Welcome to mirror list, hosted at ThFree Co, Russian Federation.

convexhull_2d.c « intern « blenlib « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: b37dc73db29d9d1d5dd53694f0b9121e33575dfd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
/*
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 */

/** \file
 * \ingroup bli
 */

#include <stdlib.h>
#include <string.h>

#include "MEM_guardedalloc.h"

#include "BLI_convexhull_2d.h"
#include "BLI_math.h"
#include "BLI_strict_flags.h"
#include "BLI_utildefines.h"

/* Copyright 2001, softSurfer (www.softsurfer.com)
 * This code may be freely used and modified for any purpose
 * providing that this copyright notice is included with it.
 * SoftSurfer makes no warranty for this code, and cannot be held
 * liable for any real or imagined damage resulting from its use.
 * Users of this code must verify correctness for their application.
 * http://softsurfer.com/Archive/algorithm_0203/algorithm_0203.htm
 */

/** \name Main Convex-Hull Calculation
 * \{ */

/**
 * tests if a point is Left|On|Right of an infinite line.
 *    Input:  three points P0, P1, and P2
 * \returns > 0.0 for P2 left of the line through P0 and P1.
 *          = 0.0 for P2 on the line.
 *          < 0.0 for P2 right of the line.
 */
static float is_left(const float p0[2], const float p1[2], const float p2[2])
{
  return (p1[0] - p0[0]) * (p2[1] - p0[1]) - (p2[0] - p0[0]) * (p1[1] - p0[1]);
}

/**
 * A.M. Andrew's monotone chain 2D convex hull algorithm
 *
 * \param points: An array of 2D points presorted by increasing x and y-coords.
 * \param n: The number of points in points.
 * \param r_points: An array of the convex hull vertex indices (max is n).
 * \returns the number of points in r_points.
 */
int BLI_convexhull_2d_sorted(const float (*points)[2], const int n, int r_points[])
{
  /* the output array r_points[] will be used as the stack */
  int bot = 0;
  int top = -1; /* indices for bottom and top of the stack */
  int i;        /* array scan index */
  int minmin, minmax;
  int maxmin, maxmax;
  float xmax;

  /* Get the indices of points with min x-coord and min|max y-coord */
  float xmin = points[0][0];
  for (i = 1; i < n; i++) {
    if (points[i][0] != xmin) {
      break;
    }
  }

  minmin = 0;
  minmax = i - 1;
  if (minmax == n - 1) { /* degenerate case: all x-coords == xmin */
    r_points[++top] = minmin;
    if (points[minmax][1] != points[minmin][1]) {
      /* a nontrivial segment */
      r_points[++top] = minmax;
    }
    r_points[++top] = minmin; /* add polygon endpoint */
    return top + 1;
  }

  /* Get the indices of points with max x-coord and min|max y-coord */

  maxmax = n - 1;
  xmax = points[n - 1][0];
  for (i = n - 2; i >= 0; i--) {
    if (points[i][0] != xmax) {
      break;
    }
  }
  maxmin = i + 1;

  /* Compute the lower hull on the stack r_points */
  r_points[++top] = minmin; /* push minmin point onto stack */
  i = minmax;
  while (++i <= maxmin) {
    /* the lower line joins points[minmin] with points[maxmin] */
    if (is_left(points[minmin], points[maxmin], points[i]) >= 0 && i < maxmin) {
      continue; /* ignore points[i] above or on the lower line */
    }

    while (top > 0) { /* there are at least 2 points on the stack */
      /* test if points[i] is left of the line at the stack top */
      if (is_left(points[r_points[top - 1]], points[r_points[top]], points[i]) > 0.0f) {
        break; /* points[i] is a new hull vertex */
      }
      else {
        top--; /* pop top point off stack */
      }
    }

    r_points[++top] = i; /* push points[i] onto stack */
  }

  /* Next, compute the upper hull on the stack r_points above the bottom hull */
  if (maxmax != maxmin) {     /* if distinct xmax points */
    r_points[++top] = maxmax; /* push maxmax point onto stack */
  }

  bot = top; /* the bottom point of the upper hull stack */
  i = maxmin;
  while (--i >= minmax) {
    /* the upper line joins points[maxmax] with points[minmax] */
    if (is_left(points[maxmax], points[minmax], points[i]) >= 0 && i > minmax) {
      continue; /* ignore points[i] below or on the upper line */
    }

    while (top > bot) { /* at least 2 points on the upper stack */
      /* test if points[i] is left of the line at the stack top */
      if (is_left(points[r_points[top - 1]], points[r_points[top]], points[i]) > 0.0f) {
        break; /* points[i] is a new hull vertex */
      }
      else {
        top--; /* pop top point off stack */
      }
    }

    if (points[i][0] == points[r_points[0]][0] && points[i][1] == points[r_points[0]][1]) {
      return top + 1; /* special case (mgomes) */
    }

    r_points[++top] = i; /* push points[i] onto stack */
  }

  if (minmax != minmin) {
    r_points[++top] = minmin; /* push joining endpoint onto stack */
  }

  return top + 1;
}

struct PointRef {
  const float *pt; /* 2d vector */
};

static int pointref_cmp_yx(const void *a_, const void *b_)
{
  const struct PointRef *a = a_;
  const struct PointRef *b = b_;

  if (a->pt[1] > b->pt[1]) {
    return 1;
  }
  else if (a->pt[1] < b->pt[1]) {
    return -1;
  }

  if (a->pt[0] > b->pt[0]) {
    return 1;
  }
  else if (a->pt[0] < b->pt[0]) {
    return -1;
  }

  else {
    return 0;
  }
}

/**
 * A.M. Andrew's monotone chain 2D convex hull algorithm
 *
 * \param points: An array of 2D points.
 * \param n: The number of points in points.
 * \param r_points: An array of the convex hull vertex indices (max is n).
 * _must_ be allocated as ``n * 2`` because of how its used internally,
 * even though the final result will be no more than \a n in size.
 * \returns the number of points in r_points.
 */
int BLI_convexhull_2d(const float (*points)[2], const int n, int r_points[])
{
  struct PointRef *points_ref = MEM_mallocN(sizeof(*points_ref) * (size_t)n, __func__);
  float(*points_sort)[2] = MEM_mallocN(sizeof(*points_sort) * (size_t)n, __func__);
  int *points_map;
  int tot, i;

  for (i = 0; i < n; i++) {
    points_ref[i].pt = points[i];
  }

  /* Sort the points by X, then by Y (required by the algorithm) */
  qsort(points_ref, (size_t)n, sizeof(struct PointRef), pointref_cmp_yx);

  for (i = 0; i < n; i++) {
    memcpy(points_sort[i], points_ref[i].pt, sizeof(float[2]));
  }

  tot = BLI_convexhull_2d_sorted(points_sort, n, r_points);

  /* map back to the original index values */
  points_map = (int *)points_sort; /* abuse float array for temp storage */
  for (i = 0; i < tot; i++) {
    points_map[i] = (int)((const float(*)[2])points_ref[r_points[i]].pt - points);
  }

  memcpy(r_points, points_map, (size_t)tot * sizeof(*points_map));

  MEM_freeN(points_ref);
  MEM_freeN(points_sort);

  return tot;
}

/** \} */

/* -------------------------------------------------------------------- */
/* Helper functions */

/** \name Utility Convex-Hull Functions
 * \{ */

/**
 * \return The best angle for fitting the convex hull to an axis aligned bounding box.
 *
 * Intended to be used with #BLI_convexhull_2d
 *
 * \param points_hull: Ordered hull points
 * (result of #BLI_convexhull_2d mapped to a contiguous array).
 *
 * \note we could return the index of the best edge too if its needed.
 */
float BLI_convexhull_aabb_fit_hull_2d(const float (*points_hull)[2], unsigned int n)
{
  unsigned int i, i_prev;
  float area_best = FLT_MAX;
  float dvec_best[2]; /* best angle, delay atan2 */

  i_prev = n - 1;
  for (i = 0; i < n; i++) {
    const float *ev_a = points_hull[i];
    const float *ev_b = points_hull[i_prev];
    float dvec[2]; /* 2d rotation matrix */

    sub_v2_v2v2(dvec, ev_a, ev_b);
    if (normalize_v2(dvec) != 0.0f) {
      /* rotation matrix */
      float min[2] = {FLT_MAX, FLT_MAX}, max[2] = {-FLT_MAX, -FLT_MAX};
      unsigned int j;
      float area;

      for (j = 0; j < n; j++) {
        float tvec[2];
        mul_v2_v2_cw(tvec, dvec, points_hull[j]);

        min[0] = min_ff(min[0], tvec[0]);
        min[1] = min_ff(min[1], tvec[1]);

        max[0] = max_ff(max[0], tvec[0]);
        max[1] = max_ff(max[1], tvec[1]);

        area = (max[0] - min[0]) * (max[1] - min[1]);
        if (area > area_best) {
          break;
        }
      }

      if (area < area_best) {
        area_best = area;
        copy_v2_v2(dvec_best, dvec);
      }
    }

    i_prev = i;
  }

  return (area_best != FLT_MAX) ? atan2f(dvec_best[0], dvec_best[1]) : 0.0f;
}

/**
 * Wrap #BLI_convexhull_aabb_fit_hull_2d and do the convex hull calculation.
 *
 * \param points: arbitrary 2d points.
 */
float BLI_convexhull_aabb_fit_points_2d(const float (*points)[2], unsigned int n)
{
  int *index_map;
  int tot;

  float angle;

  index_map = MEM_mallocN(sizeof(*index_map) * n * 2, __func__);

  tot = BLI_convexhull_2d(points, (int)n, index_map);

  if (tot) {
    float(*points_hull)[2];
    int j;

    points_hull = MEM_mallocN(sizeof(*points_hull) * (size_t)tot, __func__);
    for (j = 0; j < tot; j++) {
      copy_v2_v2(points_hull[j], points[index_map[j]]);
    }

    angle = BLI_convexhull_aabb_fit_hull_2d(points_hull, (unsigned int)tot);
    MEM_freeN(points_hull);
  }
  else {
    angle = 0.0f;
  }

  MEM_freeN(index_map);

  return angle;
}

/** \} */