Welcome to mirror list, hosted at ThFree Co, Russian Federation.

BLI_vector_set.hh « blenlib « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 14b38d564cb26e8a11d4734cca2e513dc43b8864 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
/*
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 */

#pragma once

/** \file
 * \ingroup bli
 *
 * A `blender::VectorSet<Key>` is an ordered container for elements of type `Key`. It has the same
 * interface as `blender::Set` with the following extensions:
 * - The insertion order of keys is maintained as long as no elements are removed.
 * - The keys are stored in a contiguous array.
 *
 * All core operations (add, remove and contains) can be done in O(1) amortized expected time.
 *
 * Using a VectorSet instead of a normal Set can be beneficial in any of the following
 * circumstances:
 * - The insertion order is important.
 * - Iteration over all keys has to be fast.
 * - The keys in the set are supposed to be passed to a function that does not have to know that
 *   the keys are stored in a set. With a VectorSet, one can get a Span containing all keys
 *   without additional copies.
 *
 * blender::VectorSet is implemented using open addressing in a slot array with a power-of-two
 * size. Other than in blender::Set, a slot does not contain the key though. Instead it only
 * contains an index into an array of keys that is stored separately.
 *
 * Some noteworthy information:
 * - Key must be a movable type.
 * - Pointers to keys might be invalidated, when the vector set is changed or moved.
 * - The hash function can be customized. See BLI_hash.hh for details.
 * - The probing strategy can be customized. See BLI_probing_strategies.hh for details.
 * - The slot type can be customized. See BLI_vector_set_slots.hh for details.
 * - The methods `add_new` and `remove_contained` should be used instead of `add` and `remove`
 *   whenever appropriate. Assumptions and intention are described better this way.
 * - Using a range-for loop over a vector set, is as efficient as iterating over an array (because
 *   it is the same thing).
 * - Lookups can be performed using types other than Key without conversion. For that use the
 *   methods ending with `_as`. The template parameters Hash and IsEqual have to support the other
 *   key type. This can greatly improve performance when the strings are used as keys.
 * - The default constructor is cheap.
 * - The `print_stats` method can be used to get information about the distribution of keys and
 *   memory usage.
 *
 * Possible Improvements:
 * - Small buffer optimization for the keys.
 */

#include "BLI_array.hh"
#include "BLI_hash.hh"
#include "BLI_hash_tables.hh"
#include "BLI_probing_strategies.hh"
#include "BLI_vector_set_slots.hh"

namespace blender {

template<
    /**
     * Type of the elements that are stored in this set. It has to be movable. Furthermore, the
     * hash and is-equal functions have to support it.
     */
    typename Key,
    /**
     * The strategy used to deal with collisions. They are defined in BLI_probing_strategies.hh.
     */
    typename ProbingStrategy = DefaultProbingStrategy,
    /**
     * The hash function used to hash the keys. There is a default for many types. See BLI_hash.hh
     * for examples on how to define a custom hash function.
     */
    typename Hash = DefaultHash<Key>,
    /**
     * The equality operator used to compare keys. By default it will simply compare keys using the
     * `==` operator.
     */
    typename IsEqual = DefaultEquality,
    /**
     * This is what will actually be stored in the hash table array. At a minimum a slot has to be
     * able to hold an array index and information about whether the slot is empty, occupied or
     * removed. Using a non-standard slot type can improve performance for some types.
     * Also see BLI_vector_set_slots.hh.
     */
    typename Slot = typename DefaultVectorSetSlot<Key>::type,
    /**
     * The allocator used by this set. Should rarely be changed, except when you don't want that
     * MEM_* etc. is used internally.
     */
    typename Allocator = GuardedAllocator>
class VectorSet {
 public:
  using value_type = Key;
  using pointer = Key *;
  using const_pointer = const Key *;
  using reference = Key &;
  using const_reference = const Key &;
  using iterator = Key *;
  using const_iterator = const Key *;
  using size_type = int64_t;

 private:
  /**
   * Slots are either empty, occupied or removed. The number of occupied slots can be computed by
   * subtracting the removed slots from the occupied-and-removed slots.
   */
  int64_t removed_slots_;
  int64_t occupied_and_removed_slots_;

  /**
   * The maximum number of slots that can be used (either occupied or removed) until the set has to
   * grow. This is the total number of slots times the max load factor.
   */
  int64_t usable_slots_;

  /**
   * The number of slots minus one. This is a bit mask that can be used to turn any integer into a
   * valid slot index efficiently.
   */
  uint64_t slot_mask_;

  /** This is called to hash incoming keys. */
  Hash hash_;

  /** This is called to check equality of two keys. */
  IsEqual is_equal_;

  /** The max load factor is 1/2 = 50% by default. */
#define LOAD_FACTOR 1, 2
  LoadFactor max_load_factor_ = LoadFactor(LOAD_FACTOR);
  using SlotArray = Array<Slot, LoadFactor::compute_total_slots(4, LOAD_FACTOR), Allocator>;
#undef LOAD_FACTOR

  /**
   * This is the array that contains the actual slots. There is always at least one empty slot and
   * the size of the array is a power of two.
   */
  SlotArray slots_;

  /**
   * Pointer to an array that contains all keys. The keys are sorted by insertion order as long as
   * no keys are removed. The first set->size() elements in this array are initialized. The
   * capacity of the array is usable_slots_.
   */
  Key *keys_ = nullptr;

  /** Iterate over a slot index sequence for a given hash. */
#define VECTOR_SET_SLOT_PROBING_BEGIN(HASH, R_SLOT) \
  SLOT_PROBING_BEGIN (ProbingStrategy, HASH, slot_mask_, SLOT_INDEX) \
    auto &R_SLOT = slots_[SLOT_INDEX];
#define VECTOR_SET_SLOT_PROBING_END() SLOT_PROBING_END()

 public:
  /**
   * Initialize an empty vector set. This is a cheap operation and won't do an allocation. This is
   * necessary to avoid a high cost when no elements are added at all. An optimized grow operation
   * is performed on the first insertion.
   */
  VectorSet(Allocator allocator = {}) noexcept
      : removed_slots_(0),
        occupied_and_removed_slots_(0),
        usable_slots_(0),
        slot_mask_(0),
        slots_(1, allocator),
        keys_(nullptr)
  {
  }

  VectorSet(NoExceptConstructor, Allocator allocator = {}) : VectorSet(allocator)
  {
  }

  VectorSet(Span<Key> keys, Allocator allocator = {}) : VectorSet(NoExceptConstructor(), allocator)
  {
    this->add_multiple(keys);
  }

  /**
   * Construct a vector set that contains the given keys. Duplicates will be removed automatically.
   */
  VectorSet(const std::initializer_list<Key> &keys, Allocator allocator = {})
      : VectorSet(Span(keys), allocator)
  {
  }

  ~VectorSet()
  {
    destruct_n(keys_, this->size());
    if (keys_ != nullptr) {
      this->deallocate_keys_array(keys_);
    }
  }

  VectorSet(const VectorSet &other) : slots_(other.slots_)
  {
    keys_ = this->allocate_keys_array(other.usable_slots_);
    try {
      uninitialized_copy_n(other.keys_, other.size(), keys_);
    }
    catch (...) {
      this->deallocate_keys_array(keys_);
      throw;
    }

    removed_slots_ = other.removed_slots_;
    occupied_and_removed_slots_ = other.occupied_and_removed_slots_;
    usable_slots_ = other.usable_slots_;
    slot_mask_ = other.slot_mask_;
    hash_ = other.hash_;
    is_equal_ = other.is_equal_;
  }

  VectorSet(VectorSet &&other) noexcept
      : removed_slots_(other.removed_slots_),
        occupied_and_removed_slots_(other.occupied_and_removed_slots_),
        usable_slots_(other.usable_slots_),
        slot_mask_(other.slot_mask_),
        slots_(std::move(other.slots_)),
        keys_(other.keys_)
  {
    other.removed_slots_ = 0;
    other.occupied_and_removed_slots_ = 0;
    other.usable_slots_ = 0;
    other.slot_mask_ = 0;
    other.slots_ = SlotArray(1);
    other.keys_ = nullptr;
  }

  VectorSet &operator=(const VectorSet &other)
  {
    return copy_assign_container(*this, other);
  }

  VectorSet &operator=(VectorSet &&other)
  {
    return move_assign_container(*this, std::move(other));
  }

  /**
   * Get the key stored at the given position in the vector.
   */
  const Key &operator[](const int64_t index) const
  {
    BLI_assert(index >= 0);
    BLI_assert(index <= this->size());
    return keys_[index];
  }

  operator Span<Key>() const
  {
    return Span<Key>(keys_, this->size());
  }

  /**
   * Get an Span referencing the keys vector. The referenced memory buffer is only valid as
   * long as the vector set is not changed.
   *
   * The keys must not be changed, because this would change their hash value.
   */
  Span<Key> as_span() const
  {
    return *this;
  }

  /**
   * Add a new key to the vector set. This invokes undefined behavior when the key is in the set
   * already. When you know for certain that a key is not in the set yet, use this method for
   * better performance. This also expresses the intent better.
   */
  void add_new(const Key &key)
  {
    this->add_new__impl(key, hash_(key));
  }
  void add_new(Key &&key)
  {
    this->add_new__impl(std::move(key), hash_(key));
  }

  /**
   * Add a key to the vector set. If the key exists in the set already, nothing is done. The return
   * value is true if the key was newly added.
   *
   * This is similar to std::unordered_set::insert.
   */
  bool add(const Key &key)
  {
    return this->add_as(key);
  }
  bool add(Key &&key)
  {
    return this->add_as(std::move(key));
  }
  template<typename ForwardKey> bool add_as(ForwardKey &&key)
  {
    return this->add__impl(std::forward<ForwardKey>(key), hash_(key));
  }

  /**
   * Convenience function to add many keys to the vector set at once. Duplicates are removed
   * automatically.
   *
   * We might be able to make this faster than sequentially adding all keys, but that is not
   * implemented yet.
   */
  void add_multiple(Span<Key> keys)
  {
    for (const Key &key : keys) {
      this->add(key);
    }
  }

  /**
   * Returns true if the key is in the vector set.
   *
   * This is similar to std::unordered_set::find() != std::unordered_set::end().
   */
  bool contains(const Key &key) const
  {
    return this->contains_as(key);
  }
  template<typename ForwardKey> bool contains_as(const ForwardKey &key) const
  {
    return this->contains__impl(key, hash_(key));
  }

  /**
   * Deletes the key from the set. Returns true when the key existed in the set and is now removed.
   * This might change the order of elements in the vector.
   *
   * This is similar to std::unordered_set::erase.
   */
  bool remove(const Key &key)
  {
    return this->remove_as(key);
  }
  template<typename ForwardKey> bool remove_as(const ForwardKey &key)
  {
    return this->remove__impl(key, hash_(key));
  }

  /**
   * Deletes the key from the set. This invokes undefined behavior when the key is not in the set.
   * It might change the order of elements in the vector.
   */
  void remove_contained(const Key &key)
  {
    this->remove_contained_as(key);
  }
  template<typename ForwardKey> void remove_contained_as(const ForwardKey &key)
  {
    this->remove_contained__impl(key, hash_(key));
  }

  /**
   * Delete and return a key from the set. This will remove the last element in the vector. The
   * order of the remaining elements in the set is not changed.
   */
  Key pop()
  {
    return this->pop__impl();
  }

  /**
   * Return the location of the key in the vector. It is assumed, that the key is in the vector
   * set. If this is not necessarily the case, use `index_of_try`.
   */
  int64_t index_of(const Key &key) const
  {
    return this->index_of_as(key);
  }
  template<typename ForwardKey> int64_t index_of_as(const ForwardKey &key) const
  {
    return this->index_of__impl(key, hash_(key));
  }

  /**
   * Return the location of the key in the vector. If the key is not in the set, -1 is returned.
   * If you know for sure that the key is in the set, it is better to use `index_of` instead.
   */
  int64_t index_of_try(const Key &key) const
  {
    return this->index_of_try_as(key);
  }
  template<typename ForwardKey> int64_t index_of_try_as(const ForwardKey &key) const
  {
    return this->index_of_try__impl(key, hash_(key));
  }

  /**
   * Get a pointer to the beginning of the array containing all keys.
   */
  const Key *data() const
  {
    return keys_;
  }

  const Key *begin() const
  {
    return keys_;
  }

  const Key *end() const
  {
    return keys_ + this->size();
  }

  /**
   * Print common statistics like size and collision count. This is useful for debugging purposes.
   */
  void print_stats(StringRef name = "") const
  {
    HashTableStats stats(*this, this->as_span());
    stats.print(name);
  }

  /**
   * Returns the number of keys stored in the vector set.
   */
  int64_t size() const
  {
    return occupied_and_removed_slots_ - removed_slots_;
  }

  /**
   * Returns true if no keys are stored.
   */
  bool is_empty() const
  {
    return occupied_and_removed_slots_ == removed_slots_;
  }

  /**
   * Returns the number of available slots. This is mostly for debugging purposes.
   */
  int64_t capacity() const
  {
    return slots_.size();
  }

  /**
   * Returns the amount of removed slots in the set. This is mostly for debugging purposes.
   */
  int64_t removed_amount() const
  {
    return removed_slots_;
  }

  /**
   * Returns the bytes required per element. This is mostly for debugging purposes.
   */
  int64_t size_per_element() const
  {
    return sizeof(Slot) + sizeof(Key);
  }

  /**
   * Returns the approximate memory requirements of the set in bytes. This is more correct for
   * larger sets.
   */
  int64_t size_in_bytes() const
  {
    return static_cast<int64_t>(sizeof(Slot) * slots_.size() + sizeof(Key) * usable_slots_);
  }

  /**
   * Potentially resize the vector set such that it can hold n elements without doing another grow.
   */
  void reserve(const int64_t n)
  {
    if (usable_slots_ < n) {
      this->realloc_and_reinsert(n);
    }
  }

  /**
   * Get the number of collisions that the probing strategy has to go through to find the key or
   * determine that it is not in the set.
   */
  int64_t count_collisions(const Key &key) const
  {
    return this->count_collisions__impl(key, hash_(key));
  }

 private:
  BLI_NOINLINE void realloc_and_reinsert(const int64_t min_usable_slots)
  {
    int64_t total_slots, usable_slots;
    max_load_factor_.compute_total_and_usable_slots(
        SlotArray::inline_buffer_capacity(), min_usable_slots, &total_slots, &usable_slots);
    BLI_assert(total_slots >= 1);
    const uint64_t new_slot_mask = static_cast<uint64_t>(total_slots) - 1;

    /* Optimize the case when the set was empty beforehand. We can avoid some copies here. */
    if (this->size() == 0) {
      try {
        slots_.reinitialize(total_slots);
        keys_ = this->allocate_keys_array(usable_slots);
      }
      catch (...) {
        this->noexcept_reset();
        throw;
      }
      removed_slots_ = 0;
      occupied_and_removed_slots_ = 0;
      usable_slots_ = usable_slots;
      slot_mask_ = new_slot_mask;
      return;
    }

    SlotArray new_slots(total_slots);

    try {
      for (Slot &slot : slots_) {
        if (slot.is_occupied()) {
          this->add_after_grow(slot, new_slots, new_slot_mask);
          slot.remove();
        }
      }
      slots_ = std::move(new_slots);
    }
    catch (...) {
      this->noexcept_reset();
      throw;
    }

    Key *new_keys = this->allocate_keys_array(usable_slots);
    try {
      uninitialized_relocate_n(keys_, this->size(), new_keys);
    }
    catch (...) {
      this->deallocate_keys_array(new_keys);
      this->noexcept_reset();
      throw;
    }
    this->deallocate_keys_array(keys_);

    keys_ = new_keys;
    occupied_and_removed_slots_ -= removed_slots_;
    usable_slots_ = usable_slots;
    removed_slots_ = 0;
    slot_mask_ = new_slot_mask;
  }

  void add_after_grow(Slot &old_slot, SlotArray &new_slots, const uint64_t new_slot_mask)
  {
    const Key &key = keys_[old_slot.index()];
    const uint64_t hash = old_slot.get_hash(key, Hash());

    SLOT_PROBING_BEGIN (ProbingStrategy, hash, new_slot_mask, slot_index) {
      Slot &slot = new_slots[slot_index];
      if (slot.is_empty()) {
        slot.occupy(old_slot.index(), hash);
        return;
      }
    }
    SLOT_PROBING_END();
  }

  void noexcept_reset() noexcept
  {
    Allocator allocator = slots_.allocator();
    this->~VectorSet();
    new (this) VectorSet(NoExceptConstructor(), allocator);
  }

  template<typename ForwardKey>
  bool contains__impl(const ForwardKey &key, const uint64_t hash) const
  {
    VECTOR_SET_SLOT_PROBING_BEGIN (hash, slot) {
      if (slot.is_empty()) {
        return false;
      }
      if (slot.contains(key, is_equal_, hash, keys_)) {
        return true;
      }
    }
    VECTOR_SET_SLOT_PROBING_END();
  }

  template<typename ForwardKey> void add_new__impl(ForwardKey &&key, const uint64_t hash)
  {
    BLI_assert(!this->contains_as(key));

    this->ensure_can_add();

    VECTOR_SET_SLOT_PROBING_BEGIN (hash, slot) {
      if (slot.is_empty()) {
        int64_t index = this->size();
        new (keys_ + index) Key(std::forward<ForwardKey>(key));
        slot.occupy(index, hash);
        occupied_and_removed_slots_++;
        return;
      }
    }
    VECTOR_SET_SLOT_PROBING_END();
  }

  template<typename ForwardKey> bool add__impl(ForwardKey &&key, const uint64_t hash)
  {
    this->ensure_can_add();

    VECTOR_SET_SLOT_PROBING_BEGIN (hash, slot) {
      if (slot.is_empty()) {
        int64_t index = this->size();
        new (keys_ + index) Key(std::forward<ForwardKey>(key));
        slot.occupy(index, hash);
        occupied_and_removed_slots_++;
        return true;
      }
      if (slot.contains(key, is_equal_, hash, keys_)) {
        return false;
      }
    }
    VECTOR_SET_SLOT_PROBING_END();
  }

  template<typename ForwardKey>
  int64_t index_of__impl(const ForwardKey &key, const uint64_t hash) const
  {
    BLI_assert(this->contains_as(key));

    VECTOR_SET_SLOT_PROBING_BEGIN (hash, slot) {
      if (slot.contains(key, is_equal_, hash, keys_)) {
        return slot.index();
      }
    }
    VECTOR_SET_SLOT_PROBING_END();
  }

  template<typename ForwardKey>
  int64_t index_of_try__impl(const ForwardKey &key, const uint64_t hash) const
  {
    VECTOR_SET_SLOT_PROBING_BEGIN (hash, slot) {
      if (slot.contains(key, is_equal_, hash, keys_)) {
        return slot.index();
      }
      if (slot.is_empty()) {
        return -1;
      }
    }
    VECTOR_SET_SLOT_PROBING_END();
  }

  Key pop__impl()
  {
    BLI_assert(this->size() > 0);

    const int64_t index_to_pop = this->size() - 1;
    Key key = std::move(keys_[index_to_pop]);
    keys_[index_to_pop].~Key();
    const uint64_t hash = hash_(key);

    removed_slots_++;

    VECTOR_SET_SLOT_PROBING_BEGIN (hash, slot) {
      if (slot.has_index(index_to_pop)) {
        slot.remove();
        return key;
      }
    }
    VECTOR_SET_SLOT_PROBING_END();
  }

  template<typename ForwardKey> bool remove__impl(const ForwardKey &key, const uint64_t hash)
  {
    VECTOR_SET_SLOT_PROBING_BEGIN (hash, slot) {
      if (slot.contains(key, is_equal_, hash, keys_)) {
        this->remove_key_internal(slot);
        return true;
      }
      if (slot.is_empty()) {
        return false;
      }
    }
    VECTOR_SET_SLOT_PROBING_END();
  }

  template<typename ForwardKey>
  void remove_contained__impl(const ForwardKey &key, const uint64_t hash)
  {
    BLI_assert(this->contains_as(key));

    VECTOR_SET_SLOT_PROBING_BEGIN (hash, slot) {
      if (slot.contains(key, is_equal_, hash, keys_)) {
        this->remove_key_internal(slot);
        return;
      }
    }
    VECTOR_SET_SLOT_PROBING_END();
  }

  void remove_key_internal(Slot &slot)
  {
    int64_t index_to_remove = slot.index();
    int64_t size = this->size();
    int64_t last_element_index = size - 1;

    if (index_to_remove < last_element_index) {
      keys_[index_to_remove] = std::move(keys_[last_element_index]);
      this->update_slot_index(keys_[index_to_remove], last_element_index, index_to_remove);
    }

    keys_[last_element_index].~Key();
    slot.remove();
    removed_slots_++;
    return;
  }

  void update_slot_index(const Key &key, const int64_t old_index, const int64_t new_index)
  {
    uint64_t hash = hash_(key);
    VECTOR_SET_SLOT_PROBING_BEGIN (hash, slot) {
      if (slot.has_index(old_index)) {
        slot.update_index(new_index);
        return;
      }
    }
    VECTOR_SET_SLOT_PROBING_END();
  }

  template<typename ForwardKey>
  int64_t count_collisions__impl(const ForwardKey &key, const uint64_t hash) const
  {
    int64_t collisions = 0;

    VECTOR_SET_SLOT_PROBING_BEGIN (hash, slot) {
      if (slot.contains(key, is_equal_, hash, keys_)) {
        return collisions;
      }
      if (slot.is_empty()) {
        return collisions;
      }
      collisions++;
    }
    VECTOR_SET_SLOT_PROBING_END();
  }

  void ensure_can_add()
  {
    if (occupied_and_removed_slots_ >= usable_slots_) {
      this->realloc_and_reinsert(this->size() + 1);
      BLI_assert(occupied_and_removed_slots_ < usable_slots_);
    }
  }

  Key *allocate_keys_array(const int64_t size)
  {
    return static_cast<Key *>(
        slots_.allocator().allocate(sizeof(Key) * static_cast<size_t>(size), alignof(Key), AT));
  }

  void deallocate_keys_array(Key *keys)
  {
    slots_.allocator().deallocate(keys);
  }
};

/**
 * Same as a normal VectorSet, but does not use Blender's guarded allocator. This is useful when
 * allocating memory with static storage duration.
 */
template<typename Key,
         typename ProbingStrategy = DefaultProbingStrategy,
         typename Hash = DefaultHash<Key>,
         typename IsEqual = DefaultEquality,
         typename Slot = typename DefaultVectorSetSlot<Key>::type>
using RawVectorSet = VectorSet<Key, ProbingStrategy, Hash, IsEqual, Slot, RawAllocator>;

}  // namespace blender