Welcome to mirror list, hosted at ThFree Co, Russian Federation.

BLI_vector.hh « blenlib « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: f6f546c90b942b58bd4548cd359ba7ab33b2bfb5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
/*
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 */

#pragma once

/** \file
 * \ingroup bli
 *
 * A `blender::Vector<T>` is a dynamically growing contiguous array for values of type T. It is
 * designed to be a more convenient and efficient replacement for `std::vector`. Note that the term
 * "vector" has nothing to do with a vector from computer graphics here.
 *
 * A vector supports efficient insertion and removal at the end (O(1) amortized). Removal in other
 * places takes O(n) time, because all elements afterwards have to be moved. If the order of
 * elements is not important, `remove_and_reorder` can be used instead of `remove` for better
 * performance.
 *
 * The improved efficiency is mainly achieved by supporting small buffer optimization. As long as
 * the number of elements in the vector does not become larger than InlineBufferCapacity, no memory
 * allocation is done. As a consequence, iterators are invalidated when a blender::Vector is moved
 * (iterators of std::vector remain valid when the vector is moved).
 *
 * `blender::Vector` should be your default choice for a vector data structure in Blender.
 */

#include <algorithm>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <memory>

#include "BLI_allocator.hh"
#include "BLI_index_range.hh"
#include "BLI_listbase_wrapper.hh"
#include "BLI_math_base.h"
#include "BLI_memory_utils.hh"
#include "BLI_span.hh"
#include "BLI_string.h"
#include "BLI_string_ref.hh"
#include "BLI_utildefines.h"

#include "MEM_guardedalloc.h"

namespace blender {

template<
    /**
     * Type of the values stored in this vector. It has to be movable.
     */
    typename T,
    /**
     * The number of values that can be stored in this vector, without doing a heap allocation.
     * Sometimes it makes sense to increase this value a lot. The memory in the inline buffer is
     * not initialized when it is not needed.
     *
     * When T is large, the small buffer optimization is disabled by default to avoid large
     * unexpected allocations on the stack. It can still be enabled explicitly though.
     */
    int64_t InlineBufferCapacity = default_inline_buffer_capacity(sizeof(T)),
    /**
     * The allocator used by this vector. Should rarely be changed, except when you don't want that
     * MEM_* is used internally.
     */
    typename Allocator = GuardedAllocator>
class Vector {
 public:
  using value_type = T;
  using pointer = T *;
  using const_pointer = const T *;
  using reference = T &;
  using const_reference = const T &;
  using iterator = T *;
  using const_iterator = const T *;
  using size_type = int64_t;

 private:
  /**
   * Use pointers instead of storing the size explicitly. This reduces the number of instructions
   * in `append`.
   *
   * The pointers might point to the memory in the inline buffer.
   */
  T *begin_;
  T *end_;
  T *capacity_end_;

  /** Used for allocations when the inline buffer is too small. */
  Allocator allocator_;

  /** A placeholder buffer that will remain uninitialized until it is used. */
  TypedBuffer<T, InlineBufferCapacity> inline_buffer_;

  /**
   * Store the size of the vector explicitly in debug builds. Otherwise you'd always have to call
   * the `size` function or do the math to compute it from the pointers manually. This is rather
   * annoying. Knowing the size of a vector is often quite essential when debugging some code.
   */
#ifndef NDEBUG
  int64_t debug_size_;
#  define UPDATE_VECTOR_SIZE(ptr) \
    (ptr)->debug_size_ = static_cast<int64_t>((ptr)->end_ - (ptr)->begin_)
#else
#  define UPDATE_VECTOR_SIZE(ptr) ((void)0)
#endif

  /**
   * Be a friend with other vector instantiations. This is necessary to implement some memory
   * management logic.
   */
  template<typename OtherT, int64_t OtherInlineBufferCapacity, typename OtherAllocator>
  friend class Vector;

 public:
  /**
   * Create an empty vector.
   * This does not do any memory allocation.
   */
  Vector(Allocator allocator = {}) noexcept : allocator_(allocator)
  {
    begin_ = inline_buffer_;
    end_ = begin_;
    capacity_end_ = begin_ + InlineBufferCapacity;
    UPDATE_VECTOR_SIZE(this);
  }

  Vector(NoExceptConstructor, Allocator allocator = {}) noexcept : Vector(allocator)
  {
  }

  /**
   * Create a vector with a specific size.
   * The elements will be default constructed.
   * If T is trivially constructible, the elements in the vector are not touched.
   */
  explicit Vector(int64_t size, Allocator allocator = {})
      : Vector(NoExceptConstructor(), allocator)
  {
    this->resize(size);
  }

  /**
   * Create a vector filled with a specific value.
   */
  Vector(int64_t size, const T &value, Allocator allocator = {})
      : Vector(NoExceptConstructor(), allocator)
  {
    this->resize(size, value);
  }

  /**
   * Create a vector from a span. The values in the vector are copy constructed.
   */
  template<typename U, typename std::enable_if_t<std::is_convertible_v<U, T>> * = nullptr>
  Vector(Span<U> values, Allocator allocator = {}) : Vector(NoExceptConstructor(), allocator)
  {
    const int64_t size = values.size();
    this->reserve(size);
    uninitialized_convert_n<U, T>(values.data(), size, begin_);
    this->increase_size_by_unchecked(size);
  }

  /**
   * Create a vector that contains copies of the values in the initialized list.
   *
   * This allows you to write code like:
   * Vector<int> vec = {3, 4, 5};
   */
  template<typename U, typename std::enable_if_t<std::is_convertible_v<U, T>> * = nullptr>
  Vector(const std::initializer_list<U> &values) : Vector(Span<U>(values))
  {
  }

  Vector(const std::initializer_list<T> &values) : Vector(Span<T>(values))
  {
  }

  template<typename U,
           size_t N,
           typename std::enable_if_t<std::is_convertible_v<U, T>> * = nullptr>
  Vector(const std::array<U, N> &values) : Vector(Span(values))
  {
  }

  template<typename InputIt,
           /* This constructor should not be called with e.g. Vector(3, 10), because that is
            * expected to produce the vector (10, 10, 10). */
           typename std::enable_if_t<!std::is_convertible_v<InputIt, int>> * = nullptr>
  Vector(InputIt first, InputIt last, Allocator allocator = {})
      : Vector(NoExceptConstructor(), allocator)
  {
    for (InputIt current = first; current != last; ++current) {
      this->append(*current);
    }
  }

  /**
   * Create a vector from a ListBase. The caller has to make sure that the values in the linked
   * list have the correct type.
   *
   * Example Usage:
   *  Vector<ModifierData *> modifiers(ob->modifiers);
   */
  Vector(ListBase &values, Allocator allocator = {}) : Vector(NoExceptConstructor(), allocator)
  {
    LISTBASE_FOREACH (T, value, &values) {
      this->append(value);
    }
  }

  /**
   * Create a copy of another vector. The other vector will not be changed. If the other vector has
   * less than InlineBufferCapacity elements, no allocation will be made.
   */
  Vector(const Vector &other) : Vector(other.as_span(), other.allocator_)
  {
  }

  /**
   * Create a copy of a vector with a different InlineBufferCapacity. This needs to be handled
   * separately, so that the other one is a valid copy constructor.
   */
  template<int64_t OtherInlineBufferCapacity>
  Vector(const Vector<T, OtherInlineBufferCapacity, Allocator> &other)
      : Vector(other.as_span(), other.allocator_)
  {
  }

  /**
   * Steal the elements from another vector. This does not do an allocation. The other vector will
   * have zero elements afterwards.
   */
  template<int64_t OtherInlineBufferCapacity>
  Vector(Vector<T, OtherInlineBufferCapacity, Allocator> &&other) noexcept(
      std::is_nothrow_move_constructible_v<T>)
      : Vector(NoExceptConstructor(), other.allocator_)
  {
    const int64_t size = other.size();

    if (other.is_inline()) {
      if (size <= InlineBufferCapacity) {
        /* Copy between inline buffers. */
        uninitialized_relocate_n(other.begin_, size, begin_);
        end_ = begin_ + size;
      }
      else {
        /* Copy from inline buffer to newly allocated buffer. */
        const int64_t capacity = size;
        begin_ = static_cast<T *>(
            allocator_.allocate(sizeof(T) * static_cast<size_t>(capacity), alignof(T), AT));
        capacity_end_ = begin_ + capacity;
        uninitialized_relocate_n(other.begin_, size, begin_);
        end_ = begin_ + size;
      }
    }
    else {
      /* Steal the pointer. */
      begin_ = other.begin_;
      end_ = other.end_;
      capacity_end_ = other.capacity_end_;
    }

    other.begin_ = other.inline_buffer_;
    other.end_ = other.begin_;
    other.capacity_end_ = other.begin_ + OtherInlineBufferCapacity;
    UPDATE_VECTOR_SIZE(this);
    UPDATE_VECTOR_SIZE(&other);
  }

  ~Vector()
  {
    destruct_n(begin_, this->size());
    if (!this->is_inline()) {
      allocator_.deallocate(begin_);
    }
  }

  Vector &operator=(const Vector &other)
  {
    return copy_assign_container(*this, other);
  }

  Vector &operator=(Vector &&other)
  {
    return move_assign_container(*this, std::move(other));
  }

  /**
   * Get the value at the given index. This invokes undefined behavior when the index is out of
   * bounds.
   */
  const T &operator[](int64_t index) const
  {
    BLI_assert(index >= 0);
    BLI_assert(index < this->size());
    return begin_[index];
  }

  T &operator[](int64_t index)
  {
    BLI_assert(index >= 0);
    BLI_assert(index < this->size());
    return begin_[index];
  }

  operator Span<T>() const
  {
    return Span<T>(begin_, this->size());
  }

  operator MutableSpan<T>()
  {
    return MutableSpan<T>(begin_, this->size());
  }

  template<typename U, typename std::enable_if_t<is_span_convertible_pointer_v<T, U>> * = nullptr>
  operator Span<U>() const
  {
    return Span<U>(begin_, this->size());
  }

  template<typename U, typename std::enable_if_t<is_span_convertible_pointer_v<T, U>> * = nullptr>
  operator MutableSpan<U>()
  {
    return MutableSpan<U>(begin_, this->size());
  }

  Span<T> as_span() const
  {
    return *this;
  }

  MutableSpan<T> as_mutable_span()
  {
    return *this;
  }

  /**
   * Make sure that enough memory is allocated to hold min_capacity elements.
   * This won't necessarily make an allocation when min_capacity is small.
   * The actual size of the vector does not change.
   */
  void reserve(const int64_t min_capacity)
  {
    if (min_capacity > this->capacity()) {
      this->realloc_to_at_least(min_capacity);
    }
  }

  /**
   * Change the size of the vector so that it contains new_size elements.
   * If new_size is smaller than the old size, the elements at the end of the vector are
   * destructed. If new_size is larger than the old size, the new elements at the end are default
   * constructed. If T is trivially constructible, the memory is not touched by this function.
   */
  void resize(const int64_t new_size)
  {
    BLI_assert(new_size >= 0);
    const int64_t old_size = this->size();
    if (new_size > old_size) {
      this->reserve(new_size);
      default_construct_n(begin_ + old_size, new_size - old_size);
    }
    else {
      destruct_n(begin_ + new_size, old_size - new_size);
    }
    end_ = begin_ + new_size;
    UPDATE_VECTOR_SIZE(this);
  }

  /**
   * Change the size of the vector so that it contains new_size elements.
   * If new_size is smaller than the old size, the elements at the end of the vector are
   * destructed. If new_size is larger than the old size, the new elements will be copy constructed
   * from the given value.
   */
  void resize(const int64_t new_size, const T &value)
  {
    BLI_assert(new_size >= 0);
    const int64_t old_size = this->size();
    if (new_size > old_size) {
      this->reserve(new_size);
      uninitialized_fill_n(begin_ + old_size, new_size - old_size, value);
    }
    else {
      destruct_n(begin_ + new_size, old_size - new_size);
    }
    end_ = begin_ + new_size;
    UPDATE_VECTOR_SIZE(this);
  }

  /**
   * Afterwards the vector has 0 elements, but will still have
   * memory to be refilled again.
   */
  void clear()
  {
    destruct_n(begin_, this->size());
    end_ = begin_;
    UPDATE_VECTOR_SIZE(this);
  }

  /**
   * Afterwards the vector has 0 elements and any allocated memory
   * will be freed.
   */
  void clear_and_make_inline()
  {
    destruct_n(begin_, this->size());
    if (!this->is_inline()) {
      allocator_.deallocate(begin_);
    }

    begin_ = inline_buffer_;
    end_ = begin_;
    capacity_end_ = begin_ + InlineBufferCapacity;
    UPDATE_VECTOR_SIZE(this);
  }

  /**
   * Insert a new element at the end of the vector.
   * This might cause a reallocation with the capacity is exceeded.
   *
   * This is similar to std::vector::push_back.
   */
  void append(const T &value)
  {
    this->append_as(value);
  }
  void append(T &&value)
  {
    this->append_as(std::move(value));
  }
  /* This is similar to `std::vector::emplace_back`. */
  template<typename... ForwardValue> void append_as(ForwardValue &&... value)
  {
    this->ensure_space_for_one();
    this->append_unchecked_as(std::forward<ForwardValue>(value)...);
  }

  /**
   * Append the value to the vector and return the index that can be used to access the newly
   * added value.
   */
  int64_t append_and_get_index(const T &value)
  {
    const int64_t index = this->size();
    this->append(value);
    return index;
  }

  /**
   * Append the value if it is not yet in the vector. This has to do a linear search to check if
   * the value is in the vector. Therefore, this should only be called when it is known that the
   * vector is small.
   */
  void append_non_duplicates(const T &value)
  {
    if (!this->contains(value)) {
      this->append(value);
    }
  }

  /**
   * Append the value and assume that vector has enough memory reserved. This invokes undefined
   * behavior when not enough capacity has been reserved beforehand. Only use this in performance
   * critical code.
   */
  void append_unchecked(const T &value)
  {
    this->append_unchecked_as(value);
  }
  void append_unchecked(T &&value)
  {
    this->append_unchecked_as(std::move(value));
  }
  template<typename... ForwardT> void append_unchecked_as(ForwardT &&... value)
  {
    BLI_assert(end_ < capacity_end_);
    new (end_) T(std::forward<ForwardT>(value)...);
    end_++;
    UPDATE_VECTOR_SIZE(this);
  }

  /**
   * Insert the same element n times at the end of the vector.
   * This might result in a reallocation internally.
   */
  void append_n_times(const T &value, const int64_t n)
  {
    BLI_assert(n >= 0);
    this->reserve(this->size() + n);
    uninitialized_fill_n(end_, n, value);
    this->increase_size_by_unchecked(n);
  }

  /**
   * Enlarges the size of the internal buffer that is considered to be initialized. This invokes
   * undefined behavior when when the new size is larger than the capacity. The method can be
   * useful when you want to call constructors in the vector yourself. This should only be done in
   * very rare cases and has to be justified every time.
   */
  void increase_size_by_unchecked(const int64_t n) noexcept
  {
    BLI_assert(end_ + n <= capacity_end_);
    end_ += n;
    UPDATE_VECTOR_SIZE(this);
  }

  /**
   * Copy the elements of another array to the end of this vector.
   *
   * This can be used to emulate parts of std::vector::insert.
   */
  void extend(Span<T> array)
  {
    this->extend(array.data(), array.size());
  }
  void extend(const T *start, int64_t amount)
  {
    this->reserve(this->size() + amount);
    this->extend_unchecked(start, amount);
  }

  /**
   * Adds all elements from the array that are not already in the vector. This is an expensive
   * operation when the vector is large, but can be very cheap when it is known that the vector is
   * small.
   */
  void extend_non_duplicates(Span<T> array)
  {
    for (const T &value : array) {
      this->append_non_duplicates(value);
    }
  }

  /**
   * Extend the vector without bounds checking. It is assumed that enough memory has been reserved
   * beforehand. Only use this in performance critical code.
   */
  void extend_unchecked(Span<T> array)
  {
    this->extend_unchecked(array.data(), array.size());
  }
  void extend_unchecked(const T *start, int64_t amount)
  {
    BLI_assert(amount >= 0);
    BLI_assert(begin_ + amount <= capacity_end_);
    uninitialized_copy_n(start, amount, end_);
    end_ += amount;
    UPDATE_VECTOR_SIZE(this);
  }

  template<typename InputIt> void extend(InputIt first, InputIt last)
  {
    this->insert(this->end(), first, last);
  }

  /**
   * Insert elements into the vector at the specified position. This has a running time of O(n)
   * where n is the number of values that have to be moved. Undefined behavior is invoked when the
   * insert position is out of bounds.
   */
  void insert(const int64_t insert_index, const T &value)
  {
    this->insert(insert_index, Span<T>(&value, 1));
  }
  void insert(const int64_t insert_index, T &&value)
  {
    this->insert(
        insert_index, std::make_move_iterator(&value), std::make_move_iterator(&value + 1));
  }
  void insert(const int64_t insert_index, Span<T> array)
  {
    this->insert(begin_ + insert_index, array.begin(), array.end());
  }
  template<typename InputIt> void insert(const T *insert_position, InputIt first, InputIt last)
  {
    const int64_t insert_index = insert_position - begin_;
    this->insert(insert_index, first, last);
  }
  template<typename InputIt> void insert(const int64_t insert_index, InputIt first, InputIt last)
  {
    BLI_assert(insert_index >= 0);
    BLI_assert(insert_index <= this->size());

    const int64_t insert_amount = std::distance(first, last);
    const int64_t old_size = this->size();
    const int64_t new_size = old_size + insert_amount;
    const int64_t move_amount = old_size - insert_index;

    this->reserve(new_size);
    for (int64_t i = 0; i < move_amount; i++) {
      const int64_t src_index = insert_index + move_amount - i - 1;
      const int64_t dst_index = new_size - i - 1;
      try {
        new (static_cast<void *>(begin_ + dst_index)) T(std::move(begin_[src_index]));
      }
      catch (...) {
        /* Destruct all values that have been moved already. */
        destruct_n(begin_ + dst_index + 1, i);
        end_ = begin_ + src_index + 1;
        UPDATE_VECTOR_SIZE(this);
        throw;
      }
      begin_[src_index].~T();
    }

    try {
      std::uninitialized_copy_n(first, insert_amount, begin_ + insert_index);
    }
    catch (...) {
      /* Destruct all values that have been moved. */
      destruct_n(begin_ + new_size - move_amount, move_amount);
      end_ = begin_ + insert_index;
      UPDATE_VECTOR_SIZE(this);
      throw;
    }
    end_ = begin_ + new_size;
    UPDATE_VECTOR_SIZE(this);
  }

  /**
   * Insert values at the beginning of the vector. The has to move all the other elements, so it
   * has a linear running time.
   */
  void prepend(const T &&value)
  {
    this->insert(0, value);
  }
  void prepend(T &&value)
  {
    this->insert(0, std::move(value));
  }
  void prepend(Span<T> values)
  {
    this->insert(0, values);
  }
  template<typename InputIt> void prepend(InputIt first, InputIt last)
  {
    this->insert(0, first, last);
  }

  /**
   * Return a reference to the last element in the vector.
   * This invokes undefined behavior when the vector is empty.
   */
  const T &last() const
  {
    BLI_assert(this->size() > 0);
    return *(end_ - 1);
  }
  T &last()
  {
    BLI_assert(this->size() > 0);
    return *(end_ - 1);
  }

  /**
   * Return a reference to the first element in the vector.
   * This invokes undefined behavior when the vector is empty.
   */
  const T &first() const
  {
    BLI_assert(this->size() > 0);
    return *begin_;
  }
  T &first()
  {
    BLI_assert(this->size() > 0);
    return *begin_;
  }

  /**
   * Return how many values are currently stored in the vector.
   */
  int64_t size() const
  {
    const int64_t current_size = static_cast<int64_t>(end_ - begin_);
    BLI_assert(debug_size_ == current_size);
    return current_size;
  }

  /**
   * Returns true when the vector contains no elements, otherwise false.
   *
   * This is the same as std::vector::empty.
   */
  bool is_empty() const
  {
    return begin_ == end_;
  }

  /**
   * Destructs the last element and decreases the size by one. This invokes undefined behavior when
   * the vector is empty.
   */
  void remove_last()
  {
    BLI_assert(!this->is_empty());
    end_--;
    end_->~T();
    UPDATE_VECTOR_SIZE(this);
  }

  /**
   * Remove the last element from the vector and return it. This invokes undefined behavior when
   * the vector is empty.
   *
   * This is similar to std::vector::pop_back.
   */
  T pop_last()
  {
    BLI_assert(!this->is_empty());
    T value = std::move(*(end_ - 1));
    end_--;
    end_->~T();
    UPDATE_VECTOR_SIZE(this);
    return value;
  }

  /**
   * Delete any element in the vector. The empty space will be filled by the previously last
   * element. This takes O(1) time.
   */
  void remove_and_reorder(const int64_t index)
  {
    BLI_assert(index >= 0);
    BLI_assert(index < this->size());
    T *element_to_remove = begin_ + index;
    T *last_element = end_ - 1;
    if (element_to_remove < last_element) {
      *element_to_remove = std::move(*last_element);
    }
    end_ = last_element;
    last_element->~T();
    UPDATE_VECTOR_SIZE(this);
  }

  /**
   * Finds the first occurrence of the value, removes it and copies the last element to the hole in
   * the vector. This takes O(n) time.
   */
  void remove_first_occurrence_and_reorder(const T &value)
  {
    const int64_t index = this->first_index_of(value);
    this->remove_and_reorder(index);
  }

  /**
   * Remove the element at the given index and move all values coming after it one towards the
   * front. This takes O(n) time. If the order is not important, remove_and_reorder should be used
   * instead.
   *
   * This is similar to std::vector::erase.
   */
  void remove(const int64_t index)
  {
    BLI_assert(index >= 0);
    BLI_assert(index < this->size());
    const int64_t last_index = this->size() - 1;
    for (int64_t i = index; i < last_index; i++) {
      begin_[i] = std::move(begin_[i + 1]);
    }
    begin_[last_index].~T();
    end_--;
    UPDATE_VECTOR_SIZE(this);
  }

  /**
   * Remove a contiguous chunk of elements and move all values coming after it towards the front.
   * This takes O(n) time.
   *
   * This is similar to std::vector::erase.
   */
  void remove(const int64_t start_index, const int64_t amount)
  {
    const int64_t old_size = this->size();
    BLI_assert(start_index >= 0);
    BLI_assert(amount >= 0);
    BLI_assert(start_index + amount <= old_size);
    const int64_t move_amount = old_size - start_index - amount;
    for (int64_t i = 0; i < move_amount; i++) {
      begin_[start_index + i] = std::move(begin_[start_index + amount + i]);
    }
    destruct_n(end_ - amount, amount);
    end_ -= amount;
    UPDATE_VECTOR_SIZE(this);
  }

  /**
   * Do a linear search to find the value in the vector.
   * When found, return the first index, otherwise return -1.
   */
  int64_t first_index_of_try(const T &value) const
  {
    for (const T *current = begin_; current != end_; current++) {
      if (*current == value) {
        return static_cast<int64_t>(current - begin_);
      }
    }
    return -1;
  }

  /**
   * Do a linear search to find the value in the vector and return the found index. This invokes
   * undefined behavior when the value is not in the vector.
   */
  int64_t first_index_of(const T &value) const
  {
    const int64_t index = this->first_index_of_try(value);
    BLI_assert(index >= 0);
    return index;
  }

  /**
   * Do a linear search to see of the value is in the vector.
   * Return true when it exists, otherwise false.
   */
  bool contains(const T &value) const
  {
    return this->first_index_of_try(value) != -1;
  }

  /**
   * Copies the given value to every element in the vector.
   */
  void fill(const T &value) const
  {
    initialized_fill_n(begin_, this->size(), value);
  }

  /**
   * Get access to the underlying array.
   */
  T *data()
  {
    return begin_;
  }

  /**
   * Get access to the underlying array.
   */
  const T *data() const
  {
    return begin_;
  }

  T *begin()
  {
    return begin_;
  }
  T *end()
  {
    return end_;
  }

  const T *begin() const
  {
    return begin_;
  }
  const T *end() const
  {
    return end_;
  }

  std::reverse_iterator<T *> rbegin()
  {
    return std::reverse_iterator<T *>(this->end());
  }
  std::reverse_iterator<T *> rend()
  {
    return std::reverse_iterator<T *>(this->begin());
  }

  std::reverse_iterator<const T *> rbegin() const
  {
    return std::reverse_iterator<T *>(this->end());
  }
  std::reverse_iterator<const T *> rend() const
  {
    return std::reverse_iterator<T *>(this->begin());
  }

  /**
   * Get the current capacity of the vector, i.e. the maximum number of elements the vector can
   * hold, before it has to reallocate.
   */
  int64_t capacity() const
  {
    return static_cast<int64_t>(capacity_end_ - begin_);
  }

  /**
   * Get an index range that makes looping over all indices more convenient and less error prone.
   * Obviously, this should only be used when you actually need the index in the loop.
   *
   * Example:
   *  for (int64_t i : myvector.index_range()) {
   *    do_something(i, my_vector[i]);
   *  }
   */
  IndexRange index_range() const
  {
    return IndexRange(this->size());
  }

  friend bool operator==(const Vector &a, const Vector &b)
  {
    return a.as_span() == b.as_span();
  }

  friend bool operator!=(const Vector &a, const Vector &b)
  {
    return !(a == b);
  }

  /**
   * Print some debug information about the vector.
   */
  void print_stats(StringRef name = "") const
  {
    std::cout << "Vector Stats: " << name << "\n";
    std::cout << "  Address: " << this << "\n";
    std::cout << "  Elements: " << this->size() << "\n";
    std::cout << "  Capacity: " << (capacity_end_ - begin_) << "\n";
    std::cout << "  Inline Capacity: " << InlineBufferCapacity << "\n";

    char memory_size_str[15];
    BLI_str_format_byte_unit(memory_size_str, sizeof(*this), true);
    std::cout << "  Size on Stack: " << memory_size_str << "\n";
  }

 private:
  bool is_inline() const
  {
    return begin_ == inline_buffer_;
  }

  void ensure_space_for_one()
  {
    if (UNLIKELY(end_ >= capacity_end_)) {
      this->realloc_to_at_least(this->size() + 1);
    }
  }

  BLI_NOINLINE void realloc_to_at_least(const int64_t min_capacity)
  {
    if (this->capacity() >= min_capacity) {
      return;
    }

    /* At least double the size of the previous allocation. Otherwise consecutive calls to grow can
     * cause a reallocation every time even though min_capacity only increments.  */
    const int64_t min_new_capacity = this->capacity() * 2;

    const int64_t new_capacity = std::max(min_capacity, min_new_capacity);
    const int64_t size = this->size();

    T *new_array = static_cast<T *>(
        allocator_.allocate(static_cast<size_t>(new_capacity) * sizeof(T), alignof(T), AT));
    try {
      uninitialized_relocate_n(begin_, size, new_array);
    }
    catch (...) {
      allocator_.deallocate(new_array);
      throw;
    }

    if (!this->is_inline()) {
      allocator_.deallocate(begin_);
    }

    begin_ = new_array;
    end_ = begin_ + size;
    capacity_end_ = begin_ + new_capacity;
  }
};

#undef UPDATE_VECTOR_SIZE

/**
 * Same as a normal Vector, but does not use Blender's guarded allocator. This is useful when
 * allocating memory with static storage duration.
 */
template<typename T, int64_t InlineBufferCapacity = default_inline_buffer_capacity(sizeof(T))>
using RawVector = Vector<T, InlineBufferCapacity, RawAllocator>;

} /* namespace blender */