiki.
 *
 * \param r_x: output vector, may be shared with any of the input ones
 * \return true if success
 */
bool BLI_tridiagonal_solve(
    const float *a, const float *b, const float *c, const float *d, float *r_x, int count);
/**
 * \brief Solve a possibly cyclic tridiagonal system using the Sherman-Morrison formula.
 *
 * \param r_x: output vector, may be shared with any of the input ones
 * \return true if success
 */
bool BLI_tridiagonal_solve_cyclic(
    const float *a, const float *b, const float *c, const float *d, float *r_x, int count);

/**
 * Generic 3 variable Newton's method solver.
 */
typedef void (*Newton3D_DeltaFunc)(void *userdata, const float x[3], float r_delta[3]);
typedef void (*Newton3D_JacobianFunc)(void *userdata, const float x[3], float r_jacobian[3][3]);
typedef bool (*Newton3D_CorrectionFunc)(void *userdata,
                                        const float x[3],
                                        float step[3],
                                        float x_next[3]);

/**
 * \brief Solve a generic f(x) = 0 equation using Newton's method.
 *
 * \param func_delta: Callback computing the value of f(x).
 * \param func_jacobian: Callback computing the Jacobian matrix of the function at x.
 * \param func_correction: Callback for forcing the search into an arbitrary custom domain.
 * May be NULL.
 * \param userdata: Data for the callbacks.
 * \param epsilon: Desired precision.
 * \param max_iterations: Limit on the iterations.
 * \param trace: Enables logging to console.
 * \param x_init: Initial solution vector.
 * \param result: Final result.
 * \return true if success
 */
bool BLI_newton3d_solve(Newton3D_DeltaFunc func_delta,
                        Newton3D_JacobianFunc func_jacobian,
                        Newton3D_CorrectionFunc func_correction,
                        void *userdata,
                        float epsilon,
                        int max_iterations,
                        bool trace,
                        const float x_init[3],
                        float result[3]);

#ifdef BLI_MATH_GCC_WARN_PRAGMA
#  pragma GCC diagnostic pop
#endif

/** \} */

#ifdef __cplusplus
}
#endif