Welcome to mirror list, hosted at ThFree Co, Russian Federation.

BLI_span.hh « blenlib « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 5b4d2769f573b1fe41710c162ccac827ef9d83cf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
/*
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 */

#pragma once

/** \file
 * \ingroup bli
 *
 * An `blender::Span<T>` references an array that is owned by someone else. It is just a
 * pointer and a size. Since the memory is not owned, Span should not be used to transfer
 * ownership. The array cannot be modified through the Span. However, if T is a non-const
 * pointer, the pointed-to elements can be modified.
 *
 * There is also `blender::MutableSpan<T>`. It is mostly the same as Span, but allows the
 * array to be modified.
 *
 * A (Mutable)Span can refer to data owned by many different data structures including
 * blender::Vector, blender::Array, blender::VectorSet, std::vector, std::array, std::string,
 * std::initializer_list and c-style array.
 *
 * `blender::Span` is very similar to `std::span` (C++20). However, there are a few differences:
 * - `blender::Span` is const by default. This is to avoid making things mutable when they don't
 *   have to be. To get a non-const span, you need to use `blender::MutableSpan`. Below is a list
 *   of const-behavior-equivalent pairs of data structures:
 *   - std::span<int>                <==>  blender::MutableSpan<int>
 *   - std::span<const int>          <==>  blender::Span<int>
 *   - std::span<int *>              <==>  blender::MutableSpan<int *>
 *   - std::span<const int *>        <==>  blender::MutableSpan<const int *>
 *   - std::span<int * const>        <==>  blender::Span<int *>
 *   - std::span<const int * const>  <==>  blender::Span<const int *>
 * - `blender::Span` always has a dynamic extent, while `std::span` can have a size that is
 *   determined at compile time. I did not have a use case for that yet. If we need it, we can
 *   decide to add this functionality to `blender::Span` or introduce a new type like
 *   `blender::FixedSpan<T, N>`.
 *
 * `blender::Span<T>` should be your default choice when you have to pass a read-only array
 * into a function. It is better than passing a `const Vector &`, because then the function only
 * works for vectors and not for e.g. arrays. Using Span as function parameter makes it usable
 * in more contexts, better expresses the intent and does not sacrifice performance. It is also
 * better than passing a raw pointer and size separately, because it is more convenient and safe.
 *
 * `blender::MutableSpan<T>` can be used when a function is supposed to return an array, the
 * size of which is known before the function is called. One advantage of this approach is that the
 * caller is responsible for allocation and deallocation. Furthermore, the function can focus on
 * its task, without having to worry about memory allocation. Alternatively, a function could
 * return an Array or Vector.
 *
 * Note: When a function has a MutableSpan<T> output parameter and T is not a trivial type,
 * then the function has to specify whether the referenced array is expected to be initialized or
 * not.
 *
 * Since the arrays are only referenced, it is generally unsafe to store an Span. When you
 * store one, you should know who owns the memory.
 *
 * Instances of Span and MutableSpan are small and should be passed by value.
 */

#include <algorithm>
#include <array>
#include <iostream>
#include <string>
#include <vector>

#include "BLI_index_range.hh"
#include "BLI_memory_utils.hh"
#include "BLI_utildefines.h"

namespace blender {

/**
 * References an array of type T that is owned by someone else. The data in the array cannot be
 * modified.
 */
template<typename T> class Span {
 private:
  const T *data_ = nullptr;
  int64_t size_ = 0;

 public:
  /**
   * Create a reference to an empty array.
   */
  Span() = default;

  Span(const T *start, int64_t size) : data_(start), size_(size)
  {
    BLI_assert(size >= 0);
  }

  template<typename U, typename std::enable_if_t<is_convertible_pointer_v<U, T>> * = nullptr>
  Span(const U *start, int64_t size) : data_(static_cast<const T *>(start)), size_(size)
  {
    BLI_assert(size >= 0);
  }

  /**
   * Reference an initializer_list. Note that the data in the initializer_list is only valid until
   * the expression containing it is fully computed.
   *
   * Do:
   *  call_function_with_array({1, 2, 3, 4});
   *
   * Don't:
   *  Span<int> span = {1, 2, 3, 4};
   *  call_function_with_array(span);
   */
  Span(const std::initializer_list<T> &list)
      : Span(list.begin(), static_cast<int64_t>(list.size()))
  {
  }

  Span(const std::vector<T> &vector) : Span(vector.data(), static_cast<int64_t>(vector.size()))
  {
  }

  template<std::size_t N> Span(const std::array<T, N> &array) : Span(array.data(), N)
  {
  }

  /**
   * Support implicit conversions like the ones below:
   *   Span<T *> -> Span<const T *>
   */
  template<typename U, typename std::enable_if_t<is_convertible_pointer_v<U, T>> * = nullptr>
  Span(Span<U> array) : data_(static_cast<const T *>(array.data())), size_(array.size())
  {
  }

  /**
   * Returns a contiguous part of the array. This invokes undefined behavior when the slice does
   * not stay within the bounds of the array.
   */
  Span slice(int64_t start, int64_t size) const
  {
    BLI_assert(start >= 0);
    BLI_assert(size >= 0);
    BLI_assert(start + size <= this->size() || size == 0);
    return Span(data_ + start, size);
  }

  Span slice(IndexRange range) const
  {
    return this->slice(range.start(), range.size());
  }

  /**
   * Returns a new Span with n elements removed from the beginning. This invokes undefined
   * behavior when the array is too small.
   */
  Span drop_front(int64_t n) const
  {
    BLI_assert(n >= 0);
    BLI_assert(n <= this->size());
    return this->slice(n, this->size() - n);
  }

  /**
   * Returns a new Span with n elements removed from the beginning. This invokes undefined
   * behavior when the array is too small.
   */
  Span drop_back(int64_t n) const
  {
    BLI_assert(n >= 0);
    BLI_assert(n <= this->size());
    return this->slice(0, this->size() - n);
  }

  /**
   * Returns a new Span that only contains the first n elements. This invokes undefined
   * behavior when the array is too small.
   */
  Span take_front(int64_t n) const
  {
    BLI_assert(n >= 0);
    BLI_assert(n <= this->size());
    return this->slice(0, n);
  }

  /**
   * Returns a new Span that only contains the last n elements. This invokes undefined
   * behavior when the array is too small.
   */
  Span take_back(int64_t n) const
  {
    BLI_assert(n >= 0);
    BLI_assert(n <= this->size());
    return this->slice(this->size() - n, n);
  }

  /**
   * Returns the pointer to the beginning of the referenced array. This may be nullptr when the
   * size is zero.
   */
  const T *data() const
  {
    return data_;
  }

  const T *begin() const
  {
    return data_;
  }
  const T *end() const
  {
    return data_ + size_;
  }

  std::reverse_iterator<const T *> rbegin() const
  {
    return std::reverse_iterator<const T *>(this->end());
  }
  std::reverse_iterator<const T *> rend() const
  {
    return std::reverse_iterator<const T *>(this->begin());
  }

  /**
   * Access an element in the array. This invokes undefined behavior when the index is out of
   * bounds.
   */
  const T &operator[](int64_t index) const
  {
    BLI_assert(index >= 0);
    BLI_assert(index < size_);
    return data_[index];
  }

  /**
   * Returns the number of elements in the referenced array.
   */
  int64_t size() const
  {
    return size_;
  }

  /**
   * Returns true if the size is zero.
   */
  bool is_empty() const
  {
    return size_ == 0;
  }

  /**
   * Returns the number of bytes referenced by this Span.
   */
  int64_t size_in_bytes() const
  {
    return sizeof(T) * size_;
  }

  /**
   * Does a linear search to see of the value is in the array.
   * Returns true if it is, otherwise false.
   */
  bool contains(const T &value) const
  {
    for (const T &element : *this) {
      if (element == value) {
        return true;
      }
    }
    return false;
  }

  /**
   * Does a constant time check to see if the pointer points to a value in the referenced array.
   * Return true if it is, otherwise false.
   */
  bool contains_ptr(const T *ptr) const
  {
    return (this->begin() <= ptr) && (ptr < this->end());
  }

  /**
   * Does a linear search to count how often the value is in the array.
   * Returns the number of occurrences.
   */
  int64_t count(const T &value) const
  {
    int64_t counter = 0;
    for (const T &element : *this) {
      if (element == value) {
        counter++;
      }
    }
    return counter;
  }

  /**
   * Return a reference to the first element in the array. This invokes undefined behavior when the
   * array is empty.
   */
  const T &first() const
  {
    BLI_assert(size_ > 0);
    return data_[0];
  }

  /**
   * Returns a reference to the last element in the array. This invokes undefined behavior when the
   * array is empty.
   */
  const T &last() const
  {
    BLI_assert(size_ > 0);
    return data_[size_ - 1];
  }

  /**
   * Returns the element at the given index. If the index is out of range, return the fallback
   * value.
   */
  T get(int64_t index, const T &fallback) const
  {
    if (index < size_ && index >= 0) {
      return data_[index];
    }
    return fallback;
  }

  /**
   * Check if the array contains duplicates. Does a linear search for every element. So the total
   * running time is O(n^2). Only use this for small arrays.
   */
  bool has_duplicates__linear_search() const
  {
    /* The size should really be smaller than that. If it is not, the calling code should be
     * changed. */
    BLI_assert(size_ < 1000);

    for (int64_t i = 0; i < size_; i++) {
      const T &value = data_[i];
      for (int64_t j = i + 1; j < size_; j++) {
        if (value == data_[j]) {
          return true;
        }
      }
    }
    return false;
  }

  /**
   * Returns true when this and the other array have an element in common. This should only be
   * called on small arrays, because it has a running time of O(n*m) where n and m are the sizes of
   * the arrays.
   */
  bool intersects__linear_search(Span other) const
  {
    /* The size should really be smaller than that. If it is not, the calling code should be
     * changed. */
    BLI_assert(size_ < 1000);

    for (int64_t i = 0; i < size_; i++) {
      const T &value = data_[i];
      if (other.contains(value)) {
        return true;
      }
    }
    return false;
  }

  /**
   * Returns the index of the first occurrence of the given value. This invokes undefined behavior
   * when the value is not in the array.
   */
  int64_t first_index(const T &search_value) const
  {
    const int64_t index = this->first_index_try(search_value);
    BLI_assert(index >= 0);
    return index;
  }

  /**
   * Returns the index of the first occurrence of the given value or -1 if it does not exist.
   */
  int64_t first_index_try(const T &search_value) const
  {
    for (int64_t i = 0; i < size_; i++) {
      if (data_[i] == search_value) {
        return i;
      }
    }
    return -1;
  }

  /**
   * Utility to make it more convenient to iterate over all indices that can be used with this
   * array.
   */
  IndexRange index_range() const
  {
    return IndexRange(size_);
  }

  /**
   * Returns a new Span to the same underlying memory buffer. No conversions are done.
   */
  template<typename NewT> Span<NewT> cast() const
  {
    BLI_assert((size_ * sizeof(T)) % sizeof(NewT) == 0);
    int64_t new_size = size_ * sizeof(T) / sizeof(NewT);
    return Span<NewT>(reinterpret_cast<const NewT *>(data_), new_size);
  }

  /**
   * A debug utility to print the content of the Span. Every element will be printed on a
   * separate line using the given callback.
   */
  template<typename PrintLineF> void print_as_lines(std::string name, PrintLineF print_line) const
  {
    std::cout << "Span: " << name << " \tSize:" << size_ << '\n';
    for (const T &value : *this) {
      std::cout << "  ";
      print_line(value);
      std::cout << '\n';
    }
  }

  /**
   * A debug utility to print the content of the span. Every element be printed on a separate
   * line.
   */
  void print_as_lines(std::string name) const
  {
    this->print_as_lines(name, [](const T &value) { std::cout << value; });
  }
};

/**
 * Mostly the same as Span, except that one can change the array elements through a
 * MutableSpan.
 */
template<typename T> class MutableSpan {
 private:
  T *data_;
  int64_t size_;

 public:
  MutableSpan() = default;

  MutableSpan(T *start, const int64_t size) : data_(start), size_(size)
  {
  }

  MutableSpan(std::vector<T> &vector) : MutableSpan(vector.data(), vector.size())
  {
  }

  template<std::size_t N> MutableSpan(std::array<T, N> &array) : MutableSpan(array.data(), N)
  {
  }

  operator Span<T>() const
  {
    return Span<T>(data_, size_);
  }

  /**
   * Returns the number of elements in the array.
   */
  int64_t size() const
  {
    return size_;
  }

  /**
   * Replace all elements in the referenced array with the given value.
   */
  void fill(const T &value)
  {
    initialized_fill_n(data_, size_, value);
  }

  /**
   * Replace a subset of all elements with the given value. This invokes undefined behavior when
   * one of the indices is out of bounds.
   */
  void fill_indices(Span<int64_t> indices, const T &value)
  {
    for (int64_t i : indices) {
      BLI_assert(i < size_);
      data_[i] = value;
    }
  }

  /**
   * Returns a pointer to the beginning of the referenced array. This may be nullptr, when the size
   * is zero.
   */
  T *data() const
  {
    return data_;
  }

  T *begin() const
  {
    return data_;
  }
  T *end() const
  {
    return data_ + size_;
  }

  std::reverse_iterator<T *> rbegin() const
  {
    return std::reverse_iterator<T *>(this->end());
  }
  std::reverse_iterator<T *> rend() const
  {
    return std::reverse_iterator<T *>(this->begin());
  }

  T &operator[](const int64_t index) const
  {
    BLI_assert(index < this->size());
    return data_[index];
  }

  /**
   * Returns a contiguous part of the array. This invokes undefined behavior when the slice would
   * go out of bounds.
   */
  MutableSpan slice(const int64_t start, const int64_t length) const
  {
    BLI_assert(start + length <= this->size());
    return MutableSpan(data_ + start, length);
  }

  /**
   * Returns a new MutableSpan with n elements removed from the beginning. This invokes
   * undefined behavior when the array is too small.
   */
  MutableSpan drop_front(const int64_t n) const
  {
    BLI_assert(n <= this->size());
    return this->slice(n, this->size() - n);
  }

  /**
   * Returns a new MutableSpan with n elements removed from the end. This invokes undefined
   * behavior when the array is too small.
   */
  MutableSpan drop_back(const int64_t n) const
  {
    BLI_assert(n <= this->size());
    return this->slice(0, this->size() - n);
  }

  /**
   * Returns a new MutableSpan that only contains the first n elements. This invokes undefined
   * behavior when the array is too small.
   */
  MutableSpan take_front(const int64_t n) const
  {
    BLI_assert(n <= this->size());
    return this->slice(0, n);
  }

  /**
   * Return a new MutableSpan that only contains the last n elements. This invokes undefined
   * behavior when the array is too small.
   */
  MutableSpan take_back(const int64_t n) const
  {
    BLI_assert(n <= this->size());
    return this->slice(this->size() - n, n);
  }

  /**
   * Returns an (immutable) Span that references the same array. This is usually not needed,
   * due to implicit conversions. However, sometimes automatic type deduction needs some help.
   */
  Span<T> as_span() const
  {
    return Span<T>(data_, size_);
  }

  /**
   * Utility to make it more convenient to iterate over all indices that can be used with this
   * array.
   */
  IndexRange index_range() const
  {
    return IndexRange(size_);
  }

  /**
   * Returns a reference to the last element. This invokes undefined behavior when the array is
   * empty.
   */
  T &last() const
  {
    BLI_assert(size_ > 0);
    return data_[size_ - 1];
  }

  /**
   * Does a linear search to count how often the value is in the array.
   * Returns the number of occurrences.
   */
  int64_t count(const T &value) const
  {
    int64_t counter = 0;
    for (const T &element : *this) {
      if (element == value) {
        counter++;
      }
    }
    return counter;
  }

  /**
   * Copy all values from another span into this span. This invokes undefined behavior when the
   * destination contains uninitialized data and T is not trivially copy constructible.
   * The size of both spans is expected to be the same.
   */
  void copy_from(Span<T> values)
  {
    BLI_assert(size_ == values.size());
    initialized_copy_n(values.data(), size_, data_);
  }

  /**
   * Returns a new span to the same underlying memory buffer. No conversions are done.
   */
  template<typename NewT> MutableSpan<NewT> cast() const
  {
    BLI_assert((size_ * sizeof(T)) % sizeof(NewT) == 0);
    int64_t new_size = size_ * sizeof(T) / sizeof(NewT);
    return MutableSpan<NewT>(reinterpret_cast<NewT *>(data_), new_size);
  }
};

/**
 * Utilities to check that arrays have the same size in debug builds.
 */
template<typename T1, typename T2> void assert_same_size(const T1 &v1, const T2 &v2)
{
  UNUSED_VARS_NDEBUG(v1, v2);
#ifdef DEBUG
  int64_t size = v1.size();
  BLI_assert(size == v1.size());
  BLI_assert(size == v2.size());
#endif
}

template<typename T1, typename T2, typename T3>
void assert_same_size(const T1 &v1, const T2 &v2, const T3 &v3)
{
  UNUSED_VARS_NDEBUG(v1, v2, v3);
#ifdef DEBUG
  int64_t size = v1.size();
  BLI_assert(size == v1.size());
  BLI_assert(size == v2.size());
  BLI_assert(size == v3.size());
#endif
}

} /* namespace blender */