Welcome to mirror list, hosted at ThFree Co, Russian Federation.

BLI_kdopbvh.c « intern « blenlib « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: b76b925e6cc95b392d01ffb706a5ae46c7711e59 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
/*
 * ***** BEGIN GPL LICENSE BLOCK *****
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 *
 * The Original Code is Copyright (C) 2006 by NaN Holding BV.
 * All rights reserved.
 *
 * The Original Code is: all of this file.
 *
 * Contributor(s): Daniel Genrich, Andre Pinto
 *
 * ***** END GPL LICENSE BLOCK *****
 */

/** \file blender/blenlib/intern/BLI_kdopbvh.c
 *  \ingroup bli
 */

#include <assert.h>

#include "MEM_guardedalloc.h"

#include "BLI_utildefines.h"
#include "BLI_stack.h"
#include "BLI_kdopbvh.h"
#include "BLI_math.h"
#include "BLI_strict_flags.h"

#ifdef _OPENMP
#include <omp.h>
#endif

/* used for iterative_raycast */
// #define USE_SKIP_LINKS

#define MAX_TREETYPE 32

/* Setting zero so we can catch bugs in OpenMP/KDOPBVH.
 * TODO(sergey): Deduplicate the limits with PBVH from BKE.
 */
#ifdef _OPENMP
#  ifdef DEBUG
#    define KDOPBVH_OMP_LIMIT 0
#  else
#    define KDOPBVH_OMP_LIMIT 1024
#  endif
#endif

typedef unsigned char axis_t;

typedef struct BVHNode {
	struct BVHNode **children;
	struct BVHNode *parent; /* some user defined traversed need that */
#ifdef USE_SKIP_LINKS
	struct BVHNode *skip[2];
#endif
	float *bv;      /* Bounding volume of all nodes, max 13 axis */
	int index;      /* face, edge, vertex index */
	char totnode;   /* how many nodes are used, used for speedup */
	char main_axis; /* Axis used to split this node */
} BVHNode;

/* keep under 26 bytes for speed purposes */
struct BVHTree {
	BVHNode **nodes;
	BVHNode *nodearray;     /* pre-alloc branch nodes */
	BVHNode **nodechild;    /* pre-alloc childs for nodes */
	float   *nodebv;        /* pre-alloc bounding-volumes for nodes */
	float epsilon;          /* epslion is used for inflation of the k-dop	   */
	int totleaf;            /* leafs */
	int totbranch;
	axis_t start_axis, stop_axis;  /* KDOP_AXES array indices according to axis */
	axis_t axis;                   /* kdop type (6 => OBB, 7 => AABB, ...) */
	char tree_type;                /* type of tree (4 => quadtree) */
};

/* optimization, ensure we stay small */
BLI_STATIC_ASSERT((sizeof(void *) == 8 && sizeof(BVHTree) <= 48) ||
                  (sizeof(void *) == 4 && sizeof(BVHTree) <= 32),
                  "over sized")

typedef struct BVHOverlapData {
	BVHTree *tree1, *tree2; 
	struct BLI_Stack *overlap;  /* store BVHTreeOverlap */
	axis_t start_axis, stop_axis;
} BVHOverlapData;

typedef struct BVHNearestData {
	BVHTree *tree;
	const float *co;
	BVHTree_NearestPointCallback callback;
	void    *userdata;
	float proj[13];         /* coordinates projection over axis */
	BVHTreeNearest nearest;

} BVHNearestData;

typedef struct BVHRayCastData {
	BVHTree *tree;

	BVHTree_RayCastCallback callback;
	void    *userdata;


	BVHTreeRay ray;
	float ray_dot_axis[13];
	float idot_axis[13];
	int index[6];

	BVHTreeRayHit hit;
} BVHRayCastData;


/**
 * Bounding Volume Hierarchy Definition
 *
 * Notes: From OBB until 26-DOP --> all bounding volumes possible, just choose type below
 * Notes: You have to choose the type at compile time ITM
 * Notes: You can choose the tree type --> binary, quad, octree, choose below
 */

static const float KDOP_AXES[13][3] = {
	{1.0, 0, 0}, {0, 1.0, 0}, {0, 0, 1.0}, {1.0, 1.0, 1.0}, {1.0, -1.0, 1.0}, {1.0, 1.0, -1.0},
	{1.0, -1.0, -1.0}, {1.0, 1.0, 0}, {1.0, 0, 1.0}, {0, 1.0, 1.0}, {1.0, -1.0, 0}, {1.0, 0, -1.0},
	{0, 1.0, -1.0}
};

MINLINE axis_t min_axis(axis_t a, axis_t b)
{
	return (a < b) ? a : b;
}
#if 0
MINLINE axis_t max_axis(axis_t a, axis_t b)
{
	return (b < a) ? a : b;
}
#endif

#if 0

/*
 * Generic push and pop heap
 */
#define PUSH_HEAP_BODY(HEAP_TYPE, PRIORITY, heap, heap_size)                  \
	{                                                                         \
		HEAP_TYPE element = heap[heap_size - 1];                              \
		int child = heap_size - 1;                                            \
		while (child != 0) {                                                  \
			int parent = (child - 1) / 2;                                     \
			if (PRIORITY(element, heap[parent])) {                            \
				heap[child] = heap[parent];                                   \
				child = parent;                                               \
			}                                                                 \
			else {                                                            \
				break;                                                        \
			}                                                                 \
		}                                                                     \
		heap[child] = element;                                                \
	} (void)0

#define POP_HEAP_BODY(HEAP_TYPE, PRIORITY, heap, heap_size)                   \
	{                                                                         \
		HEAP_TYPE element = heap[heap_size - 1];                              \
		int parent = 0;                                                       \
		while (parent < (heap_size - 1) / 2) {                                \
			int child2 = (parent + 1) * 2;                                    \
			if (PRIORITY(heap[child2 - 1], heap[child2])) {                   \
				child2--;                                                     \
			}                                                                 \
			if (PRIORITY(element, heap[child2])) {                            \
				break;                                                        \
			}                                                                 \
			heap[parent] = heap[child2];                                      \
			parent = child2;                                                  \
		}                                                                     \
		heap[parent] = element;                                               \
	} (void)0

static bool ADJUST_MEMORY(void *local_memblock, void **memblock, int new_size, int *max_size, int size_per_item)
{
	int new_max_size = *max_size * 2;
	void *new_memblock = NULL;

	if (new_size <= *max_size) {
		return true;
	}

	if (*memblock == local_memblock) {
		new_memblock = malloc(size_per_item * new_max_size);
		memcpy(new_memblock, *memblock, size_per_item * *max_size);
	}
	else {
		new_memblock = realloc(*memblock, size_per_item * new_max_size);
	}

	if (new_memblock) {
		*memblock = new_memblock;
		*max_size = new_max_size;
		return true;
	}
	else {
		return false;
	}
}
#endif

/**
 * Introsort
 * with permission deriven from the following Java code:
 * http://ralphunden.net/content/tutorials/a-guide-to-introsort/
 * and he derived it from the SUN STL
 */

//static int size_threshold = 16;

#if 0
/**
 * Common methods for all algorithms
 */
static int floor_lg(int a)
{
	return (int)(floor(log(a) / log(2)));
}
#endif

static void node_minmax_init(const BVHTree *tree, BVHNode *node)
{
	axis_t axis_iter;
	float (*bv)[2] = (float (*)[2])node->bv;

	for (axis_iter = tree->start_axis; axis_iter != tree->stop_axis; axis_iter++) {
		bv[axis_iter][0] =  FLT_MAX;
		bv[axis_iter][1] = -FLT_MAX;
	}
}

/**
 * Insertion sort algorithm
 */
static void bvh_insertionsort(BVHNode **a, int lo, int hi, int axis)
{
	int i, j;
	BVHNode *t;
	for (i = lo; i < hi; i++) {
		j = i;
		t = a[i];
		while ((j != lo) && (t->bv[axis] < (a[j - 1])->bv[axis])) {
			a[j] = a[j - 1];
			j--;
		}
		a[j] = t;
	}
}

static int bvh_partition(BVHNode **a, int lo, int hi, BVHNode *x, int axis)
{
	int i = lo, j = hi;
	while (1) {
		while ((a[i])->bv[axis] < x->bv[axis]) i++;
		j--;
		while (x->bv[axis] < (a[j])->bv[axis]) j--;
		if (!(i < j))
			return i;
		SWAP(BVHNode *, a[i], a[j]);
		i++;
	}
}

#if 0
/**
 * Heapsort algorithm
 */
static void bvh_downheap(BVHNode **a, int i, int n, int lo, int axis)
{
	BVHNode *d = a[lo + i - 1];
	int child;
	while (i <= n / 2) {
		child = 2 * i;
		if ((child < n) && ((a[lo + child - 1])->bv[axis] < (a[lo + child])->bv[axis])) {
			child++;
		}
		if (!(d->bv[axis] < (a[lo + child - 1])->bv[axis])) break;
		a[lo + i - 1] = a[lo + child - 1];
		i = child;
	}
	a[lo + i - 1] = d;
}

static void bvh_heapsort(BVHNode **a, int lo, int hi, int axis)
{
	int n = hi - lo, i;
	for (i = n / 2; i >= 1; i = i - 1) {
		bvh_downheap(a, i, n, lo, axis);
	}
	for (i = n; i > 1; i = i - 1) {
		SWAP(BVHNode *, a[lo], a[lo + i - 1]);
		bvh_downheap(a, 1, i - 1, lo, axis);
	}
}
#endif

static BVHNode *bvh_medianof3(BVHNode **a, int lo, int mid, int hi, int axis)  /* returns Sortable */
{
	if ((a[mid])->bv[axis] < (a[lo])->bv[axis]) {
		if ((a[hi])->bv[axis] < (a[mid])->bv[axis])
			return a[mid];
		else {
			if ((a[hi])->bv[axis] < (a[lo])->bv[axis])
				return a[hi];
			else
				return a[lo];
		}
	}
	else {
		if ((a[hi])->bv[axis] < (a[mid])->bv[axis]) {
			if ((a[hi])->bv[axis] < (a[lo])->bv[axis])
				return a[lo];
			else
				return a[hi];
		}
		else
			return a[mid];
	}
}

#if 0
/*
 * Quicksort algorithm modified for Introsort
 */
static void bvh_introsort_loop(BVHNode **a, int lo, int hi, int depth_limit, int axis)
{
	int p;

	while (hi - lo > size_threshold) {
		if (depth_limit == 0) {
			bvh_heapsort(a, lo, hi, axis);
			return;
		}
		depth_limit = depth_limit - 1;
		p = bvh_partition(a, lo, hi, bvh_medianof3(a, lo, lo + ((hi - lo) / 2) + 1, hi - 1, axis), axis);
		bvh_introsort_loop(a, p, hi, depth_limit, axis);
		hi = p;
	}
}

static void sort(BVHNode **a0, int begin, int end, int axis)
{
	if (begin < end) {
		BVHNode **a = a0;
		bvh_introsort_loop(a, begin, end, 2 * floor_lg(end - begin), axis);
		bvh_insertionsort(a, begin, end, axis);
	}
}

static void sort_along_axis(BVHTree *tree, int start, int end, int axis)
{
	sort(tree->nodes, start, end, axis);
}
#endif

/**
 * \note after a call to this function you can expect one of:
 * - every node to left of a[n] are smaller or equal to it
 * - every node to the right of a[n] are greater or equal to it */
static int partition_nth_element(BVHNode **a, int _begin, int _end, int n, int axis)
{
	int begin = _begin, end = _end, cut;
	while (end - begin > 3) {
		cut = bvh_partition(a, begin, end, bvh_medianof3(a, begin, (begin + end) / 2, end - 1, axis), axis);
		if (cut <= n)
			begin = cut;
		else
			end = cut;
	}
	bvh_insertionsort(a, begin, end, axis);

	return n;
}

#ifdef USE_SKIP_LINKS
static void build_skip_links(BVHTree *tree, BVHNode *node, BVHNode *left, BVHNode *right)
{
	int i;
	
	node->skip[0] = left;
	node->skip[1] = right;
	
	for (i = 0; i < node->totnode; i++) {
		if (i + 1 < node->totnode)
			build_skip_links(tree, node->children[i], left, node->children[i + 1]);
		else
			build_skip_links(tree, node->children[i], left, right);

		left = node->children[i];
	}
}
#endif

/*
 * BVHTree bounding volumes functions
 */
static void create_kdop_hull(BVHTree *tree, BVHNode *node, const float *co, int numpoints, int moving)
{
	float newminmax;
	float *bv = node->bv;
	int k;
	axis_t axis_iter;
	
	/* don't init boudings for the moving case */
	if (!moving) {
		node_minmax_init(tree, node);
	}

	for (k = 0; k < numpoints; k++) {
		/* for all Axes. */
		for (axis_iter = tree->start_axis; axis_iter < tree->stop_axis; axis_iter++) {
			newminmax = dot_v3v3(&co[k * 3], KDOP_AXES[axis_iter]);
			if (newminmax < bv[2 * axis_iter])
				bv[2 * axis_iter] = newminmax;
			if (newminmax > bv[(2 * axis_iter) + 1])
				bv[(2 * axis_iter) + 1] = newminmax;
		}
	}
}

/**
 * \note depends on the fact that the BVH's for each face is already build
 */
static void refit_kdop_hull(BVHTree *tree, BVHNode *node, int start, int end)
{
	float newmin, newmax;
	float *bv = node->bv;
	int j;
	axis_t axis_iter;

	node_minmax_init(tree, node);

	for (j = start; j < end; j++) {
		/* for all Axes. */
		for (axis_iter = tree->start_axis; axis_iter < tree->stop_axis; axis_iter++) {
			newmin = tree->nodes[j]->bv[(2 * axis_iter)];
			if ((newmin < bv[(2 * axis_iter)]))
				bv[(2 * axis_iter)] = newmin;

			newmax = tree->nodes[j]->bv[(2 * axis_iter) + 1];
			if ((newmax > bv[(2 * axis_iter) + 1]))
				bv[(2 * axis_iter) + 1] = newmax;
		}
	}

}

/**
 * only supports x,y,z axis in the moment
 * but we should use a plain and simple function here for speed sake */
static char get_largest_axis(const float *bv)
{
	float middle_point[3];

	middle_point[0] = (bv[1]) - (bv[0]); /* x axis */
	middle_point[1] = (bv[3]) - (bv[2]); /* y axis */
	middle_point[2] = (bv[5]) - (bv[4]); /* z axis */
	if (middle_point[0] > middle_point[1]) {
		if (middle_point[0] > middle_point[2])
			return 1;  /* max x axis */
		else
			return 5;  /* max z axis */
	}
	else {
		if (middle_point[1] > middle_point[2])
			return 3;  /* max y axis */
		else
			return 5;  /* max z axis */
	}
}

/**
 * bottom-up update of bvh node BV
 * join the children on the parent BV */
static void node_join(BVHTree *tree, BVHNode *node)
{
	int i;
	axis_t axis_iter;

	node_minmax_init(tree, node);
	
	for (i = 0; i < tree->tree_type; i++) {
		if (node->children[i]) {
			for (axis_iter = tree->start_axis; axis_iter < tree->stop_axis; axis_iter++) {
				/* update minimum */
				if (node->children[i]->bv[(2 * axis_iter)] < node->bv[(2 * axis_iter)])
					node->bv[(2 * axis_iter)] = node->children[i]->bv[(2 * axis_iter)];

				/* update maximum */
				if (node->children[i]->bv[(2 * axis_iter) + 1] > node->bv[(2 * axis_iter) + 1])
					node->bv[(2 * axis_iter) + 1] = node->children[i]->bv[(2 * axis_iter) + 1];
			}
		}
		else
			break;
	}
}

/*
 * Debug and information functions
 */
#if 0
static void bvhtree_print_tree(BVHTree *tree, BVHNode *node, int depth)
{
	int i;
	axis_t axis_iter;

	for (i = 0; i < depth; i++) printf(" ");
	printf(" - %d (%ld): ", node->index, (long int)(node - tree->nodearray));
	for (axis_iter = (axis_t)(2 * tree->start_axis);
	     axis_iter < (axis_t)(2 * tree->stop_axis);
	     axis_iter++)
	{
		printf("%.3f ", node->bv[axis_iter]);
	}
	printf("\n");

	for (i = 0; i < tree->tree_type; i++)
		if (node->children[i])
			bvhtree_print_tree(tree, node->children[i], depth + 1);
}

static void bvhtree_info(BVHTree *tree)
{
	printf("BVHTree info\n");
	printf("tree_type = %d, axis = %d, epsilon = %f\n", tree->tree_type, tree->axis, tree->epsilon);
	printf("nodes = %d, branches = %d, leafs = %d\n", tree->totbranch + tree->totleaf,  tree->totbranch, tree->totleaf);
	printf("Memory per node = %ldbytes\n", sizeof(BVHNode) + sizeof(BVHNode *) * tree->tree_type + sizeof(float) * tree->axis);
	printf("BV memory = %dbytes\n", (int)MEM_allocN_len(tree->nodebv));

	printf("Total memory = %ldbytes\n", sizeof(BVHTree) +
	       MEM_allocN_len(tree->nodes) +
	       MEM_allocN_len(tree->nodearray) +
	       MEM_allocN_len(tree->nodechild) +
	       MEM_allocN_len(tree->nodebv));

//	bvhtree_print_tree(tree, tree->nodes[tree->totleaf], 0);
}
#endif

#if 0


static void verify_tree(BVHTree *tree)
{
	int i, j, check = 0;
	
	/* check the pointer list */
	for (i = 0; i < tree->totleaf; i++) {
		if (tree->nodes[i]->parent == NULL) {
			printf("Leaf has no parent: %d\n", i);
		}
		else {
			for (j = 0; j < tree->tree_type; j++) {
				if (tree->nodes[i]->parent->children[j] == tree->nodes[i])
					check = 1;
			}
			if (!check) {
				printf("Parent child relationship doesn't match: %d\n", i);
			}
			check = 0;
		}
	}
	
	/* check the leaf list */
	for (i = 0; i < tree->totleaf; i++) {
		if (tree->nodearray[i].parent == NULL) {
			printf("Leaf has no parent: %d\n", i);
		}
		else {
			for (j = 0; j < tree->tree_type; j++) {
				if (tree->nodearray[i].parent->children[j] == &tree->nodearray[i])
					check = 1;
			}
			if (!check) {
				printf("Parent child relationship doesn't match: %d\n", i);
			}
			check = 0;
		}
	}
	
	printf("branches: %d, leafs: %d, total: %d\n", tree->totbranch, tree->totleaf, tree->totbranch + tree->totleaf);
}
#endif

/* Helper data and structures to build a min-leaf generalized implicit tree
 * This code can be easily reduced (basicly this is only method to calculate pow(k, n) in O(1).. and stuff like that) */
typedef struct BVHBuildHelper {
	int tree_type;              /* */
	int totleafs;               /* */

	int leafs_per_child[32];    /* Min number of leafs that are archievable from a node at depth N */
	int branches_on_level[32];  /* Number of nodes at depth N (tree_type^N) */

	int remain_leafs;           /* Number of leafs that are placed on the level that is not 100% filled */

} BVHBuildHelper;

static void build_implicit_tree_helper(BVHTree *tree, BVHBuildHelper *data)
{
	int depth = 0;
	int remain;
	int nnodes;

	data->totleafs = tree->totleaf;
	data->tree_type = tree->tree_type;

	/* Calculate the smallest tree_type^n such that tree_type^n >= num_leafs */
	for (data->leafs_per_child[0] = 1;
	     data->leafs_per_child[0] <  data->totleafs;
	     data->leafs_per_child[0] *= data->tree_type)
	{
		/* pass */
	}

	data->branches_on_level[0] = 1;

	for (depth = 1; (depth < 32) && data->leafs_per_child[depth - 1]; depth++) {
		data->branches_on_level[depth] = data->branches_on_level[depth - 1] * data->tree_type;
		data->leafs_per_child[depth] = data->leafs_per_child[depth - 1] / data->tree_type;
	}

	remain = data->totleafs - data->leafs_per_child[1];
	nnodes = (remain + data->tree_type - 2) / (data->tree_type - 1);
	data->remain_leafs = remain + nnodes;
}

// return the min index of all the leafs archivable with the given branch
static int implicit_leafs_index(BVHBuildHelper *data, int depth, int child_index)
{
	int min_leaf_index = child_index * data->leafs_per_child[depth - 1];
	if (min_leaf_index <= data->remain_leafs)
		return min_leaf_index;
	else if (data->leafs_per_child[depth])
		return data->totleafs - (data->branches_on_level[depth - 1] - child_index) * data->leafs_per_child[depth];
	else
		return data->remain_leafs;
}

/**
 * Generalized implicit tree build
 *
 * An implicit tree is a tree where its structure is implied, thus there is no need to store child pointers or indexs.
 * Its possible to find the position of the child or the parent with simple maths (multiplication and adittion). This type
 * of tree is for example used on heaps.. where node N has its childs at indexs N*2 and N*2+1.
 *
 * Although in this case the tree type is general.. and not know until runtime.
 * tree_type stands for the maximum number of childs that a tree node can have.
 * All tree types >= 2 are supported.
 *
 * Advantages of the used trees include:
 *  - No need to store child/parent relations (they are implicit);
 *  - Any node child always has an index greater than the parent;
 *  - Brother nodes are sequential in memory;
 *
 *
 * Some math relations derived for general implicit trees:
 *
 *   K = tree_type, ( 2 <= K )
 *   ROOT = 1
 *   N child of node A = A * K + (2 - K) + N, (0 <= N < K)
 *
 * Util methods:
 *   TODO...
 *    (looping elements, knowing if its a leaf or not.. etc...)
 */

/* This functions returns the number of branches needed to have the requested number of leafs. */
static int implicit_needed_branches(int tree_type, int leafs)
{
	return max_ii(1, (leafs + tree_type - 3) / (tree_type - 1));
}

/**
 * This function handles the problem of "sorting" the leafs (along the split_axis).
 *
 * It arranges the elements in the given partitions such that:
 *  - any element in partition N is less or equal to any element in partition N+1.
 *  - if all elements are different all partition will get the same subset of elements
 *    as if the array was sorted.
 *
 * partition P is described as the elements in the range ( nth[P], nth[P+1] ]
 *
 * TODO: This can be optimized a bit by doing a specialized nth_element instead of K nth_elements
 */
static void split_leafs(BVHNode **leafs_array, int *nth, int partitions, int split_axis)
{
	int i;
	for (i = 0; i < partitions - 1; i++) {
		if (nth[i] >= nth[partitions])
			break;

		partition_nth_element(leafs_array, nth[i], nth[partitions], nth[i + 1], split_axis);
	}
}

/**
 * This functions builds an optimal implicit tree from the given leafs.
 * Where optimal stands for:
 *  - The resulting tree will have the smallest number of branches;
 *  - At most only one branch will have NULL childs;
 *  - All leafs will be stored at level N or N+1.
 *
 * This function creates an implicit tree on branches_array, the leafs are given on the leafs_array.
 *
 * The tree is built per depth levels. First branches at depth 1.. then branches at depth 2.. etc..
 * The reason is that we can build level N+1 from level N without any data dependencies.. thus it allows
 * to use multithread building.
 *
 * To archive this is necessary to find how much leafs are accessible from a certain branch, BVHBuildHelper
 * implicit_needed_branches and implicit_leafs_index are auxiliary functions to solve that "optimal-split".
 */
static void non_recursive_bvh_div_nodes(BVHTree *tree, BVHNode *branches_array, BVHNode **leafs_array, int num_leafs)
{
	int i;

	const int tree_type   = tree->tree_type;
	const int tree_offset = 2 - tree->tree_type; /* this value is 0 (on binary trees) and negative on the others */
	const int num_branches = implicit_needed_branches(tree_type, num_leafs);

	BVHBuildHelper data;
	int depth;
	
	/* set parent from root node to NULL */
	BVHNode *tmp = branches_array + 0;
	tmp->parent = NULL;

	/* Most of bvhtree code relies on 1-leaf trees having at least one branch
	 * We handle that special case here */
	if (num_leafs == 1) {
		BVHNode *root = branches_array + 0;
		refit_kdop_hull(tree, root, 0, num_leafs);
		root->main_axis = get_largest_axis(root->bv) / 2;
		root->totnode = 1;
		root->children[0] = leafs_array[0];
		root->children[0]->parent = root;
		return;
	}

	branches_array--;  /* Implicit trees use 1-based indexs */

	build_implicit_tree_helper(tree, &data);

	/* Loop tree levels (log N) loops */
	for (i = 1, depth = 1; i <= num_branches; i = i * tree_type + tree_offset, depth++) {
		const int first_of_next_level = i * tree_type + tree_offset;
		const int end_j = min_ii(first_of_next_level, num_branches + 1);  /* index of last branch on this level */
		int j;

		/* Loop all branches on this level */

#pragma omp parallel for private(j) schedule(static) if (num_leafs > KDOPBVH_OMP_LIMIT)
		for (j = i; j < end_j; j++) {
			int k;
			const int parent_level_index = j - i;
			BVHNode *parent = branches_array + j;
			int nth_positions[MAX_TREETYPE + 1];
			char split_axis;

			int parent_leafs_begin = implicit_leafs_index(&data, depth, parent_level_index);
			int parent_leafs_end   = implicit_leafs_index(&data, depth, parent_level_index + 1);

			/* This calculates the bounding box of this branch
			 * and chooses the largest axis as the axis to divide leafs */
			refit_kdop_hull(tree, parent, parent_leafs_begin, parent_leafs_end);
			split_axis = get_largest_axis(parent->bv);

			/* Save split axis (this can be used on raytracing to speedup the query time) */
			parent->main_axis = split_axis / 2;

			/* Split the childs along the split_axis, note: its not needed to sort the whole leafs array
			 * Only to assure that the elements are partitioned on a way that each child takes the elements
			 * it would take in case the whole array was sorted.
			 * Split_leafs takes care of that "sort" problem. */
			nth_positions[0] = parent_leafs_begin;
			nth_positions[tree_type] = parent_leafs_end;
			for (k = 1; k < tree_type; k++) {
				int child_index = j * tree_type + tree_offset + k;
				int child_level_index = child_index - first_of_next_level; /* child level index */
				nth_positions[k] = implicit_leafs_index(&data, depth + 1, child_level_index);
			}

			split_leafs(leafs_array, nth_positions, tree_type, split_axis);


			/* Setup children and totnode counters
			 * Not really needed but currently most of BVH code relies on having an explicit children structure */
			for (k = 0; k < tree_type; k++) {
				int child_index = j * tree_type + tree_offset + k;
				int child_level_index = child_index - first_of_next_level; /* child level index */

				int child_leafs_begin = implicit_leafs_index(&data, depth + 1, child_level_index);
				int child_leafs_end   = implicit_leafs_index(&data, depth + 1, child_level_index + 1);

				if (child_leafs_end - child_leafs_begin > 1) {
					parent->children[k] = branches_array + child_index;
					parent->children[k]->parent = parent;
				}
				else if (child_leafs_end - child_leafs_begin == 1) {
					parent->children[k] = leafs_array[child_leafs_begin];
					parent->children[k]->parent = parent;
				}
				else {
					break;
				}

				parent->totnode = (char)(k + 1);
			}
		}
	}
}

/* -------------------------------------------------------------------- */
/* BLI_bvhtree api */

/**
 * \note many callers don't check for ``NULL`` return.
 */
BVHTree *BLI_bvhtree_new(int maxsize, float epsilon, char tree_type, char axis)
{
	BVHTree *tree;
	int numnodes, i;

	BLI_assert(tree_type >= 2 && tree_type <= MAX_TREETYPE);

	tree = MEM_callocN(sizeof(BVHTree), "BVHTree");

	/* tree epsilon must be >= FLT_EPSILON
	 * so that tangent rays can still hit a bounding volume..
	 * this bug would show up when casting a ray aligned with a kdop-axis and with an edge of 2 faces */
	epsilon = max_ff(FLT_EPSILON, epsilon);

	if (tree) {
		tree->epsilon = epsilon;
		tree->tree_type = tree_type;
		tree->axis = axis;

		if (axis == 26) {
			tree->start_axis = 0;
			tree->stop_axis = 13;
		}
		else if (axis == 18) {
			tree->start_axis = 7;
			tree->stop_axis = 13;
		}
		else if (axis == 14) {
			tree->start_axis = 0;
			tree->stop_axis = 7;
		}
		else if (axis == 8) { /* AABB */
			tree->start_axis = 0;
			tree->stop_axis = 4;
		}
		else if (axis == 6) { /* OBB */
			tree->start_axis = 0;
			tree->stop_axis = 3;
		}
		else {
			/* should never happen! */
			BLI_assert(0);

			goto fail;
		}


		/* Allocate arrays */
		numnodes = maxsize + implicit_needed_branches(tree_type, maxsize) + tree_type;

		tree->nodes = MEM_callocN(sizeof(BVHNode *) * (size_t)numnodes, "BVHNodes");
		tree->nodebv = MEM_callocN(sizeof(float) * (size_t)(axis * numnodes), "BVHNodeBV");
		tree->nodechild = MEM_callocN(sizeof(BVHNode *) * (size_t)(tree_type * numnodes), "BVHNodeBV");
		tree->nodearray = MEM_callocN(sizeof(BVHNode) * (size_t)numnodes, "BVHNodeArray");
		
		if (UNLIKELY((!tree->nodes) ||
		             (!tree->nodebv) ||
		             (!tree->nodechild) ||
		             (!tree->nodearray)))
		{
			goto fail;
		}

		/* link the dynamic bv and child links */
		for (i = 0; i < numnodes; i++) {
			tree->nodearray[i].bv = &tree->nodebv[i * axis];
			tree->nodearray[i].children = &tree->nodechild[i * tree_type];
		}
		
	}
	return tree;


fail:
	MEM_SAFE_FREE(tree->nodes);
	MEM_SAFE_FREE(tree->nodebv);
	MEM_SAFE_FREE(tree->nodechild);
	MEM_SAFE_FREE(tree->nodearray);

	MEM_freeN(tree);

	return NULL;
}

void BLI_bvhtree_free(BVHTree *tree)
{
	if (tree) {
		MEM_freeN(tree->nodes);
		MEM_freeN(tree->nodearray);
		MEM_freeN(tree->nodebv);
		MEM_freeN(tree->nodechild);
		MEM_freeN(tree);
	}
}

void BLI_bvhtree_balance(BVHTree *tree)
{
	int i;

	BVHNode *branches_array = tree->nodearray + tree->totleaf;
	BVHNode **leafs_array    = tree->nodes;

	/* This function should only be called once (some big bug goes here if its being called more than once per tree) */
	BLI_assert(tree->totbranch == 0);

	/* Build the implicit tree */
	non_recursive_bvh_div_nodes(tree, branches_array, leafs_array, tree->totleaf);

	/* current code expects the branches to be linked to the nodes array
	 * we perform that linkage here */
	tree->totbranch = implicit_needed_branches(tree->tree_type, tree->totleaf);
	for (i = 0; i < tree->totbranch; i++)
		tree->nodes[tree->totleaf + i] = branches_array + i;

#ifdef USE_SKIP_LINKS
	build_skip_links(tree, tree->nodes[tree->totleaf], NULL, NULL);
#endif

	/* bvhtree_info(tree); */
}

void BLI_bvhtree_insert(BVHTree *tree, int index, const float co[3], int numpoints)
{
	axis_t axis_iter;
	BVHNode *node = NULL;

	/* insert should only possible as long as tree->totbranch is 0 */
	BLI_assert(tree->totbranch <= 0);
	BLI_assert((size_t)tree->totleaf < MEM_allocN_len(tree->nodes) / sizeof(*(tree->nodes)));

	node = tree->nodes[tree->totleaf] = &(tree->nodearray[tree->totleaf]);
	tree->totleaf++;

	create_kdop_hull(tree, node, co, numpoints, 0);
	node->index = index;

	/* inflate the bv with some epsilon */
	for (axis_iter = tree->start_axis; axis_iter < tree->stop_axis; axis_iter++) {
		node->bv[(2 * axis_iter)] -= tree->epsilon; /* minimum */
		node->bv[(2 * axis_iter) + 1] += tree->epsilon; /* maximum */
	}
}


/* call before BLI_bvhtree_update_tree() */
bool BLI_bvhtree_update_node(BVHTree *tree, int index, const float co[3], const float co_moving[3], int numpoints)
{
	BVHNode *node = NULL;
	axis_t axis_iter;
	
	/* check if index exists */
	if (index > tree->totleaf)
		return false;
	
	node = tree->nodearray + index;
	
	create_kdop_hull(tree, node, co, numpoints, 0);
	
	if (co_moving)
		create_kdop_hull(tree, node, co_moving, numpoints, 1);
	
	/* inflate the bv with some epsilon */
	for (axis_iter = tree->start_axis; axis_iter < tree->stop_axis; axis_iter++) {
		node->bv[(2 * axis_iter)]     -= tree->epsilon; /* minimum */
		node->bv[(2 * axis_iter) + 1] += tree->epsilon; /* maximum */
	}

	return true;
}

/* call BLI_bvhtree_update_node() first for every node/point/triangle */
void BLI_bvhtree_update_tree(BVHTree *tree)
{
	/* Update bottom=>top
	 * TRICKY: the way we build the tree all the childs have an index greater than the parent
	 * This allows us todo a bottom up update by starting on the bigger numbered branch */

	BVHNode **root  = tree->nodes + tree->totleaf;
	BVHNode **index = tree->nodes + tree->totleaf + tree->totbranch - 1;

	for (; index >= root; index--)
		node_join(tree, *index);
}

float BLI_bvhtree_getepsilon(const BVHTree *tree)
{
	return tree->epsilon;
}


/* -------------------------------------------------------------------- */
/* BLI_bvhtree_overlap */

/**
 * overlap - is it possible for 2 bv's to collide ?
 */
static int tree_overlap(BVHNode *node1, BVHNode *node2, axis_t start_axis, axis_t stop_axis)
{
	const float *bv1 = node1->bv;
	const float *bv2 = node2->bv;

	const float *bv1_end = bv1 + (stop_axis << 1);
		
	bv1 += start_axis << 1;
	bv2 += start_axis << 1;
	
	/* test all axis if min + max overlap */
	for (; bv1 != bv1_end; bv1 += 2, bv2 += 2) {
		if ((*(bv1) > *(bv2 + 1)) || (*(bv2) > *(bv1 + 1)))
			return 0;
	}

	return 1;
}

static void traverse(BVHOverlapData *data, BVHNode *node1, BVHNode *node2)
{
	int j;

	if (tree_overlap(node1, node2, data->start_axis, data->stop_axis)) {
		/* check if node1 is a leaf */
		if (!node1->totnode) {
			/* check if node2 is a leaf */
			if (!node2->totnode) {
				BVHTreeOverlap *overlap;

				if (UNLIKELY(node1 == node2)) {
					return;
				}

				/* both leafs, insert overlap! */
				overlap = BLI_stack_push_r(data->overlap);
				overlap->indexA = node1->index;
				overlap->indexB = node2->index;
			}
			else {
				for (j = 0; j < data->tree2->tree_type; j++) {
					if (node2->children[j])
						traverse(data, node1, node2->children[j]);
				}
			}
		}
		else {
			for (j = 0; j < data->tree2->tree_type; j++) {
				if (node1->children[j])
					traverse(data, node1->children[j], node2);
			}
		}
	}
	return;
}

BVHTreeOverlap *BLI_bvhtree_overlap(BVHTree *tree1, BVHTree *tree2, unsigned int *r_overlap_tot)
{
	int j;
	size_t total = 0;
	BVHTreeOverlap *overlap = NULL, *to = NULL;
	BVHOverlapData **data;
	
	/* check for compatibility of both trees (can't compare 14-DOP with 18-DOP) */
	if (UNLIKELY((tree1->axis != tree2->axis) &&
	             (tree1->axis == 14 || tree2->axis == 14) &&
	             (tree1->axis == 18 || tree2->axis == 18)))
	{
		BLI_assert(0);
		return NULL;
	}
	
	/* fast check root nodes for collision before doing big splitting + traversal */
	if (!tree_overlap(tree1->nodes[tree1->totleaf], tree2->nodes[tree2->totleaf],
	                  min_axis(tree1->start_axis, tree2->start_axis),
	                  min_axis(tree1->stop_axis, tree2->stop_axis)))
	{
		return NULL;
	}

	data = MEM_mallocN(sizeof(BVHOverlapData *) * tree1->tree_type, "BVHOverlapData_star");
	
	for (j = 0; j < tree1->tree_type; j++) {
		data[j] = MEM_mallocN(sizeof(BVHOverlapData), "BVHOverlapData");
		
		/* init BVHOverlapData */
		data[j]->overlap = BLI_stack_new(sizeof(BVHTreeOverlap), __func__);
		data[j]->tree1 = tree1;
		data[j]->tree2 = tree2;
		data[j]->start_axis = min_axis(tree1->start_axis, tree2->start_axis);
		data[j]->stop_axis  = min_axis(tree1->stop_axis,  tree2->stop_axis);
	}

#pragma omp parallel for private(j) schedule(static)  if (tree1->totleaf > KDOPBVH_OMP_LIMIT)
	for (j = 0; j < MIN2(tree1->tree_type, tree1->nodes[tree1->totleaf]->totnode); j++) {
		traverse(data[j], tree1->nodes[tree1->totleaf]->children[j], tree2->nodes[tree2->totleaf]);
	}
	
	for (j = 0; j < tree1->tree_type; j++)
		total += BLI_stack_count(data[j]->overlap);
	
	to = overlap = MEM_mallocN(sizeof(BVHTreeOverlap) * total, "BVHTreeOverlap");
	
	for (j = 0; j < tree1->tree_type; j++) {
		unsigned int count = (unsigned int)BLI_stack_count(data[j]->overlap);
		BLI_stack_pop_n(data[j]->overlap, to, count);
		BLI_stack_free(data[j]->overlap);
		to += count;
	}
	
	for (j = 0; j < tree1->tree_type; j++) {
		MEM_freeN(data[j]);
	}
	MEM_freeN(data);
	
	*r_overlap_tot = (unsigned int)total;
	return overlap;
}

/* Determines the nearest point of the given node BV. Returns the squared distance to that point. */
static float calc_nearest_point_squared(const float proj[3], BVHNode *node, float nearest[3])
{
	int i;
	const float *bv = node->bv;

	/* nearest on AABB hull */
	for (i = 0; i != 3; i++, bv += 2) {
		if (bv[0] > proj[i])
			nearest[i] = bv[0];
		else if (bv[1] < proj[i])
			nearest[i] = bv[1];
		else
			nearest[i] = proj[i]; 
	}

#if 0
	/* nearest on a general hull */
	copy_v3_v3(nearest, data->co);
	for (i = data->tree->start_axis; i != data->tree->stop_axis; i++, bv += 2) {
		float proj = dot_v3v3(nearest, KDOP_AXES[i]);
		float dl = bv[0] - proj;
		float du = bv[1] - proj;

		if (dl > 0) {
			madd_v3_v3fl(nearest, KDOP_AXES[i], dl);
		}
		else if (du < 0) {
			madd_v3_v3fl(nearest, KDOP_AXES[i], du);
		}
	}
#endif

	return len_squared_v3v3(proj, nearest);
}

/* TODO: use a priority queue to reduce the number of nodes looked on */
static void dfs_find_nearest_dfs(BVHNearestData *data, BVHNode *node)
{
	if (node->totnode == 0) {
		if (data->callback)
			data->callback(data->userdata, node->index, data->co, &data->nearest);
		else {
			data->nearest.index = node->index;
			data->nearest.dist_sq = calc_nearest_point_squared(data->proj, node, data->nearest.co);
		}
	}
	else {
		/* Better heuristic to pick the closest node to dive on */
		int i;
		float nearest[3];

		if (data->proj[node->main_axis] <= node->children[0]->bv[node->main_axis * 2 + 1]) {

			for (i = 0; i != node->totnode; i++) {
				if (calc_nearest_point_squared(data->proj, node->children[i], nearest) >= data->nearest.dist_sq)
					continue;
				dfs_find_nearest_dfs(data, node->children[i]);
			}
		}
		else {
			for (i = node->totnode - 1; i >= 0; i--) {
				if (calc_nearest_point_squared(data->proj, node->children[i], nearest) >= data->nearest.dist_sq)
					continue;
				dfs_find_nearest_dfs(data, node->children[i]);
			}
		}
	}
}

static void dfs_find_nearest_begin(BVHNearestData *data, BVHNode *node)
{
	float nearest[3], dist_sq;
	dist_sq = calc_nearest_point_squared(data->proj, node, nearest);
	if (dist_sq >= data->nearest.dist_sq) {
		return;
	}
	dfs_find_nearest_dfs(data, node);
}


#if 0

typedef struct NodeDistance {
	BVHNode *node;
	float dist;

} NodeDistance;

#define DEFAULT_FIND_NEAREST_HEAP_SIZE 1024

#define NodeDistance_priority(a, b) ((a).dist < (b).dist)

static void NodeDistance_push_heap(NodeDistance *heap, int heap_size)
PUSH_HEAP_BODY(NodeDistance, NodeDistance_priority, heap, heap_size)

static void NodeDistance_pop_heap(NodeDistance *heap, int heap_size)
POP_HEAP_BODY(NodeDistance, NodeDistance_priority, heap, heap_size)

/* NN function that uses an heap.. this functions leads to an optimal number of min-distance
 * but for normal tri-faces and BV 6-dop.. a simple dfs with local heuristics (as implemented
 * in source/blender/blenkernel/intern/shrinkwrap.c) works faster.
 *
 * It may make sense to use this function if the callback queries are very slow.. or if its impossible
 * to get a nice heuristic
 *
 * this function uses "malloc/free" instead of the MEM_* because it intends to be openmp safe */
static void bfs_find_nearest(BVHNearestData *data, BVHNode *node)
{
	int i;
	NodeDistance default_heap[DEFAULT_FIND_NEAREST_HEAP_SIZE];
	NodeDistance *heap = default_heap, current;
	int heap_size = 0, max_heap_size = sizeof(default_heap) / sizeof(default_heap[0]);
	float nearest[3];

	int callbacks = 0, push_heaps = 0;

	if (node->totnode == 0) {
		dfs_find_nearest_dfs(data, node);
		return;
	}

	current.node = node;
	current.dist = calc_nearest_point(data->proj, node, nearest);

	while (current.dist < data->nearest.dist) {
//		printf("%f : %f\n", current.dist, data->nearest.dist);
		for (i = 0; i < current.node->totnode; i++) {
			BVHNode *child = current.node->children[i];
			if (child->totnode == 0) {
				callbacks++;
				dfs_find_nearest_dfs(data, child);
			}
			else {
				/* adjust heap size */
				if ((heap_size >= max_heap_size) &&
				    ADJUST_MEMORY(default_heap, (void **)&heap, heap_size + 1, &max_heap_size, sizeof(heap[0])) == false)
				{
					printf("WARNING: bvh_find_nearest got out of memory\n");

					if (heap != default_heap)
						free(heap);

					return;
				}

				heap[heap_size].node = current.node->children[i];
				heap[heap_size].dist = calc_nearest_point(data->proj, current.node->children[i], nearest);

				if (heap[heap_size].dist >= data->nearest.dist) continue;
				heap_size++;

				NodeDistance_push_heap(heap, heap_size);
				//			PUSH_HEAP_BODY(NodeDistance, NodeDistance_priority, heap, heap_size);
				push_heaps++;
			}
		}
		
		if (heap_size == 0) break;

		current = heap[0];
		NodeDistance_pop_heap(heap, heap_size);
//		POP_HEAP_BODY(NodeDistance, NodeDistance_priority, heap, heap_size);
		heap_size--;
	}

//	printf("hsize=%d, callbacks=%d, pushs=%d\n", heap_size, callbacks, push_heaps);

	if (heap != default_heap)
		free(heap);
}
#endif


int BLI_bvhtree_find_nearest(BVHTree *tree, const float co[3], BVHTreeNearest *nearest,
                             BVHTree_NearestPointCallback callback, void *userdata)
{
	axis_t axis_iter;

	BVHNearestData data;
	BVHNode *root = tree->nodes[tree->totleaf];

	/* init data to search */
	data.tree = tree;
	data.co = co;

	data.callback = callback;
	data.userdata = userdata;

	for (axis_iter = data.tree->start_axis; axis_iter != data.tree->stop_axis; axis_iter++) {
		data.proj[axis_iter] = dot_v3v3(data.co, KDOP_AXES[axis_iter]);
	}

	if (nearest) {
		memcpy(&data.nearest, nearest, sizeof(*nearest));
	}
	else {
		data.nearest.index = -1;
		data.nearest.dist_sq = FLT_MAX;
	}

	/* dfs search */
	if (root)
		dfs_find_nearest_begin(&data, root);

	/* copy back results */
	if (nearest) {
		memcpy(nearest, &data.nearest, sizeof(*nearest));
	}

	return data.nearest.index;
}


/**
 * Raycast - BLI_bvhtree_ray_cast
 *
 * raycast is done by performing a DFS on the BVHTree and saving the closest hit
 */


/* Determines the distance that the ray must travel to hit the bounding volume of the given node */
static float ray_nearest_hit(BVHRayCastData *data, const float bv[6])
{
	int i;

	float low = 0, upper = data->hit.dist;

	for (i = 0; i != 3; i++, bv += 2) {
		if (data->ray_dot_axis[i] == 0.0f) {
			/* axis aligned ray */
			if (data->ray.origin[i] < bv[0] - data->ray.radius ||
			    data->ray.origin[i] > bv[1] + data->ray.radius)
			{
				return FLT_MAX;
			}
		}
		else {
			float ll = (bv[0] - data->ray.radius - data->ray.origin[i]) / data->ray_dot_axis[i];
			float lu = (bv[1] + data->ray.radius - data->ray.origin[i]) / data->ray_dot_axis[i];

			if (data->ray_dot_axis[i] > 0.0f) {
				if (ll > low) low = ll;
				if (lu < upper) upper = lu;
			}
			else {
				if (lu > low) low = lu;
				if (ll < upper) upper = ll;
			}
	
			if (low > upper) return FLT_MAX;
		}
	}
	return low;
}

/**
 * Determines the distance that the ray must travel to hit the bounding volume of the given node
 * Based on Tactical Optimization of Ray/Box Intersection, by Graham Fyffe
 * [http://tog.acm.org/resources/RTNews/html/rtnv21n1.html#art9]
 *
 * TODO this doesn't take data->ray.radius into consideration */
static float fast_ray_nearest_hit(const BVHRayCastData *data, const BVHNode *node)
{
	const float *bv = node->bv;
	
	float t1x = (bv[data->index[0]] - data->ray.origin[0]) * data->idot_axis[0];
	float t2x = (bv[data->index[1]] - data->ray.origin[0]) * data->idot_axis[0];
	float t1y = (bv[data->index[2]] - data->ray.origin[1]) * data->idot_axis[1];
	float t2y = (bv[data->index[3]] - data->ray.origin[1]) * data->idot_axis[1];
	float t1z = (bv[data->index[4]] - data->ray.origin[2]) * data->idot_axis[2];
	float t2z = (bv[data->index[5]] - data->ray.origin[2]) * data->idot_axis[2];

	if ((t1x > t2y || t2x < t1y || t1x > t2z || t2x < t1z || t1y > t2z || t2y < t1z) ||
	    (t2x < 0.0f || t2y < 0.0f || t2z < 0.0f) ||
	    (t1x > data->hit.dist || t1y > data->hit.dist || t1z > data->hit.dist))
	{
		return FLT_MAX;
	}
	else {
		return max_fff(t1x, t1y, t1z);
	}
}

static void dfs_raycast(BVHRayCastData *data, BVHNode *node)
{
	int i;

	/* ray-bv is really fast.. and simple tests revealed its worth to test it
	 * before calling the ray-primitive functions */
	/* XXX: temporary solution for particles until fast_ray_nearest_hit supports ray.radius */
	float dist = (data->ray.radius == 0.0f) ? fast_ray_nearest_hit(data, node) : ray_nearest_hit(data, node->bv);
	if (dist >= data->hit.dist) return;

	if (node->totnode == 0) {
		if (data->callback) {
			data->callback(data->userdata, node->index, &data->ray, &data->hit);
		}
		else {
			data->hit.index = node->index;
			data->hit.dist  = dist;
			madd_v3_v3v3fl(data->hit.co, data->ray.origin, data->ray.direction, dist);
		}
	}
	else {
		/* pick loop direction to dive into the tree (based on ray direction and split axis) */
		if (data->ray_dot_axis[node->main_axis] > 0.0f) {
			for (i = 0; i != node->totnode; i++) {
				dfs_raycast(data, node->children[i]);
			}
		}
		else {
			for (i = node->totnode - 1; i >= 0; i--) {
				dfs_raycast(data, node->children[i]);
			}
		}
	}
}

#if 0
static void iterative_raycast(BVHRayCastData *data, BVHNode *node)
{
	while (node) {
		float dist = fast_ray_nearest_hit(data, node);
		if (dist >= data->hit.dist) {
			node = node->skip[1];
			continue;
		}

		if (node->totnode == 0) {
			if (data->callback) {
				data->callback(data->userdata, node->index, &data->ray, &data->hit);
			}
			else {
				data->hit.index = node->index;
				data->hit.dist  = dist;
				madd_v3_v3v3fl(data->hit.co, data->ray.origin, data->ray.direction, dist);
			}
			
			node = node->skip[1];
		}
		else {
			node = node->children[0];
		}
	}
}
#endif

int BLI_bvhtree_ray_cast(BVHTree *tree, const float co[3], const float dir[3], float radius, BVHTreeRayHit *hit,
                         BVHTree_RayCastCallback callback, void *userdata)
{
	int i;
	BVHRayCastData data;
	BVHNode *root = tree->nodes[tree->totleaf];

	data.tree = tree;

	data.callback = callback;
	data.userdata = userdata;

	copy_v3_v3(data.ray.origin,    co);
	copy_v3_v3(data.ray.direction, dir);
	data.ray.radius = radius;

	normalize_v3(data.ray.direction);

	for (i = 0; i < 3; i++) {
		data.ray_dot_axis[i] = dot_v3v3(data.ray.direction, KDOP_AXES[i]);
		data.idot_axis[i] = 1.0f / data.ray_dot_axis[i];

		if (fabsf(data.ray_dot_axis[i]) < FLT_EPSILON) {
			data.ray_dot_axis[i] = 0.0;
		}
		data.index[2 * i] = data.idot_axis[i] < 0.0f ? 1 : 0;
		data.index[2 * i + 1] = 1 - data.index[2 * i];
		data.index[2 * i]   += 2 * i;
		data.index[2 * i + 1] += 2 * i;
	}


	if (hit)
		memcpy(&data.hit, hit, sizeof(*hit));
	else {
		data.hit.index = -1;
		data.hit.dist = FLT_MAX;
	}

	if (root) {
		dfs_raycast(&data, root);
//		iterative_raycast(&data, root);
	}


	if (hit)
		memcpy(hit, &data.hit, sizeof(*hit));

	return data.hit.index;
}

float BLI_bvhtree_bb_raycast(const float bv[6], const float light_start[3], const float light_end[3], float pos[3])
{
	BVHRayCastData data;
	float dist;

	data.hit.dist = FLT_MAX;
	
	/* get light direction */
	sub_v3_v3v3(data.ray.direction, light_end, light_start);
	
	data.ray.radius = 0.0;
	
	copy_v3_v3(data.ray.origin, light_start);

	normalize_v3(data.ray.direction);
	copy_v3_v3(data.ray_dot_axis, data.ray.direction);
	
	dist = ray_nearest_hit(&data, bv);

	madd_v3_v3v3fl(pos, light_start, data.ray.direction, dist);

	return dist;
	
}

/**
 * Range Query - as request by broken :P
 *
 * Allocs and fills an array with the indexs of node that are on the given spherical range (center, radius) 
 * Returns the size of the array.
 */
typedef struct RangeQueryData {
	BVHTree *tree;
	const float *center;
	float radius_sq;  /* squared radius */

	int hits;

	BVHTree_RangeQuery callback;
	void *userdata;


} RangeQueryData;


static void dfs_range_query(RangeQueryData *data, BVHNode *node)
{
	if (node->totnode == 0) {
#if 0   /*UNUSED*/
		/* Calculate the node min-coords (if the node was a point then this is the point coordinates) */
		float co[3];
		co[0] = node->bv[0];
		co[1] = node->bv[2];
		co[2] = node->bv[4];
#endif
	}
	else {
		int i;
		for (i = 0; i != node->totnode; i++) {
			float nearest[3];
			float dist_sq = calc_nearest_point_squared(data->center, node->children[i], nearest);
			if (dist_sq < data->radius_sq) {
				/* Its a leaf.. call the callback */
				if (node->children[i]->totnode == 0) {
					data->hits++;
					data->callback(data->userdata, node->children[i]->index, dist_sq);
				}
				else
					dfs_range_query(data, node->children[i]);
			}
		}
	}
}

int BLI_bvhtree_range_query(BVHTree *tree, const float co[3], float radius, BVHTree_RangeQuery callback, void *userdata)
{
	BVHNode *root = tree->nodes[tree->totleaf];

	RangeQueryData data;
	data.tree = tree;
	data.center = co;
	data.radius_sq = radius * radius;
	data.hits = 0;

	data.callback = callback;
	data.userdata = userdata;

	if (root != NULL) {
		float nearest[3];
		float dist_sq = calc_nearest_point_squared(data.center, root, nearest);
		if (dist_sq < data.radius_sq) {
			/* Its a leaf.. call the callback */
			if (root->totnode == 0) {
				data.hits++;
				data.callback(data.userdata, root->index, dist_sq);
			}
			else
				dfs_range_query(&data, root);
		}
	}

	return data.hits;
}