Welcome to mirror list, hosted at ThFree Co, Russian Federation.

BLI_virtual_array.hh « blenlib « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: f9b0aaa7de6c2ac9f55cf4a8eeb90dd80f29e05b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
/*
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 */

#pragma once

/** \file
 * \ingroup bli
 *
 * A virtual array is a data structure that behaves similar to an array, but its elements are
 * accessed through virtual methods. This improves the decoupling of a function from its callers,
 * because it does not have to know exactly how the data is laid out in memory, or if it is stored
 * in memory at all. It could just as well be computed on the fly.
 *
 * Taking a virtual array as parameter instead of a more specific non-virtual type has some
 * tradeoffs. Access to individual elements of the individual elements is higher due to function
 * call overhead. On the other hand, potential callers don't have to convert the data into the
 * specific format required for the function. This can be a costly conversion if only few of the
 * elements are accessed in the end.
 *
 * Functions taking a virtual array as input can still optimize for different data layouts. For
 * example, they can check if the array is stored as an array internally or if it is the same
 * element for all indices. Whether it is worth to optimize for different data layouts in a
 * function has to be decided on a case by case basis. One should always do some benchmarking to
 * see of the increased compile time and binary size is worth it.
 */

#include "BLI_span.hh"

namespace blender {

/* An immutable virtual array. */
template<typename T> class VArray {
 protected:
  int64_t size_;

 public:
  VArray(const int64_t size) : size_(size)
  {
    BLI_assert(size_ >= 0);
  }

  virtual ~VArray() = default;

  T get(const int64_t index) const
  {
    BLI_assert(index >= 0);
    BLI_assert(index < size_);
    return this->get_impl(index);
  }

  int64_t size() const
  {
    return size_;
  }

  bool is_empty() const
  {
    return size_ == 0;
  }

  /* Returns true when the virtual array is stored as a span internally. */
  bool is_span() const
  {
    if (size_ == 0) {
      return true;
    }
    return this->is_span_impl();
  }

  /* Returns the internally used span of the virtual array. This invokes undefined behavior is the
   * virtual array is not stored as a span internally. */
  Span<T> get_span() const
  {
    BLI_assert(this->is_span());
    if (size_ == 0) {
      return {};
    }
    return this->get_span_impl();
  }

  /* Returns true when the virtual array returns the same value for every index. */
  bool is_single() const
  {
    if (size_ == 1) {
      return true;
    }
    return this->is_single_impl();
  }

  /* Returns the value that is returned for every index. This invokes undefined behavior if the
   * virtual array would not return the same value for every index. */
  T get_single() const
  {
    BLI_assert(this->is_single());
    if (size_ == 1) {
      return this->get(0);
    }
    return this->get_single_impl();
  }

  T operator[](const int64_t index) const
  {
    return this->get(index);
  }

 protected:
  virtual T get_impl(const int64_t index) const = 0;

  virtual bool is_span_impl() const
  {
    return false;
  }

  virtual Span<T> get_span_impl() const
  {
    BLI_assert_unreachable();
    return {};
  }

  virtual bool is_single_impl() const
  {
    return false;
  }

  virtual T get_single_impl() const
  {
    /* Provide a default implementation, so that subclasses don't have to provide it. This method
     * should never be called because `is_single_impl` returns false by default. */
    BLI_assert_unreachable();
    return T();
  }
};

/**
 * A virtual array implementation for a span. This class is final so that it can be devirtualized
 * by the compiler in some cases (e.g. when #devirtualize_varray is used).
 */
template<typename T> class VArrayForSpan final : public VArray<T> {
 private:
  const T *data_;

 public:
  VArrayForSpan(const Span<T> data) : VArray<T>(data.size()), data_(data.data())
  {
  }

 protected:
  T get_impl(const int64_t index) const override
  {
    return data_[index];
  }

  bool is_span_impl() const override
  {
    return true;
  }

  Span<T> get_span_impl() const override
  {
    return Span<T>(data_, this->size_);
  }
};

/**
 * A virtual array implementation that returns the same value for every index. This class is final
 * so that it can be devirtualized by the compiler in some cases (e.g. when #devirtualize_varray is
 * used).
 */
template<typename T> class VArrayForSingle final : public VArray<T> {
 private:
  T value_;

 public:
  VArrayForSingle(T value, const int64_t size) : VArray<T>(size), value_(std::move(value))
  {
  }

 protected:
  T get_impl(const int64_t UNUSED(index)) const override
  {
    return value_;
  }

  bool is_span_impl() const override
  {
    return this->size_ == 1;
  }

  Span<T> get_span_impl() const override
  {
    return Span<T>(&value_, 1);
  }

  bool is_single_impl() const override
  {
    return true;
  }

  T get_single_impl() const override
  {
    return value_;
  }
};

/**
 * Generate multiple versions of the given function optimized for different virtual arrays.
 * One has to be careful with nesting multiple devirtualizations, because that results in an
 * exponential number of function instantiations (increasing compile time and binary size).
 *
 * Generally, this function should only be used when the virtual method call overhead to get an
 * element from a virtual array is significant.
 */
template<typename T, typename Func>
inline void devirtualize_varray(const VArray<T> &varray, const Func &func, bool enable = true)
{
  /* Support disabling the devirtualization to simplify benchmarking. */
  if (enable) {
    if (varray.is_single()) {
      /* `VArrayForSingle` can be used for devirtualization, because it is declared `final`. */
      const VArrayForSingle<T> varray_single{varray.get_single(), varray.size()};
      func(varray_single);
      return;
    }
    if (varray.is_span()) {
      /* `VArrayForSpan` can be used for devirtualization, because it is declared `final`. */
      const VArrayForSpan<T> varray_span{varray.get_span()};
      func(varray_span);
      return;
    }
  }
  func(varray);
}

/**
 * Same as `devirtualize_varray`, but devirtualizes two virtual arrays at the same time.
 * This is better than nesting two calls to `devirtualize_varray`, because it instantiates fewer
 * cases.
 */
template<typename T1, typename T2, typename Func>
inline void devirtualize_varray2(const VArray<T1> &varray1,
                                 const VArray<T2> &varray2,
                                 const Func &func,
                                 bool enable = true)
{
  /* Support disabling the devirtualization to simplify benchmarking. */
  if (enable) {
    const bool is_span1 = varray1.is_span();
    const bool is_span2 = varray2.is_span();
    const bool is_single1 = varray1.is_single();
    const bool is_single2 = varray2.is_single();
    if (is_span1 && is_span2) {
      const VArrayForSpan<T1> varray1_span{varray1.get_span()};
      const VArrayForSpan<T2> varray2_span{varray2.get_span()};
      func(varray1_span, varray2_span);
      return;
    }
    if (is_span1 && is_single2) {
      const VArrayForSpan<T1> varray1_span{varray1.get_span()};
      const VArrayForSingle<T2> varray2_single{varray2.get_single(), varray2.size()};
      func(varray1_span, varray2_single);
      return;
    }
    if (is_single1 && is_span2) {
      const VArrayForSingle<T1> varray1_single{varray1.get_single(), varray1.size()};
      const VArrayForSpan<T2> varray2_span{varray2.get_span()};
      func(varray1_single, varray2_span);
      return;
    }
    if (is_single1 && is_single2) {
      const VArrayForSingle<T1> varray1_single{varray1.get_single(), varray1.size()};
      const VArrayForSingle<T2> varray2_single{varray2.get_single(), varray2.size()};
      func(varray1_single, varray2_single);
      return;
    }
  }
  /* This fallback is used even when one of the inputs could be optimized. It's probably not worth
   * it to optimize just one of the inputs, because then the compiler still has to call into
   * unknown code, which inhibits many compiler optimizations. */
  func(varray1, varray2);
}

}  // namespace blender