Welcome to mirror list, hosted at ThFree Co, Russian Federation.

BLI_kdopbvh.c « intern « blenlib « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: ddea701dac51b1e3103471e533a9f0b5b4be9a2a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
/**
 *
 * $Id$
 *
 * ***** BEGIN GPL LICENSE BLOCK *****
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
 *
 * The Original Code is Copyright (C) 2006 by NaN Holding BV.
 * All rights reserved.
 *
 * The Original Code is: all of this file.
 *
 * Contributor(s): Daniel Genrich, Andre Pinto
 *
 * ***** END GPL LICENSE BLOCK *****
 */

#include "math.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>

#include "MEM_guardedalloc.h"

#include "BKE_utildefines.h"

#include "BLI_kdopbvh.h"
#include "BLI_arithb.h"

#ifdef _OPENMP
#include <omp.h>
#endif

typedef struct BVHNode
{
	struct BVHNode **children;	// max 8 children
	struct BVHNode *parent; // needed for bottom - top update
	float *bv;		// Bounding volume of all nodes, max 13 axis
	int index;		// face, edge, vertex index
	char totnode;	// how many nodes are used, used for speedup
	char traversed;  // how many nodes already traversed until this level?
	char main_axis;
} BVHNode;

struct BVHTree
{
	BVHNode **nodes;
	BVHNode *nodearray; /* pre-alloc branch nodes */
	BVHNode **nodechild;	// pre-alloc childs for nodes
	float	*nodebv;		// pre-alloc bounding-volumes for nodes
	float 	epsilon; /* epslion is used for inflation of the k-dop	   */
	int 	totleaf; // leafs
	int 	totbranch;
	char 	tree_type; // type of tree (4 => quadtree)
	char 	axis; // kdop type (6 => OBB, 7 => AABB, ...)
	char 	start_axis, stop_axis; // KDOP_AXES array indices according to axis
};

typedef struct BVHOverlapData 
{  
	BVHTree *tree1, *tree2; 
	BVHTreeOverlap *overlap; 
	int i, max_overlap; /* i is number of overlaps */
} BVHOverlapData;

typedef struct BVHNearestData
{
	BVHTree *tree;
	float	*co;
	BVHTree_NearestPointCallback callback;
	void	*userdata;
	float proj[13];			//coordinates projection over axis
	BVHTreeNearest nearest;

} BVHNearestData;

typedef struct BVHRayCastData
{
	BVHTree *tree;

	BVHTree_RayCastCallback callback;
	void	*userdata;


	BVHTreeRay    ray;
	float ray_dot_axis[13];

	BVHTreeRayHit hit;
} BVHRayCastData;
////////////////////////////////////////m


////////////////////////////////////////////////////////////////////////
// Bounding Volume Hierarchy Definition
// 
// Notes: From OBB until 26-DOP --> all bounding volumes possible, just choose type below
// Notes: You have to choose the type at compile time ITM
// Notes: You can choose the tree type --> binary, quad, octree, choose below
////////////////////////////////////////////////////////////////////////

static float KDOP_AXES[13][3] =
{ {1.0, 0, 0}, {0, 1.0, 0}, {0, 0, 1.0}, {1.0, 1.0, 1.0}, {1.0, -1.0, 1.0}, {1.0, 1.0, -1.0},
{1.0, -1.0, -1.0}, {1.0, 1.0, 0}, {1.0, 0, 1.0}, {0, 1.0, 1.0}, {1.0, -1.0, 0}, {1.0, 0, -1.0},
{0, 1.0, -1.0}
};

//////////////////////////////////////////////////////////////////////////////////////////////////////
// Introsort 
// with permission deriven from the following Java code:
// http://ralphunden.net/content/tutorials/a-guide-to-introsort/
// and he derived it from the SUN STL 
//////////////////////////////////////////////////////////////////////////////////////////////////////
static int size_threshold = 16;
/*
* Common methods for all algorithms
*/
static int floor_lg(int a)
{
	return (int)(floor(log(a)/log(2)));
}

/*
* Insertion sort algorithm
*/
static void bvh_insertionsort(BVHNode **a, int lo, int hi, int axis)
{
	int i,j;
	BVHNode *t;
	for (i=lo; i < hi; i++)
	{
		j=i;
		t = a[i];
		while((j!=lo) && (t->bv[axis] < (a[j-1])->bv[axis]))
		{
			a[j] = a[j-1];
			j--;
		}
		a[j] = t;
	}
}

static int bvh_partition(BVHNode **a, int lo, int hi, BVHNode * x, int axis)
{
	int i=lo, j=hi;
	while (1)
	{
		while ((a[i])->bv[axis] < x->bv[axis]) i++;
		j--;
		while (x->bv[axis] < (a[j])->bv[axis]) j--;
		if(!(i < j))
			return i;
		SWAP( BVHNode* , a[i], a[j]);
		i++;
	}
}

/*
* Heapsort algorithm
*/
static void bvh_downheap(BVHNode **a, int i, int n, int lo, int axis)
{
	BVHNode * d = a[lo+i-1];
	int child;
	while (i<=n/2)
	{
		child = 2*i;
		if ((child < n) && ((a[lo+child-1])->bv[axis] < (a[lo+child])->bv[axis]))
		{
			child++;
		}
		if (!(d->bv[axis] < (a[lo+child-1])->bv[axis])) break;
		a[lo+i-1] = a[lo+child-1];
		i = child;
	}
	a[lo+i-1] = d;
}

static void bvh_heapsort(BVHNode **a, int lo, int hi, int axis)
{
	int n = hi-lo, i;
	for (i=n/2; i>=1; i=i-1)
	{
		bvh_downheap(a, i,n,lo, axis);
	}
	for (i=n; i>1; i=i-1)
	{
		SWAP(BVHNode*, a[lo],a[lo+i-1]);
		bvh_downheap(a, 1,i-1,lo, axis);
	}
}

static BVHNode *bvh_medianof3(BVHNode **a, int lo, int mid, int hi, int axis) // returns Sortable
{
	if ((a[mid])->bv[axis] < (a[lo])->bv[axis])
	{
		if ((a[hi])->bv[axis] < (a[mid])->bv[axis])
			return a[mid];
		else
		{
			if ((a[hi])->bv[axis] < (a[lo])->bv[axis])
				return a[hi];
			else
				return a[lo];
		}
	}
	else
	{
		if ((a[hi])->bv[axis] < (a[mid])->bv[axis])
		{
			if ((a[hi])->bv[axis] < (a[lo])->bv[axis])
				return a[lo];
			else
				return a[hi];
		}
		else
			return a[mid];
	}
}
/*
* Quicksort algorithm modified for Introsort
*/
static void bvh_introsort_loop (BVHNode **a, int lo, int hi, int depth_limit, int axis)
{
	int p;

	while (hi-lo > size_threshold)
	{
		if (depth_limit == 0)
		{
			bvh_heapsort(a, lo, hi, axis);
			return;
		}
		depth_limit=depth_limit-1;
		p=bvh_partition(a, lo, hi, bvh_medianof3(a, lo, lo+((hi-lo)/2)+1, hi-1, axis), axis);
		bvh_introsort_loop(a, p, hi, depth_limit, axis);
		hi=p;
	}
}

static void sort(BVHNode **a0, int begin, int end, int axis)
{
	if (begin < end)
	{
		BVHNode **a=a0;
		bvh_introsort_loop(a, begin, end, 2*floor_lg(end-begin), axis);
		bvh_insertionsort(a, begin, end, axis);
	}
}
void sort_along_axis(BVHTree *tree, int start, int end, int axis)
{
	sort(tree->nodes, start, end, axis);
}

//after a call to this function you can expect one of:
//      every node to left of a[n] are smaller or equal to it
//      every node to the right of a[n] are greater or equal to it
int partition_nth_element(BVHNode **a, int _begin, int _end, int n, int axis){
	int begin = _begin, end = _end, cut;
	while(end-begin > 3)
	{
		cut = bvh_partition(a, begin, end, bvh_medianof3(a, begin, (begin+end)/2, end-1, axis), axis );
		if(cut <= n)
			begin = cut;
		else
			end = cut;
	}
	bvh_insertionsort(a, begin, end, axis);

	return n;
}

//////////////////////////////////////////////////////////////////////////////////////////////////////

void BLI_bvhtree_free(BVHTree *tree)
{	
	if(tree)
	{
		MEM_freeN(tree->nodes);
		MEM_freeN(tree->nodearray);
		MEM_freeN(tree->nodebv);
		MEM_freeN(tree->nodechild);
		MEM_freeN(tree);
	}
}

// calculate max number of branches
int needed_branches(int tree_type, int leafs)
{
#if 1
	//Worst case scenary  ( return max(0, leafs-tree_type)+1 )
	if(leafs <= tree_type)
		return 1;
	else
		return leafs-tree_type+1;

#else
	//If our bvh kdop is "almost perfect"
	//TODO i dont trust the float arithmetic in here (and I am not sure this formula is according to our splitting method)
	int i, numbranches = 0;
	for(i = 1; i <= (int)ceil((float)((float)log(leafs)/(float)log(tree_type))); i++)
		numbranches += (pow(tree_type, i) / tree_type);

	return numbranches;
#endif
}
		

BVHTree *BLI_bvhtree_new(int maxsize, float epsilon, char tree_type, char axis)
{
	BVHTree *tree;
	int numnodes, i;
	
	// theres not support for trees below binary-trees :P
	if(tree_type < 2)
		return NULL;

	tree = (BVHTree *)MEM_callocN(sizeof(BVHTree), "BVHTree");
	
	if(tree)
	{
		tree->epsilon = epsilon;
		tree->tree_type = tree_type; 
		tree->axis = axis;
		
		if(axis == 26)
		{
			tree->start_axis = 0;
			tree->stop_axis = 13;
		}
		else if(axis == 18)
		{
			tree->start_axis = 7;
			tree->stop_axis = 13;
		}
		else if(axis == 14)
		{
			tree->start_axis = 0;
			tree->stop_axis = 7;
		}
		else if(axis == 8) // AABB
		{
			tree->start_axis = 0;
			tree->stop_axis = 4;
		}
		else if(axis == 6) // OBB
		{
			tree->start_axis = 0;
			tree->stop_axis = 3;
		}
		else
		{
			MEM_freeN(tree);
			return NULL;
		}


		//Allocate arrays
		numnodes = maxsize + needed_branches(tree_type, maxsize) + tree_type;

		tree->nodes = (BVHNode **)MEM_callocN(sizeof(BVHNode *)*numnodes, "BVHNodes");
		
		if(!tree->nodes)
		{
			MEM_freeN(tree);
			return NULL;
		}
		
		tree->nodebv = (float*)MEM_callocN(sizeof(float)* axis * numnodes, "BVHNodeBV");
		if(!tree->nodebv)
		{
			MEM_freeN(tree->nodes);
			MEM_freeN(tree);
		}

		tree->nodechild = (BVHNode**)MEM_callocN(sizeof(BVHNode*) * tree_type * numnodes, "BVHNodeBV");
		if(!tree->nodechild)
		{
			MEM_freeN(tree->nodebv);
			MEM_freeN(tree->nodes);
			MEM_freeN(tree);
		}

		tree->nodearray = (BVHNode *)MEM_callocN(sizeof(BVHNode)* numnodes, "BVHNodeArray");
		
		if(!tree->nodearray)
		{
			MEM_freeN(tree->nodechild);
			MEM_freeN(tree->nodebv);
			MEM_freeN(tree->nodes);
			MEM_freeN(tree);
			return NULL;
		}

		//link the dynamic bv and child links
		for(i=0; i< numnodes; i++)
		{
			tree->nodearray[i].bv = tree->nodebv + i * axis;
			tree->nodearray[i].children = tree->nodechild + i * tree_type;
		}
		
	}

	return tree;
}


static void create_kdop_hull(BVHTree *tree, BVHNode *node, float *co, int numpoints, int moving)
{
	float newminmax;
	float *bv = node->bv;
	int i, k;
	
	// don't init boudings for the moving case
	if(!moving)
	{
		for (i = tree->start_axis; i < tree->stop_axis; i++)
		{
			bv[2*i] = FLT_MAX;
			bv[2*i + 1] = -FLT_MAX;
		}
	}
	
	for(k = 0; k < numpoints; k++)
	{
		// for all Axes.
		for (i = tree->start_axis; i < tree->stop_axis; i++)
		{
			newminmax = INPR(&co[k * 3], KDOP_AXES[i]);
			if (newminmax < bv[2 * i])
				bv[2 * i] = newminmax;
			if (newminmax > bv[(2 * i) + 1])
				bv[(2 * i) + 1] = newminmax;
		}
	}
}

// depends on the fact that the BVH's for each face is already build
static void refit_kdop_hull(BVHTree *tree, BVHNode *node, int start, int end)
{
	float newmin,newmax;
	int i, j;
	float *bv = node->bv;

	
	for (i = tree->start_axis; i < tree->stop_axis; i++)
	{
		bv[2*i] = FLT_MAX;
		bv[2*i + 1] = -FLT_MAX;
	}

	for (j = start; j < end; j++)
	{
// for all Axes.
		for (i = tree->start_axis; i < tree->stop_axis; i++)
		{
			newmin = tree->nodes[j]->bv[(2 * i)];   
			if ((newmin < bv[(2 * i)]))
				bv[(2 * i)] = newmin;
 
			newmax = tree->nodes[j]->bv[(2 * i) + 1];
			if ((newmax > bv[(2 * i) + 1]))
				bv[(2 * i) + 1] = newmax;
		}
	}

}

int BLI_bvhtree_insert(BVHTree *tree, int index, float *co, int numpoints)
{
	int i;
	BVHNode *node = NULL;
	
	// insert should only possible as long as tree->totbranch is 0
	if(tree->totbranch > 0)
		return 0;
	
	if(tree->totleaf+1 >= MEM_allocN_len(tree->nodes)/sizeof(*(tree->nodes)))
		return 0;
	
	// TODO check if have enough nodes in array
	
	node = tree->nodes[tree->totleaf] = &(tree->nodearray[tree->totleaf]);
	tree->totleaf++;
	
	create_kdop_hull(tree, node, co, numpoints, 0);
	node->index= index;
	
	// inflate the bv with some epsilon
	for (i = tree->start_axis; i < tree->stop_axis; i++)
	{
		node->bv[(2 * i)] -= tree->epsilon; // minimum 
		node->bv[(2 * i) + 1] += tree->epsilon; // maximum 
	}

	return 1;
}

// only supports x,y,z axis in the moment
// but we should use a plain and simple function here for speed sake
static char get_largest_axis(float *bv)
{
	float middle_point[3];

	middle_point[0] = (bv[1]) - (bv[0]); // x axis
	middle_point[1] = (bv[3]) - (bv[2]); // y axis
	middle_point[2] = (bv[5]) - (bv[4]); // z axis
	if (middle_point[0] > middle_point[1]) 
	{
		if (middle_point[0] > middle_point[2])
			return 1; // max x axis
		else
			return 5; // max z axis
	}
	else 
	{
		if (middle_point[1] > middle_point[2])
			return 3; // max y axis
		else
			return 5; // max z axis
	}
}

static void bvh_div_nodes(BVHTree *tree, BVHNode *node, int start, int end, int free_node_index)
{
	int i;

	const char laxis = get_largest_axis(node->bv); 	//determine longest axis to split along
	const int  slice = (end-start)/tree->tree_type;	//division rounded down
	const int  rest  = (end-start)%tree->tree_type;	//remainder of division
	
	assert( node->totnode == 0 );

	node->main_axis = laxis/2;
	
	// split nodes along longest axis
	for (i=0; start < end; node->totnode = ++i) //i counts the current child
	{	
		int tend = start + slice + (i < rest ? 1 : 0);
		
		assert( tend <= end);
		
		if(tend-start == 1)	// ok, we have 1 left for this node
		{
			node->children[i] = tree->nodes[start];
			node->children[i]->parent = node;
		}
		else
		{
			BVHNode *tnode = node->children[i] = tree->nodes[free_node_index] = &(tree->nodearray[free_node_index]);
			tnode->parent = node;
			
			if(tend != end)
				partition_nth_element(tree->nodes, start, end, tend, laxis);

			refit_kdop_hull(tree, tnode, start, tend);

			bvh_div_nodes(tree, tnode, start, tend, free_node_index+1);
			free_node_index += needed_branches(tree->tree_type, tend-start);
		}
		start = tend;
	}
	
	return;
}

static void omp_bvh_div_nodes(BVHTree *tree, BVHNode *node, int start, int end, int free_node_index)
{
	int i;

	const char laxis = get_largest_axis(node->bv); 	//determine longest axis to split along
	const int  slice = (end-start)/tree->tree_type;	//division rounded down
	const int  rest  = (end-start)%tree->tree_type;	//remainder of division

	int omp_data_start[tree->tree_type];
	int omp_data_end  [tree->tree_type];
	int omp_data_index[tree->tree_type];
	
	assert( node->totnode == 0 );

	node->main_axis = laxis/2;	

	// split nodes along longest axis
	for (i=0; start < end; node->totnode = ++i) //i counts the current child
	{	
		//Split the rest from left to right (TODO: this doenst makes an optimal tree)
		int tend = start + slice + (i < rest ? 1 : 0);
		
		assert( tend <= end);
		
		//save data for later OMP
		omp_data_start[i] = start;
		omp_data_end  [i] = tend;
		omp_data_index[i] = free_node_index;

		if(tend-start == 1)
		{
			node->children[i] = tree->nodes[start];
			node->children[i]->parent = node;
		}
		else
		{
			node->children[i] = tree->nodes[free_node_index] = &(tree->nodearray[free_node_index]);
			node->children[i]->parent = node;

			if(tend != end)
				partition_nth_element(tree->nodes, start, end, tend, laxis);

			free_node_index += needed_branches(tree->tree_type, tend-start);
		}

		start = tend;
	}

#pragma omp parallel for private(i) schedule(static)
	for( i = 0; i < node->totnode; i++)
	{
		if(omp_data_end[i]-omp_data_start[i] > 1)
		{
			BVHNode *tnode = node->children[i];
			refit_kdop_hull(tree, tnode, omp_data_start[i], omp_data_end[i]);
			bvh_div_nodes  (tree, tnode, omp_data_start[i], omp_data_end[i], omp_data_index[i]+1);
		}
	}
	
	return;
}


static void print_tree(BVHTree *tree, BVHNode *node, int depth)
{
	int i;
	for(i=0; i<depth; i++) printf(" ");
	printf(" - %d (%d): ", node->index, node - tree->nodearray);
	for(i=2*tree->start_axis; i<2*tree->stop_axis; i++)
		printf("%.3f ", node->bv[i]);
	printf("\n");

	for(i=0; i<tree->tree_type; i++)
		if(node->children[i])
			print_tree(tree, node->children[i], depth+1);
}

#if 0

static void verify_tree(BVHTree *tree)
{
	int i, j, check = 0;
	
	// check the pointer list
	for(i = 0; i < tree->totleaf; i++)
{
		if(tree->nodes[i]->parent == NULL)
			printf("Leaf has no parent: %d\n", i);
					       else
{
					       for(j = 0; j < tree->tree_type; j++)
{
					       if(tree->nodes[i]->parent->children[j] == tree->nodes[i])
					       check = 1;
}
					       if(!check)
{
					       printf("Parent child relationship doesn't match: %d\n", i);
}
					       check = 0;
}
}
	
	// check the leaf list
					       for(i = 0; i < tree->totleaf; i++)
{
					       if(tree->nodearray[i].parent == NULL)
					       printf("Leaf has no parent: %d\n", i);
					       else
{
					       for(j = 0; j < tree->tree_type; j++)
{
					       if(tree->nodearray[i].parent->children[j] == &tree->nodearray[i])
					       check = 1;
}
					       if(!check)
{
					       printf("Parent child relationship doesn't match: %d\n", i);
}
					       check = 0;
}
}
	
					       printf("branches: %d, leafs: %d, total: %d\n", tree->totbranch, tree->totleaf, tree->totbranch + tree->totleaf);
}
#endif

//Helper data and structures to build generalized implicit trees
//This code can be easily reduced
typedef struct BVHBuildHelper
{
	int tree_type; //
	int totleafs; //

	int leafs_per_child  [32]; //Min number of leafs that are archievable from a node at depth N
	int branches_on_level[32]; //Number of nodes at depth N (tree_type^N)

	int remain_leafs; //Number of leafs that are placed on the level that is not 100% filled

} BVHBuildHelper;

static void build_implicit_tree_helper(BVHTree *tree, BVHBuildHelper *data)
{
	int depth = 0;
	int remain;
	int nnodes;

	data->totleafs = tree->totleaf;
	data->tree_type= tree->tree_type;

	//Calculate the smallest tree_type^n such that tree_type^n >= num_leafs
	for(
	    data->leafs_per_child[0] = 1;
		   data->leafs_per_child[0] <  data->totleafs;
		   data->leafs_per_child[0] *= data->tree_type
	   );

	data->branches_on_level[0] = 1;

	//We could stop the loop first (but I am lazy to find out when)
	for(depth = 1; depth < 32; depth++)
	{
		data->branches_on_level[depth] = data->branches_on_level[depth-1] * data->tree_type;
		data->leafs_per_child  [depth] = data->leafs_per_child  [depth-1] / data->tree_type;
	}

	remain = data->totleafs - data->leafs_per_child[1];
	nnodes = (remain + data->tree_type - 2) / (data->tree_type - 1);
	data->remain_leafs = remain + nnodes;
}

// return the min index of all the leafs archivable with the given branch
static int implicit_leafs_index(BVHBuildHelper *data, int depth, int child_index)
{
	int min_leaf_index = child_index * data->leafs_per_child[depth-1];
	if(min_leaf_index <= data->remain_leafs)
		return min_leaf_index;
	else if(data->leafs_per_child[depth])
		return data->totleafs - (data->branches_on_level[depth-1] - child_index) * data->leafs_per_child[depth];
	else
		return data->remain_leafs;
}

//WARNING: Beautiful/tricky code starts here :P
//Generalized implicit trees
static void non_recursive_bvh_div_nodes(BVHTree *tree)
{
	int i;

	const int tree_type   = tree->tree_type;
	const int tree_offset = 2 - tree->tree_type; //this value is 0 (on binary trees) and negative on the others
	const int num_leafs   = tree->totleaf;
	const int num_branches= MAX2(1, (num_leafs + tree_type - 3) / (tree_type-1) );

	BVHNode*  branches_array = tree->nodearray + tree->totleaf - 1; // This code uses 1 index arrays
	BVHNode** leafs_array    = tree->nodes;

	BVHBuildHelper data;
	int depth  = 0;

	build_implicit_tree_helper(tree, &data);

	//YAY this could be 1 loop.. but had to split in 2 to remove OMP dependencies
	for(i=1; i <= num_branches; i = i*tree_type + tree_offset)
	{
		const int first_of_next_level = i*tree_type + tree_offset;
		const int  end_j = MIN2(first_of_next_level, num_branches + 1);	//index of last branch on this level
		int j;

		depth++;

#pragma omp parallel for private(j) schedule(static)
		for(j = i; j < end_j; j++)
		{
			int k;
			const int parent_level_index= j-i;
			BVHNode* parent = branches_array + j;
			char split_axis;

			int parent_leafs_begin = implicit_leafs_index(&data, depth, parent_level_index);
			int parent_leafs_end   = implicit_leafs_index(&data, depth, parent_level_index+1);

			//split_axis = (depth*2 % 6); //use this instead of the 2 following lines for XYZ splitting

			refit_kdop_hull(tree, parent, parent_leafs_begin, parent_leafs_end);
			split_axis = get_largest_axis(parent->bv);

			parent->main_axis = split_axis / 2;

			for(k = 0; k < tree_type; k++)
			{
				int child_index = j * tree_type + tree_offset + k;
				int child_level_index = child_index - first_of_next_level; //child level index

				int child_leafs_begin = implicit_leafs_index(&data, depth+1, child_level_index);
				int child_leafs_end   = implicit_leafs_index(&data, depth+1, child_level_index+1);

				assert( k != 0 || child_leafs_begin == parent_leafs_begin);

				if(child_leafs_end - child_leafs_begin > 1)
				{
					parent->children[k] = branches_array + child_index;
					parent->children[k]->parent = parent;

/*
					printf("Add child %d (%d) to branch %d\n",
					branches_array  + child_index - tree->nodearray,
					branches_array[ child_index ].index,
					parent - tree->nodearray
						);
*/

					partition_nth_element(leafs_array, child_leafs_begin, parent_leafs_end, child_leafs_end, split_axis);
				}
				else if(child_leafs_end - child_leafs_begin == 1)
				{
/*
					printf("Add child %d (%d) to branch %d\n",
					leafs_array[ child_leafs_begin ] - tree->nodearray,
					leafs_array[ child_leafs_begin ]->index,
					parent - tree->nodearray
						);
*/
					parent->children[k] = leafs_array[ child_leafs_begin ];
					parent->children[k]->parent = parent;
				}
				else
				{
					parent->children[k] = NULL;
					break;
				}
				parent->totnode = k+1;
			}
		}
	}


	for(i = 0; i<num_branches; i++)
		tree->nodes[tree->totleaf + i] = branches_array + 1 + i;

	tree->totbranch = num_branches;

//	BLI_bvhtree_update_tree(tree); //Uncoment this for XYZ splitting
}

void BLI_bvhtree_balance(BVHTree *tree)
{
	if(tree->totleaf == 0) return;

	assert(tree->totbranch == 0);
	non_recursive_bvh_div_nodes(tree);

/*
	if(tree->totleaf != 0)
	{
		// create root node
	BVHNode *node = tree->nodes[tree->totleaf] = &(tree->nodearray[tree->totleaf]);
	tree->totbranch++;
	<	
		// refit root bvh node
	refit_kdop_hull(tree, node, 0, tree->totleaf);

		// create + balance tree
	omp_bvh_div_nodes(tree, node, 0, tree->totleaf, tree->totleaf+1);
	tree->totbranch = needed_branches( tree->tree_type, tree->totleaf );
		// verify_tree(tree);
}
*/

}

// overlap - is it possbile for 2 bv's to collide ?
static int tree_overlap(float *bv1, float *bv2, int start_axis, int stop_axis)
{
	float *bv1_end = bv1 + (stop_axis<<1);
		
	bv1 += start_axis<<1;
	bv2 += start_axis<<1;
	
	// test all axis if min + max overlap
	for (; bv1 != bv1_end; bv1+=2, bv2+=2)
	{
		if ((*(bv1) > *(bv2 + 1)) || (*(bv2) > *(bv1 + 1))) 
			return 0;
	}
	
	return 1;
}

static void traverse(BVHOverlapData *data, BVHNode *node1, BVHNode *node2)
{
	int j;
	
	if(tree_overlap(node1->bv, node2->bv, MIN2(data->tree1->start_axis, data->tree2->start_axis), MIN2(data->tree1->stop_axis, data->tree2->stop_axis)))
	{
		// check if node1 is a leaf
		if(!node1->totnode)
		{
			// check if node2 is a leaf
			if(!node2->totnode)
			{
				
				if(node1 == node2)
				{
					return;
				}
					
				if(data->i >= data->max_overlap)
				{	
					// try to make alloc'ed memory bigger
					data->overlap = realloc(data->overlap, sizeof(BVHTreeOverlap)*data->max_overlap*2);
					
					if(!data->overlap)
					{
						printf("Out of Memory in traverse\n");
						return;
					}
					data->max_overlap *= 2;
				}
				
				// both leafs, insert overlap!
				data->overlap[data->i].indexA = node1->index;
				data->overlap[data->i].indexB = node2->index;

				data->i++;
			}
			else
			{
				for(j = 0; j < data->tree2->tree_type; j++)
				{
					if(node2->children[j])
						traverse(data, node1, node2->children[j]);
				}
			}
		}
		else
		{
			
			for(j = 0; j < data->tree2->tree_type; j++)
			{
				if(node1->children[j])
					traverse(data, node1->children[j], node2);
			}
		}
	}
	return;
}

BVHTreeOverlap *BLI_bvhtree_overlap(BVHTree *tree1, BVHTree *tree2, int *result)
{
	int j, total = 0;
	BVHTreeOverlap *overlap = NULL, *to = NULL;
	BVHOverlapData **data;
	
	// check for compatibility of both trees (can't compare 14-DOP with 18-DOP)
	if((tree1->axis != tree2->axis) && ((tree1->axis == 14) || tree2->axis == 14))
		return 0;
	
	// fast check root nodes for collision before doing big splitting + traversal
	if(!tree_overlap(tree1->nodes[tree1->totleaf]->bv, tree2->nodes[tree2->totleaf]->bv, MIN2(tree1->start_axis, tree2->start_axis), MIN2(tree1->stop_axis, tree2->stop_axis)))
		return 0;

	data = MEM_callocN(sizeof(BVHOverlapData *)* tree1->tree_type, "BVHOverlapData_star");
	
	for(j = 0; j < tree1->tree_type; j++)
	{
		data[j] = (BVHOverlapData *)MEM_callocN(sizeof(BVHOverlapData), "BVHOverlapData");
		
		// init BVHOverlapData
		data[j]->overlap = (BVHTreeOverlap *)malloc(sizeof(BVHTreeOverlap)*MAX2(tree1->totleaf, tree2->totleaf));
		data[j]->tree1 = tree1;
		data[j]->tree2 = tree2;
		data[j]->max_overlap = MAX2(tree1->totleaf, tree2->totleaf);
		data[j]->i = 0;
	}

#pragma omp parallel for private(j) schedule(static)
	for(j = 0; j < MIN2(tree1->tree_type, tree1->nodes[tree1->totleaf]->totnode); j++)
	{
		traverse(data[j], tree1->nodes[tree1->totleaf]->children[j], tree2->nodes[tree2->totleaf]);
	}
	
	for(j = 0; j < tree1->tree_type; j++)
		total += data[j]->i;
	
	to = overlap = (BVHTreeOverlap *)MEM_callocN(sizeof(BVHTreeOverlap)*total, "BVHTreeOverlap");
	
	for(j = 0; j < tree1->tree_type; j++)
	{
		memcpy(to, data[j]->overlap, data[j]->i*sizeof(BVHTreeOverlap));
		to+=data[j]->i;
	}
	
	for(j = 0; j < tree1->tree_type; j++)
	{
		free(data[j]->overlap);
		MEM_freeN(data[j]);
	}
	MEM_freeN(data);
	
	(*result) = total;
	return overlap;
}



// bottom up update of bvh tree:
// join the 4 children here
static void node_join(BVHTree *tree, BVHNode *node)
{
	int i, j;
	
	for (i = tree->start_axis; i < tree->stop_axis; i++)
	{
		node->bv[2*i] = FLT_MAX;
		node->bv[2*i + 1] = -FLT_MAX;
	}
	
	for (i = 0; i < tree->tree_type; i++)
	{
		if (node->children[i]) 
		{
			for (j = tree->start_axis; j < tree->stop_axis; j++)
			{
				// update minimum 
				if (node->children[i]->bv[(2 * j)] < node->bv[(2 * j)]) 
					node->bv[(2 * j)] = node->children[i]->bv[(2 * j)];
				
				// update maximum 
				if (node->children[i]->bv[(2 * j) + 1] > node->bv[(2 * j) + 1])
					node->bv[(2 * j) + 1] = node->children[i]->bv[(2 * j) + 1];
			}
		}
		else
			break;
	}
}

// call before BLI_bvhtree_update_tree()
int BLI_bvhtree_update_node(BVHTree *tree, int index, float *co, float *co_moving, int numpoints)
{
	BVHNode *node= NULL;
	int i = 0;
	
	// check if index exists
	if(index > tree->totleaf)
		return 0;
	
	node = tree->nodearray + index;
	
	create_kdop_hull(tree, node, co, numpoints, 0);
	
	if(co_moving)
		create_kdop_hull(tree, node, co_moving, numpoints, 1);
	
	// inflate the bv with some epsilon
	for (i = tree->start_axis; i < tree->stop_axis; i++)
	{
		node->bv[(2 * i)] -= tree->epsilon; // minimum 
		node->bv[(2 * i) + 1] += tree->epsilon; // maximum 
	}
	
	return 1;
}

// call BLI_bvhtree_update_node() first for every node/point/triangle
void BLI_bvhtree_update_tree(BVHTree *tree)
{
	BVHNode *leaf, *parent;
	
	// reset tree traversing flag
	for (leaf = tree->nodearray + tree->totleaf; leaf != tree->nodearray + tree->totleaf + tree->totbranch; leaf++)
		leaf->traversed = 0;
	
	for (leaf = tree->nodearray; leaf != tree->nodearray + tree->totleaf; leaf++)
	{
		for (parent = leaf->parent; parent; parent = parent->parent)
		{
			parent->traversed++;	// we tried to go up in hierarchy 
			if (parent->traversed < parent->totnode) 
				break;	// we do not need to check further 
			else 
				node_join(tree, parent);
		}
	}
}

float BLI_bvhtree_getepsilon(BVHTree *tree)
{
	return tree->epsilon;
}




/*
 * Nearest neighbour
 */
static float squared_dist(const float *a, const float *b)
{
	float tmp[3];
	VECSUB(tmp, a, b);
	return INPR(tmp, tmp);
}

static float calc_nearest_point(BVHNearestData *data, BVHNode *node, float *nearest)
{
	int i;
	const float *bv = node->bv;

	//nearest on AABB hull
	for(i=0; i != 3; i++, bv += 2)
	{
		if(bv[0] > data->proj[i])
			nearest[i] = bv[0];
		else if(bv[1] < data->proj[i])
			nearest[i] = bv[1];
		else
			nearest[i] = data->proj[i];
	}

/*
	//nearest on a general hull
	VECCOPY(nearest, data->co);
	for(i = data->tree->start_axis; i != data->tree->stop_axis; i++, bv+=2)
	{
	float proj = INPR( nearest, KDOP_AXES[i]);
	float dl = bv[0] - proj;
	float du = bv[1] - proj;

	if(dl > 0)
	{
	VECADDFAC(nearest, nearest, KDOP_AXES[i], dl);
}
	else if(du < 0)
	{
	VECADDFAC(nearest, nearest, KDOP_AXES[i], du);
}
}
*/
	return squared_dist(data->co, nearest);
}


// TODO: use a priority queue to reduce the number of nodes looked on
static void dfs_find_nearest(BVHNearestData *data, BVHNode *node)
{
	int i;
	float nearest[3], sdist;

	sdist = calc_nearest_point(data, node, nearest);
	if(sdist >= data->nearest.dist) return;

	if(node->totnode == 0)
	{
		if(data->callback)
			data->callback(data->userdata , node->index, data->co, &data->nearest);
		else
		{
			data->nearest.index	= node->index;
			VECCOPY(data->nearest.co, nearest);
			data->nearest.dist	= sdist;
		}
	}
	else
	{
		for(i=0; i != node->totnode; i++)
			dfs_find_nearest(data, node->children[i]);
	}
}

int BLI_bvhtree_find_nearest(BVHTree *tree, const float *co, BVHTreeNearest *nearest, BVHTree_NearestPointCallback callback, void *userdata)
{
	int i;

	BVHNearestData data;

	//init data to search
	data.tree = tree;
	data.co = co;

	data.callback = callback;
	data.userdata = userdata;

	for(i = data.tree->start_axis; i != data.tree->stop_axis; i++)
	{
		data.proj[i] = INPR(data.co, KDOP_AXES[i]);
	}

	if(nearest)
	{
		memcpy( &data.nearest , nearest, sizeof(*nearest) );
	}
	else
	{
		data.nearest.index = -1;
		data.nearest.dist = FLT_MAX;
	}

	//dfs search
	dfs_find_nearest(&data, tree->nodes[tree->totleaf] );

	//copy back results
	if(nearest)
	{
		memcpy(nearest, &data.nearest, sizeof(*nearest));
	}

	return data.nearest.index;
}



/*
 * Ray cast
 */

static float ray_nearest_hit(BVHRayCastData *data, BVHNode *node)
{
	int i;
	const float *bv = node->bv;

	float low = 0, upper = data->hit.dist;

	for(i=0; i != 3; i++, bv += 2)
	{
		if(data->ray_dot_axis[i] == 0.0f)
		{
			//axis aligned ray
			if(data->ray.origin[i] < bv[0]
						|| data->ray.origin[i] > bv[1])
				return FLT_MAX;
		}
		else
		{
			float ll = (bv[0] - data->ray.origin[i]) / data->ray_dot_axis[i];
			float lu = (bv[1] - data->ray.origin[i]) / data->ray_dot_axis[i];

			if(data->ray_dot_axis[i] > 0)
			{
				if(ll > low)   low = ll;
				if(lu < upper) upper = lu;
			}
			else
			{
				if(lu > low)   low = lu;
				if(ll < upper) upper = ll;
			}
	
			if(low > upper) return FLT_MAX;
		}
	}
	return low;
}

static void dfs_raycast(BVHRayCastData *data, BVHNode *node)
{
	int i;

	//ray-bv is really fast.. and simple tests revealed its worth to test it
	//before calling the ray-primitive functions
	float dist = ray_nearest_hit(data, node);
	if(dist >= data->hit.dist) return;

	if(node->totnode == 0)
	{
		if(data->callback)
			data->callback(data->userdata, node->index, &data->ray, &data->hit);
		else
		{
			data->hit.index	= node->index;
			data->hit.dist  = dist;
			VECADDFAC(data->hit.co, data->ray.origin, data->ray.direction, dist);
		}
	}
	else
	{
		//pick loop direction to dive into the tree (based on ray direction and split axis)
		if(data->ray_dot_axis[ node->main_axis ] > 0)
		{
			for(i=0; i != node->totnode; i++)
			{
				dfs_raycast(data, node->children[i]);
			}
		}
		else
		{
			for(i=node->totnode-1; i >= 0; i--)
			{
				dfs_raycast(data, node->children[i]);
			}
		}
	}
}



int BLI_bvhtree_ray_cast(BVHTree *tree, const float *co, const float *dir, BVHTreeRayHit *hit, BVHTree_RayCastCallback callback, void *userdata)
{
	int i;
	BVHRayCastData data;

	data.tree = tree;

	data.callback = callback;
	data.userdata = userdata;

	VECCOPY(data.ray.origin,    co);
	VECCOPY(data.ray.direction, dir);

	Normalize(data.ray.direction);

	for(i=0; i<3; i++)
	{
		data.ray_dot_axis[i] = INPR( data.ray.direction, KDOP_AXES[i]);

		if(fabs(data.ray_dot_axis[i]) < 1e-7)
			data.ray_dot_axis[i] = 0.0;
	}


	if(hit)
		memcpy( &data.hit, hit, sizeof(*hit) );
	else
	{
		data.hit.index = -1;
		data.hit.dist = FLT_MAX;
	}

	dfs_raycast(&data, tree->nodes[tree->totleaf]);


	if(hit)
		memcpy( hit, &data.hit, sizeof(*hit) );

	return data.hit.index;
}