Welcome to mirror list, hosted at ThFree Co, Russian Federation.

BLI_memory_utils.hh « blenlib « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 940542c9f1daf056c10e0eca5bb717dc646e3484 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
/* SPDX-License-Identifier: GPL-2.0-or-later */

#pragma once

/** \file
 * \ingroup bli
 * Some of the functions below have very similar alternatives in the standard library. However, it
 * is rather annoying to use those when debugging. Therefore, some more specialized and easier to
 * debug functions are provided here.
 */

#include <memory>
#include <new>
#include <type_traits>

#include "BLI_utildefines.h"
#include "MEM_guardedalloc.h"

namespace blender {

/**
 * Call the destructor on n consecutive values. For trivially destructible types, this does
 * nothing.
 *
 * Exception Safety: Destructors shouldn't throw exceptions.
 *
 * Before:
 *  ptr: initialized
 * After:
 *  ptr: uninitialized
 */
template<typename T> void destruct_n(T *ptr, int64_t n)
{
  BLI_assert(n >= 0);

  static_assert(std::is_nothrow_destructible_v<T>,
                "This should be true for all types. Destructors are noexcept by default.");

  /* This is not strictly necessary, because the loop below will be optimized away anyway. It is
   * nice to make behavior this explicitly, though. */
  if (std::is_trivially_destructible_v<T>) {
    return;
  }

  for (int64_t i = 0; i < n; i++) {
    ptr[i].~T();
  }
}

/**
 * Call the default constructor on n consecutive elements. For trivially constructible types, this
 * does nothing.
 *
 * Exception Safety: Strong.
 *
 * Before:
 *  ptr: uninitialized
 * After:
 *  ptr: initialized
 */
template<typename T> void default_construct_n(T *ptr, int64_t n)
{
  BLI_assert(n >= 0);

  /* This is not strictly necessary, because the loop below will be optimized away anyway. It is
   * nice to make behavior this explicitly, though. */
  if (std::is_trivially_constructible_v<T>) {
    return;
  }

  int64_t current = 0;
  try {
    for (; current < n; current++) {
      new (static_cast<void *>(ptr + current)) T;
    }
  }
  catch (...) {
    destruct_n(ptr, current);
    throw;
  }
}

/**
 * Copy n values from src to dst.
 *
 * Exception Safety: Basic.
 *
 * Before:
 *  src: initialized
 *  dst: initialized
 * After:
 *  src: initialized
 *  dst: initialized
 */
template<typename T> void initialized_copy_n(const T *src, int64_t n, T *dst)
{
  BLI_assert(n >= 0);

  for (int64_t i = 0; i < n; i++) {
    dst[i] = src[i];
  }
}

/**
 * Copy n values from src to dst.
 *
 * Exception Safety: Strong.
 *
 * Before:
 *  src: initialized
 *  dst: uninitialized
 * After:
 *  src: initialized
 *  dst: initialized
 */
template<typename T> void uninitialized_copy_n(const T *src, int64_t n, T *dst)
{
  BLI_assert(n >= 0);

  int64_t current = 0;
  try {
    for (; current < n; current++) {
      new (static_cast<void *>(dst + current)) T(src[current]);
    }
  }
  catch (...) {
    destruct_n(dst, current);
    throw;
  }
}

/**
 * Convert n values from type `From` to type `To`.
 *
 * Exception Safety: Strong.
 *
 * Before:
 *  src: initialized
 *  dst: uninitialized
 * After:
 *  src: initialized
 *  dst: initialized
 */
template<typename From, typename To>
void uninitialized_convert_n(const From *src, int64_t n, To *dst)
{
  BLI_assert(n >= 0);

  int64_t current = 0;
  try {
    for (; current < n; current++) {
      new (static_cast<void *>(dst + current)) To(static_cast<To>(src[current]));
    }
  }
  catch (...) {
    destruct_n(dst, current);
    throw;
  }
}

/**
 * Move n values from src to dst.
 *
 * Exception Safety: Basic.
 *
 * Before:
 *  src: initialized
 *  dst: initialized
 * After:
 *  src: initialized, moved-from
 *  dst: initialized
 */
template<typename T> void initialized_move_n(T *src, int64_t n, T *dst)
{
  BLI_assert(n >= 0);

  for (int64_t i = 0; i < n; i++) {
    dst[i] = std::move(src[i]);
  }
}

/**
 * Move n values from src to dst.
 *
 * Exception Safety: Basic.
 *
 * Before:
 *  src: initialized
 *  dst: uninitialized
 * After:
 *  src: initialized, moved-from
 *  dst: initialized
 */
template<typename T> void uninitialized_move_n(T *src, int64_t n, T *dst)
{
  BLI_assert(n >= 0);

  int64_t current = 0;
  try {
    for (; current < n; current++) {
      new (static_cast<void *>(dst + current)) T(std::move(src[current]));
    }
  }
  catch (...) {
    destruct_n(dst, current);
    throw;
  }
}

/**
 * Relocate n values from src to dst. Relocation is a move followed by destruction of the src
 * value.
 *
 * Exception Safety: Basic.
 *
 * Before:
 *  src: initialized
 *  dst: initialized
 * After:
 *  src: uninitialized
 *  dst: initialized
 */
template<typename T> void initialized_relocate_n(T *src, int64_t n, T *dst)
{
  BLI_assert(n >= 0);

  initialized_move_n(src, n, dst);
  destruct_n(src, n);
}

/**
 * Relocate n values from src to dst. Relocation is a move followed by destruction of the src
 * value.
 *
 * Exception Safety: Basic.
 *
 * Before:
 *  src: initialized
 *  dst: uninitialized
 * After:
 *  src: uninitialized
 *  dst: initialized
 */
template<typename T> void uninitialized_relocate_n(T *src, int64_t n, T *dst)
{
  BLI_assert(n >= 0);

  uninitialized_move_n(src, n, dst);
  destruct_n(src, n);
}

/**
 * Copy the value to n consecutive elements.
 *
 * Exception Safety: Basic.
 *
 * Before:
 *  dst: initialized
 * After:
 *  dst: initialized
 */
template<typename T> void initialized_fill_n(T *dst, int64_t n, const T &value)
{
  BLI_assert(n >= 0);

  for (int64_t i = 0; i < n; i++) {
    dst[i] = value;
  }
}

/**
 * Copy the value to n consecutive elements.
 *
 *  Exception Safety: Strong.
 *
 * Before:
 *  dst: uninitialized
 * After:
 *  dst: initialized
 */
template<typename T> void uninitialized_fill_n(T *dst, int64_t n, const T &value)
{
  BLI_assert(n >= 0);

  int64_t current = 0;
  try {
    for (; current < n; current++) {
      new (static_cast<void *>(dst + current)) T(value);
    }
  }
  catch (...) {
    destruct_n(dst, current);
    throw;
  }
}

template<typename T> struct DestructValueAtAddress {
  DestructValueAtAddress() = default;

  template<typename U> DestructValueAtAddress(const U &)
  {
  }

  void operator()(T *ptr)
  {
    ptr->~T();
  }
};

/**
 * A destruct_ptr is like unique_ptr, but it will only call the destructor and will not free the
 * memory. This is useful when using custom allocators.
 */
template<typename T> using destruct_ptr = std::unique_ptr<T, DestructValueAtAddress<T>>;

/**
 * An `AlignedBuffer` is a byte array with at least the given size and alignment. The buffer will
 * not be initialized by the default constructor.
 */
template<size_t Size, size_t Alignment> class AlignedBuffer {
  struct Empty {
  };
  struct alignas(Alignment) Sized {
    /* Don't create an empty array. This causes problems with some compilers. */
    std::byte buffer_[Size > 0 ? Size : 1];
  };

  using BufferType = std::conditional_t<Size == 0, Empty, Sized>;
  BLI_NO_UNIQUE_ADDRESS BufferType buffer_;

 public:
  operator void *()
  {
    return this;
  }

  operator const void *() const
  {
    return this;
  }

  void *ptr()
  {
    return this;
  }

  const void *ptr() const
  {
    return this;
  }
};

/**
 * This can be used to reserve memory for C++ objects whose lifetime is different from the
 * lifetime of the object they are embedded in. It's used by containers with small buffer
 * optimization and hash table implementations.
 */
template<typename T, int64_t Size = 1> class TypedBuffer {
 private:
  BLI_NO_UNIQUE_ADDRESS AlignedBuffer<sizeof(T) * (size_t)Size, alignof(T)> buffer_;

 public:
  operator T *()
  {
    return static_cast<T *>(buffer_.ptr());
  }

  operator const T *() const
  {
    return static_cast<const T *>(buffer_.ptr());
  }

  T &operator*()
  {
    return *static_cast<T *>(buffer_.ptr());
  }

  const T &operator*() const
  {
    return *static_cast<const T *>(buffer_.ptr());
  }

  T *ptr()
  {
    return static_cast<T *>(buffer_.ptr());
  }

  const T *ptr() const
  {
    return static_cast<const T *>(buffer_.ptr());
  }

  T &ref()
  {
    return *static_cast<T *>(buffer_.ptr());
  }

  const T &ref() const
  {
    return *static_cast<const T *>(buffer_.ptr());
  }
};

/* A dynamic stack buffer can be used instead of #alloca when wants to allocate a dynamic amount of
 * memory on the stack. Using this class has some advantages:
 *  - It falls back to heap allocation, when the size is too large.
 *  - It can be used in loops safely.
 *  - If the buffer is heap allocated, it is free automatically in the destructor.
 */
template<size_t ReservedSize = 64, size_t ReservedAlignment = 64>
class alignas(ReservedAlignment) DynamicStackBuffer {
 private:
  /* Don't create an empty array. This causes problems with some compilers. */
  char reserved_buffer_[(ReservedSize > 0) ? ReservedSize : 1];
  void *buffer_;

 public:
  DynamicStackBuffer(const int64_t size, const int64_t alignment)
  {
    BLI_assert(size >= 0);
    BLI_assert(alignment >= 0);
    if (size <= ReservedSize && alignment <= ReservedAlignment) {
      buffer_ = reserved_buffer_;
    }
    else {
      buffer_ = MEM_mallocN_aligned(size, alignment, __func__);
    }
  }
  ~DynamicStackBuffer()
  {
    if (buffer_ != reserved_buffer_) {
      MEM_freeN(buffer_);
    }
  }

  /* Don't allow any copying or moving of this type. */
  DynamicStackBuffer(const DynamicStackBuffer &other) = delete;
  DynamicStackBuffer(DynamicStackBuffer &&other) = delete;
  DynamicStackBuffer &operator=(const DynamicStackBuffer &other) = delete;
  DynamicStackBuffer &operator=(DynamicStackBuffer &&other) = delete;

  void *buffer() const
  {
    return buffer_;
  }
};

/**
 * This can be used by container constructors. A parameter of this type should be used to indicate
 * that the constructor does not construct the elements.
 */
class NoInitialization {
};

/**
 * This can be used to mark a constructor of an object that does not throw exceptions. Other
 * constructors can delegate to this constructor to make sure that the object lifetime starts.
 * With this, the destructor of the object will be called, even when the remaining constructor
 * throws.
 */
class NoExceptConstructor {
};

/**
 * Helper variable that checks if a pointer type can be converted into another pointer type without
 * issues. Possible issues are casting away const and casting a pointer to a child class.
 * Adding const or casting to a parent class is fine.
 */
template<typename From, typename To>
inline constexpr bool is_convertible_pointer_v =
    std::is_convertible_v<From, To> &&std::is_pointer_v<From> &&std::is_pointer_v<To>;

/**
 * Helper variable that checks if a Span<From> can be converted to Span<To> safely, whereby From
 * and To are pointers. Adding const and casting to a void pointer is allowed.
 * Casting up and down a class hierarchy generally is not allowed, because this might change the
 * pointer under some circumstances.
 */
template<typename From, typename To>
inline constexpr bool is_span_convertible_pointer_v =
    /* Make sure we are working with pointers. */
    std::is_pointer_v<From> &&std::is_pointer_v<To> &&
    (/* No casting is necessary when both types are the same. */
     std::is_same_v<From, To> ||
     /* Allow adding const to the underlying type. */
     std::is_same_v<const std::remove_pointer_t<From>, std::remove_pointer_t<To>> ||
     /* Allow casting non-const pointers to void pointers. */
     (!std::is_const_v<std::remove_pointer_t<From>> && std::is_same_v<To, void *>) ||
     /* Allow casting any pointer to const void pointers. */
     std::is_same_v<To, const void *>);

/**
 * Same as #std::is_same_v but allows for checking multiple types at the same time.
 */
template<typename T, typename... Args>
inline constexpr bool is_same_any_v = (std::is_same_v<T, Args> || ...);

/**
 * Inline buffers for small-object-optimization should be disable by default. Otherwise we might
 * get large unexpected allocations on the stack.
 */
inline constexpr int64_t default_inline_buffer_capacity(size_t element_size)
{
  return (static_cast<int64_t>(element_size) < 100) ? 4 : 0;
}

/**
 * This can be used by containers to implement an exception-safe copy-assignment-operator.
 * It assumes that the container has an exception safe copy constructor and an exception-safe
 * move-assignment-operator.
 */
template<typename Container> Container &copy_assign_container(Container &dst, const Container &src)
{
  if (&src == &dst) {
    return dst;
  }

  Container container_copy{src};
  dst = std::move(container_copy);
  return dst;
}

/**
 * This can be used by containers to implement an exception-safe move-assignment-operator.
 * It assumes that the container has an exception-safe move-constructor and a noexcept constructor
 * tagged with the NoExceptConstructor tag.
 */
template<typename Container>
Container &move_assign_container(Container &dst, Container &&src) noexcept(
    std::is_nothrow_move_constructible_v<Container>)
{
  if (&dst == &src) {
    return dst;
  }

  dst.~Container();
  if constexpr (std::is_nothrow_move_constructible_v<Container>) {
    new (&dst) Container(std::move(src));
  }
  else {
    try {
      new (&dst) Container(std::move(src));
    }
    catch (...) {
      new (&dst) Container(NoExceptConstructor());
      throw;
    }
  }
  return dst;
}

/**
 * Returns true if the value is different and was assigned.
 */
template<typename T> inline bool assign_if_different(T &old_value, T new_value)
{
  if (old_value != new_value) {
    old_value = std::move(new_value);
    return true;
  }
  return false;
}

}  // namespace blender

namespace blender::detail {

template<typename Func> struct ScopedDeferHelper {
  Func func;

  ~ScopedDeferHelper()
  {
    func();
  }
};

}  // namespace blender::detail

#define BLI_SCOPED_DEFER_NAME1(a, b) a##b
#define BLI_SCOPED_DEFER_NAME2(a, b) BLI_SCOPED_DEFER_NAME1(a, b)
#define BLI_SCOPED_DEFER_NAME(a) BLI_SCOPED_DEFER_NAME2(_scoped_defer_##a##_, __LINE__)

/**
 * Execute the given function when the current scope ends. This can be used to cheaply implement
 * some RAII-like behavior for C types that don't support it. Long term, the types we want to use
 * this with should either be converted to C++ or get a proper C++ API. Until then, this function
 * can help avoid common resource leakages.
 */
#define BLI_SCOPED_DEFER(function_to_defer) \
  auto BLI_SCOPED_DEFER_NAME(func) = (function_to_defer); \
  blender::detail::ScopedDeferHelper<decltype(BLI_SCOPED_DEFER_NAME(func))> \
      BLI_SCOPED_DEFER_NAME(helper){std::move(BLI_SCOPED_DEFER_NAME(func))};