Welcome to mirror list, hosted at ThFree Co, Russian Federation.

kdtree_impl.h « intern « blenlib « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 0c9de0aa12842b5c828a2e0e4eaebdbb2eacba31 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
/*
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 */

/** \file
 * \ingroup bli
 */

#include "MEM_guardedalloc.h"

#include "BLI_kdtree_impl.h"
#include "BLI_math.h"
#include "BLI_strict_flags.h"
#include "BLI_utildefines.h"

#define _CONCAT_AUX(MACRO_ARG1, MACRO_ARG2) MACRO_ARG1##MACRO_ARG2
#define _CONCAT(MACRO_ARG1, MACRO_ARG2) _CONCAT_AUX(MACRO_ARG1, MACRO_ARG2)
#define BLI_kdtree_nd_(id) _CONCAT(KDTREE_PREFIX_ID, _##id)

typedef struct KDTreeNode_head {
  uint left, right;
  float co[KD_DIMS];
  int index;
} KDTreeNode_head;

typedef struct KDTreeNode {
  uint left, right;
  float co[KD_DIMS];
  int index;
  uint d; /* range is only (0..KD_DIMS - 1) */
} KDTreeNode;

struct KDTree {
  KDTreeNode *nodes;
  uint nodes_len;
  uint root;
#ifdef DEBUG
  bool is_balanced;        /* ensure we call balance first */
  uint nodes_len_capacity; /* max size of the tree */
#endif
};

#define KD_STACK_INIT 100     /* initial size for array (on the stack) */
#define KD_NEAR_ALLOC_INC 100 /* alloc increment for collecting nearest */
#define KD_FOUND_ALLOC_INC 50 /* alloc increment for collecting nearest */

#define KD_NODE_UNSET ((uint)-1)

/**
 * When set we know all values are unbalanced,
 * otherwise clear them when re-balancing: see T62210.
 */
#define KD_NODE_ROOT_IS_INIT ((uint)-2)

/* -------------------------------------------------------------------- */
/** \name Local Math API
 * \{ */

static void copy_vn_vn(float v0[KD_DIMS], const float v1[KD_DIMS])
{
  for (uint j = 0; j < KD_DIMS; j++) {
    v0[j] = v1[j];
  }
}

static float len_squared_vnvn(const float v0[KD_DIMS], const float v1[KD_DIMS])
{
  float d = 0.0f;
  for (uint j = 0; j < KD_DIMS; j++) {
    d += square_f(v0[j] - v1[j]);
  }
  return d;
}

static float len_squared_vnvn_cb(const float co_kdtree[KD_DIMS],
                                 const float co_search[KD_DIMS],
                                 const void *UNUSED(user_data))
{
  return len_squared_vnvn(co_kdtree, co_search);
}

/** \} */

/**
 * Creates or free a kdtree
 */
KDTree *BLI_kdtree_nd_(new)(uint nodes_len_capacity)
{
  KDTree *tree;

  tree = MEM_mallocN(sizeof(KDTree), "KDTree");
  tree->nodes = MEM_mallocN(sizeof(KDTreeNode) * nodes_len_capacity, "KDTreeNode");
  tree->nodes_len = 0;
  tree->root = KD_NODE_ROOT_IS_INIT;

#ifdef DEBUG
  tree->is_balanced = false;
  tree->nodes_len_capacity = nodes_len_capacity;
#endif

  return tree;
}

void BLI_kdtree_nd_(free)(KDTree *tree)
{
  if (tree) {
    MEM_freeN(tree->nodes);
    MEM_freeN(tree);
  }
}

/**
 * Construction: first insert points, then call balance. Normal is optional.
 */
void BLI_kdtree_nd_(insert)(KDTree *tree, int index, const float co[KD_DIMS])
{
  KDTreeNode *node = &tree->nodes[tree->nodes_len++];

#ifdef DEBUG
  BLI_assert(tree->nodes_len <= tree->nodes_len_capacity);
#endif

  /* NOTE: array isn't calloc'd,
   * need to initialize all struct members */

  node->left = node->right = KD_NODE_UNSET;
  copy_vn_vn(node->co, co);
  node->index = index;
  node->d = 0;

#ifdef DEBUG
  tree->is_balanced = false;
#endif
}

static uint kdtree_balance(KDTreeNode *nodes, uint nodes_len, uint axis, const uint ofs)
{
  KDTreeNode *node;
  float co;
  uint left, right, median, i, j;

  if (nodes_len <= 0) {
    return KD_NODE_UNSET;
  }
  else if (nodes_len == 1) {
    return 0 + ofs;
  }

  /* Quick-sort style sorting around median. */
  left = 0;
  right = nodes_len - 1;
  median = nodes_len / 2;

  while (right > left) {
    co = nodes[right].co[axis];
    i = left - 1;
    j = right;

    while (1) {
      while (nodes[++i].co[axis] < co) { /* pass */
      }
      while (nodes[--j].co[axis] > co && j > left) { /* pass */
      }

      if (i >= j) {
        break;
      }

      SWAP(KDTreeNode_head, *(KDTreeNode_head *)&nodes[i], *(KDTreeNode_head *)&nodes[j]);
    }

    SWAP(KDTreeNode_head, *(KDTreeNode_head *)&nodes[i], *(KDTreeNode_head *)&nodes[right]);
    if (i >= median) {
      right = i - 1;
    }
    if (i <= median) {
      left = i + 1;
    }
  }

  /* set node and sort subnodes */
  node = &nodes[median];
  node->d = axis;
  axis = (axis + 1) % KD_DIMS;
  node->left = kdtree_balance(nodes, median, axis, ofs);
  node->right = kdtree_balance(
      nodes + median + 1, (nodes_len - (median + 1)), axis, (median + 1) + ofs);

  return median + ofs;
}

void BLI_kdtree_nd_(balance)(KDTree *tree)
{
  if (tree->root != KD_NODE_ROOT_IS_INIT) {
    for (uint i = 0; i < tree->nodes_len; i++) {
      tree->nodes[i].left = KD_NODE_UNSET;
      tree->nodes[i].right = KD_NODE_UNSET;
    }
  }

  tree->root = kdtree_balance(tree->nodes, tree->nodes_len, 0, 0);

#ifdef DEBUG
  tree->is_balanced = true;
#endif
}

static uint *realloc_nodes(uint *stack, uint *stack_len_capacity, const bool is_alloc)
{
  uint *stack_new = MEM_mallocN((*stack_len_capacity + KD_NEAR_ALLOC_INC) * sizeof(uint),
                                "KDTree.treestack");
  memcpy(stack_new, stack, *stack_len_capacity * sizeof(uint));
  // memset(stack_new + *stack_len_capacity, 0, sizeof(uint) * KD_NEAR_ALLOC_INC);
  if (is_alloc) {
    MEM_freeN(stack);
  }
  *stack_len_capacity += KD_NEAR_ALLOC_INC;
  return stack_new;
}

/**
 * Find nearest returns index, and -1 if no node is found.
 */
int BLI_kdtree_nd_(find_nearest)(const KDTree *tree,
                                 const float co[KD_DIMS],
                                 KDTreeNearest *r_nearest)
{
  const KDTreeNode *nodes = tree->nodes;
  const KDTreeNode *root, *min_node;
  uint *stack, stack_default[KD_STACK_INIT];
  float min_dist, cur_dist;
  uint stack_len_capacity, cur = 0;

#ifdef DEBUG
  BLI_assert(tree->is_balanced == true);
#endif

  if (UNLIKELY(tree->root == KD_NODE_UNSET)) {
    return -1;
  }

  stack = stack_default;
  stack_len_capacity = KD_STACK_INIT;

  root = &nodes[tree->root];
  min_node = root;
  min_dist = len_squared_vnvn(root->co, co);

  if (co[root->d] < root->co[root->d]) {
    if (root->right != KD_NODE_UNSET) {
      stack[cur++] = root->right;
    }
    if (root->left != KD_NODE_UNSET) {
      stack[cur++] = root->left;
    }
  }
  else {
    if (root->left != KD_NODE_UNSET) {
      stack[cur++] = root->left;
    }
    if (root->right != KD_NODE_UNSET) {
      stack[cur++] = root->right;
    }
  }

  while (cur--) {
    const KDTreeNode *node = &nodes[stack[cur]];

    cur_dist = node->co[node->d] - co[node->d];

    if (cur_dist < 0.0f) {
      cur_dist = -cur_dist * cur_dist;

      if (-cur_dist < min_dist) {
        cur_dist = len_squared_vnvn(node->co, co);
        if (cur_dist < min_dist) {
          min_dist = cur_dist;
          min_node = node;
        }
        if (node->left != KD_NODE_UNSET) {
          stack[cur++] = node->left;
        }
      }
      if (node->right != KD_NODE_UNSET) {
        stack[cur++] = node->right;
      }
    }
    else {
      cur_dist = cur_dist * cur_dist;

      if (cur_dist < min_dist) {
        cur_dist = len_squared_vnvn(node->co, co);
        if (cur_dist < min_dist) {
          min_dist = cur_dist;
          min_node = node;
        }
        if (node->right != KD_NODE_UNSET) {
          stack[cur++] = node->right;
        }
      }
      if (node->left != KD_NODE_UNSET) {
        stack[cur++] = node->left;
      }
    }
    if (UNLIKELY(cur + KD_DIMS > stack_len_capacity)) {
      stack = realloc_nodes(stack, &stack_len_capacity, stack_default != stack);
    }
  }

  if (r_nearest) {
    r_nearest->index = min_node->index;
    r_nearest->dist = sqrtf(min_dist);
    copy_vn_vn(r_nearest->co, min_node->co);
  }

  if (stack != stack_default) {
    MEM_freeN(stack);
  }

  return min_node->index;
}

/**
 * A version of #BLI_kdtree_3d_find_nearest which runs a callback
 * to filter out values.
 *
 * \param filter_cb: Filter find results,
 * Return codes: (1: accept, 0: skip, -1: immediate exit).
 */
int BLI_kdtree_nd_(find_nearest_cb)(
    const KDTree *tree,
    const float co[KD_DIMS],
    int (*filter_cb)(void *user_data, int index, const float co[KD_DIMS], float dist_sq),
    void *user_data,
    KDTreeNearest *r_nearest)
{
  const KDTreeNode *nodes = tree->nodes;
  const KDTreeNode *min_node = NULL;

  uint *stack, stack_default[KD_STACK_INIT];
  float min_dist = FLT_MAX, cur_dist;
  uint stack_len_capacity, cur = 0;

#ifdef DEBUG
  BLI_assert(tree->is_balanced == true);
#endif

  if (UNLIKELY(tree->root == KD_NODE_UNSET)) {
    return -1;
  }

  stack = stack_default;
  stack_len_capacity = ARRAY_SIZE(stack_default);

#define NODE_TEST_NEAREST(node) \
  { \
    const float dist_sq = len_squared_vnvn((node)->co, co); \
    if (dist_sq < min_dist) { \
      const int result = filter_cb(user_data, (node)->index, (node)->co, dist_sq); \
      if (result == 1) { \
        min_dist = dist_sq; \
        min_node = node; \
      } \
      else if (result == 0) { \
        /* pass */ \
      } \
      else { \
        BLI_assert(result == -1); \
        goto finally; \
      } \
    } \
  } \
  ((void)0)

  stack[cur++] = tree->root;

  while (cur--) {
    const KDTreeNode *node = &nodes[stack[cur]];

    cur_dist = node->co[node->d] - co[node->d];

    if (cur_dist < 0.0f) {
      cur_dist = -cur_dist * cur_dist;

      if (-cur_dist < min_dist) {
        NODE_TEST_NEAREST(node);

        if (node->left != KD_NODE_UNSET) {
          stack[cur++] = node->left;
        }
      }
      if (node->right != KD_NODE_UNSET) {
        stack[cur++] = node->right;
      }
    }
    else {
      cur_dist = cur_dist * cur_dist;

      if (cur_dist < min_dist) {
        NODE_TEST_NEAREST(node);

        if (node->right != KD_NODE_UNSET) {
          stack[cur++] = node->right;
        }
      }
      if (node->left != KD_NODE_UNSET) {
        stack[cur++] = node->left;
      }
    }
    if (UNLIKELY(cur + KD_DIMS > stack_len_capacity)) {
      stack = realloc_nodes(stack, &stack_len_capacity, stack_default != stack);
    }
  }

#undef NODE_TEST_NEAREST

finally:
  if (stack != stack_default) {
    MEM_freeN(stack);
  }

  if (min_node) {
    if (r_nearest) {
      r_nearest->index = min_node->index;
      r_nearest->dist = sqrtf(min_dist);
      copy_vn_vn(r_nearest->co, min_node->co);
    }

    return min_node->index;
  }
  else {
    return -1;
  }
}

static void nearest_ordered_insert(KDTreeNearest *nearest,
                                   uint *nearest_len,
                                   const uint nearest_len_capacity,
                                   const int index,
                                   const float dist,
                                   const float co[KD_DIMS])
{
  uint i;

  if (*nearest_len < nearest_len_capacity) {
    (*nearest_len)++;
  }

  for (i = *nearest_len - 1; i > 0; i--) {
    if (dist >= nearest[i - 1].dist) {
      break;
    }
    else {
      nearest[i] = nearest[i - 1];
    }
  }

  nearest[i].index = index;
  nearest[i].dist = dist;
  copy_vn_vn(nearest[i].co, co);
}

/**
 * Find \a nearest_len_capacity nearest returns number of points found, with results in nearest.
 *
 * \param r_nearest: An array of nearest, sized at least \a nearest_len_capacity.
 */
int BLI_kdtree_nd_(find_nearest_n_with_len_squared_cb)(
    const KDTree *tree,
    const float co[KD_DIMS],
    KDTreeNearest r_nearest[],
    const uint nearest_len_capacity,
    float (*len_sq_fn)(const float co_search[KD_DIMS],
                       const float co_test[KD_DIMS],
                       const void *user_data),
    const void *user_data)
{
  const KDTreeNode *nodes = tree->nodes;
  const KDTreeNode *root;
  uint *stack, stack_default[KD_STACK_INIT];
  float cur_dist;
  uint stack_len_capacity, cur = 0;
  uint i, nearest_len = 0;

#ifdef DEBUG
  BLI_assert(tree->is_balanced == true);
#endif

  if (UNLIKELY((tree->root == KD_NODE_UNSET) || nearest_len_capacity == 0)) {
    return 0;
  }

  if (len_sq_fn == NULL) {
    len_sq_fn = len_squared_vnvn_cb;
    BLI_assert(user_data == NULL);
  }

  stack = stack_default;
  stack_len_capacity = ARRAY_SIZE(stack_default);

  root = &nodes[tree->root];

  cur_dist = len_sq_fn(co, root->co, user_data);
  nearest_ordered_insert(
      r_nearest, &nearest_len, nearest_len_capacity, root->index, cur_dist, root->co);

  if (co[root->d] < root->co[root->d]) {
    if (root->right != KD_NODE_UNSET) {
      stack[cur++] = root->right;
    }
    if (root->left != KD_NODE_UNSET) {
      stack[cur++] = root->left;
    }
  }
  else {
    if (root->left != KD_NODE_UNSET) {
      stack[cur++] = root->left;
    }
    if (root->right != KD_NODE_UNSET) {
      stack[cur++] = root->right;
    }
  }

  while (cur--) {
    const KDTreeNode *node = &nodes[stack[cur]];

    cur_dist = node->co[node->d] - co[node->d];

    if (cur_dist < 0.0f) {
      cur_dist = -cur_dist * cur_dist;

      if (nearest_len < nearest_len_capacity || -cur_dist < r_nearest[nearest_len - 1].dist) {
        cur_dist = len_sq_fn(co, node->co, user_data);

        if (nearest_len < nearest_len_capacity || cur_dist < r_nearest[nearest_len - 1].dist) {
          nearest_ordered_insert(
              r_nearest, &nearest_len, nearest_len_capacity, node->index, cur_dist, node->co);
        }

        if (node->left != KD_NODE_UNSET) {
          stack[cur++] = node->left;
        }
      }
      if (node->right != KD_NODE_UNSET) {
        stack[cur++] = node->right;
      }
    }
    else {
      cur_dist = cur_dist * cur_dist;

      if (nearest_len < nearest_len_capacity || cur_dist < r_nearest[nearest_len - 1].dist) {
        cur_dist = len_sq_fn(co, node->co, user_data);
        if (nearest_len < nearest_len_capacity || cur_dist < r_nearest[nearest_len - 1].dist) {
          nearest_ordered_insert(
              r_nearest, &nearest_len, nearest_len_capacity, node->index, cur_dist, node->co);
        }

        if (node->right != KD_NODE_UNSET) {
          stack[cur++] = node->right;
        }
      }
      if (node->left != KD_NODE_UNSET) {
        stack[cur++] = node->left;
      }
    }
    if (UNLIKELY(cur + KD_DIMS > stack_len_capacity)) {
      stack = realloc_nodes(stack, &stack_len_capacity, stack_default != stack);
    }
  }

  for (i = 0; i < nearest_len; i++) {
    r_nearest[i].dist = sqrtf(r_nearest[i].dist);
  }

  if (stack != stack_default) {
    MEM_freeN(stack);
  }

  return (int)nearest_len;
}

int BLI_kdtree_nd_(find_nearest_n)(const KDTree *tree,
                                   const float co[KD_DIMS],
                                   KDTreeNearest r_nearest[],
                                   const uint nearest_len_capacity)
{
  return BLI_kdtree_nd_(find_nearest_n_with_len_squared_cb)(
      tree, co, r_nearest, nearest_len_capacity, NULL, NULL);
}

static int nearest_cmp_dist(const void *a, const void *b)
{
  const KDTreeNearest *kda = a;
  const KDTreeNearest *kdb = b;

  if (kda->dist < kdb->dist) {
    return -1;
  }
  else if (kda->dist > kdb->dist) {
    return 1;
  }
  else {
    return 0;
  }
}
static void nearest_add_in_range(KDTreeNearest **r_nearest,
                                 uint nearest_index,
                                 uint *nearest_len_capacity,
                                 const int index,
                                 const float dist,
                                 const float co[KD_DIMS])
{
  KDTreeNearest *to;

  if (UNLIKELY(nearest_index >= *nearest_len_capacity)) {
    *r_nearest = MEM_reallocN_id(
        *r_nearest, (*nearest_len_capacity += KD_FOUND_ALLOC_INC) * sizeof(KDTreeNode), __func__);
  }

  to = (*r_nearest) + nearest_index;

  to->index = index;
  to->dist = sqrtf(dist);
  copy_vn_vn(to->co, co);
}

/**
 * Range search returns number of points nearest_len, with results in nearest
 *
 * \param r_nearest: Allocated array of nearest nearest_len (caller is responsible for freeing).
 */
int BLI_kdtree_nd_(range_search_with_len_squared_cb)(
    const KDTree *tree,
    const float co[KD_DIMS],
    KDTreeNearest **r_nearest,
    const float range,
    float (*len_sq_fn)(const float co_search[KD_DIMS],
                       const float co_test[KD_DIMS],
                       const void *user_data),
    const void *user_data)
{
  const KDTreeNode *nodes = tree->nodes;
  uint *stack, stack_default[KD_STACK_INIT];
  KDTreeNearest *nearest = NULL;
  const float range_sq = range * range;
  float dist_sq;
  uint stack_len_capacity, cur = 0;
  uint nearest_len = 0, nearest_len_capacity = 0;

#ifdef DEBUG
  BLI_assert(tree->is_balanced == true);
#endif

  if (UNLIKELY(tree->root == KD_NODE_UNSET)) {
    return 0;
  }

  if (len_sq_fn == NULL) {
    len_sq_fn = len_squared_vnvn_cb;
    BLI_assert(user_data == NULL);
  }

  stack = stack_default;
  stack_len_capacity = ARRAY_SIZE(stack_default);

  stack[cur++] = tree->root;

  while (cur--) {
    const KDTreeNode *node = &nodes[stack[cur]];

    if (co[node->d] + range < node->co[node->d]) {
      if (node->left != KD_NODE_UNSET) {
        stack[cur++] = node->left;
      }
    }
    else if (co[node->d] - range > node->co[node->d]) {
      if (node->right != KD_NODE_UNSET) {
        stack[cur++] = node->right;
      }
    }
    else {
      dist_sq = len_sq_fn(co, node->co, user_data);
      if (dist_sq <= range_sq) {
        nearest_add_in_range(
            &nearest, nearest_len++, &nearest_len_capacity, node->index, dist_sq, node->co);
      }

      if (node->left != KD_NODE_UNSET) {
        stack[cur++] = node->left;
      }
      if (node->right != KD_NODE_UNSET) {
        stack[cur++] = node->right;
      }
    }

    if (UNLIKELY(cur + KD_DIMS > stack_len_capacity)) {
      stack = realloc_nodes(stack, &stack_len_capacity, stack_default != stack);
    }
  }

  if (stack != stack_default) {
    MEM_freeN(stack);
  }

  if (nearest_len) {
    qsort(nearest, nearest_len, sizeof(KDTreeNearest), nearest_cmp_dist);
  }

  *r_nearest = nearest;

  return (int)nearest_len;
}

int BLI_kdtree_nd_(range_search)(const KDTree *tree,
                                 const float co[KD_DIMS],
                                 KDTreeNearest **r_nearest,
                                 const float range)
{
  return BLI_kdtree_nd_(range_search_with_len_squared_cb)(tree, co, r_nearest, range, NULL, NULL);
}

/**
 * A version of #BLI_kdtree_3d_range_search which runs a callback
 * instead of allocating an array.
 *
 * \param search_cb: Called for every node found in \a range,
 * false return value performs an early exit.
 *
 * \note the order of calls isn't sorted based on distance.
 */
void BLI_kdtree_nd_(range_search_cb)(
    const KDTree *tree,
    const float co[KD_DIMS],
    float range,
    bool (*search_cb)(void *user_data, int index, const float co[KD_DIMS], float dist_sq),
    void *user_data)
{
  const KDTreeNode *nodes = tree->nodes;

  uint *stack, stack_default[KD_STACK_INIT];
  float range_sq = range * range, dist_sq;
  uint stack_len_capacity, cur = 0;

#ifdef DEBUG
  BLI_assert(tree->is_balanced == true);
#endif

  if (UNLIKELY(tree->root == KD_NODE_UNSET)) {
    return;
  }

  stack = stack_default;
  stack_len_capacity = ARRAY_SIZE(stack_default);

  stack[cur++] = tree->root;

  while (cur--) {
    const KDTreeNode *node = &nodes[stack[cur]];

    if (co[node->d] + range < node->co[node->d]) {
      if (node->left != KD_NODE_UNSET) {
        stack[cur++] = node->left;
      }
    }
    else if (co[node->d] - range > node->co[node->d]) {
      if (node->right != KD_NODE_UNSET) {
        stack[cur++] = node->right;
      }
    }
    else {
      dist_sq = len_squared_vnvn(node->co, co);
      if (dist_sq <= range_sq) {
        if (search_cb(user_data, node->index, node->co, dist_sq) == false) {
          goto finally;
        }
      }

      if (node->left != KD_NODE_UNSET) {
        stack[cur++] = node->left;
      }
      if (node->right != KD_NODE_UNSET) {
        stack[cur++] = node->right;
      }
    }

    if (UNLIKELY(cur + KD_DIMS > stack_len_capacity)) {
      stack = realloc_nodes(stack, &stack_len_capacity, stack_default != stack);
    }
  }

finally:
  if (stack != stack_default) {
    MEM_freeN(stack);
  }
}

/**
 * Use when we want to loop over nodes ordered by index.
 * Requires indices to be aligned with nodes.
 */
static uint *kdtree_order(const KDTree *tree)
{
  const KDTreeNode *nodes = tree->nodes;
  uint *order = MEM_mallocN(sizeof(uint) * tree->nodes_len, __func__);
  for (uint i = 0; i < tree->nodes_len; i++) {
    order[nodes[i].index] = i;
  }
  return order;
}

/* -------------------------------------------------------------------- */
/** \name BLI_kdtree_3d_calc_duplicates_fast
 * \{ */

struct DeDuplicateParams {
  /* Static */
  const KDTreeNode *nodes;
  float range;
  float range_sq;
  int *duplicates;
  int *duplicates_found;

  /* Per Search */
  float search_co[KD_DIMS];
  int search;
};

static void deduplicate_recursive(const struct DeDuplicateParams *p, uint i)
{
  const KDTreeNode *node = &p->nodes[i];
  if (p->search_co[node->d] + p->range <= node->co[node->d]) {
    if (node->left != KD_NODE_UNSET) {
      deduplicate_recursive(p, node->left);
    }
  }
  else if (p->search_co[node->d] - p->range >= node->co[node->d]) {
    if (node->right != KD_NODE_UNSET) {
      deduplicate_recursive(p, node->right);
    }
  }
  else {
    if ((p->search != node->index) && (p->duplicates[node->index] == -1)) {
      if (len_squared_vnvn(node->co, p->search_co) <= p->range_sq) {
        p->duplicates[node->index] = (int)p->search;
        *p->duplicates_found += 1;
      }
    }
    if (node->left != KD_NODE_UNSET) {
      deduplicate_recursive(p, node->left);
    }
    if (node->right != KD_NODE_UNSET) {
      deduplicate_recursive(p, node->right);
    }
  }
}

/**
 * Find duplicate points in \a range.
 * Favors speed over quality since it doesn't find the best target vertex for merging.
 * Nodes are looped over, duplicates are added when found.
 * Nevertheless results are predictable.
 *
 * \param range: Coordinates in this range are candidates to be merged.
 * \param use_index_order: Loop over the coordinates ordered by #KDTreeNode.index
 * At the expense of some performance, this ensures the layout of the tree doesn't influence
 * the iteration order.
 * \param duplicates: An array of int's the length of #KDTree.nodes_len
 * Values initialized to -1 are candidates to me merged.
 * Setting the index to its own position in the array prevents it from being touched,
 * although it can still be used as a target.
 * \returns The number of merges found (includes any merges already in the \a duplicates array).
 *
 * \note Merging is always a single step (target indices won't be marked for merging).
 */
int BLI_kdtree_nd_(calc_duplicates_fast)(const KDTree *tree,
                                         const float range,
                                         bool use_index_order,
                                         int *duplicates)
{
  int found = 0;
  struct DeDuplicateParams p = {
      .nodes = tree->nodes,
      .range = range,
      .range_sq = square_f(range),
      .duplicates = duplicates,
      .duplicates_found = &found,
  };

  if (use_index_order) {
    uint *order = kdtree_order(tree);
    for (uint i = 0; i < tree->nodes_len; i++) {
      const uint node_index = order[i];
      const int index = (int)i;
      if (ELEM(duplicates[index], -1, index)) {
        p.search = index;
        copy_vn_vn(p.search_co, tree->nodes[node_index].co);
        int found_prev = found;
        deduplicate_recursive(&p, tree->root);
        if (found != found_prev) {
          /* Prevent chains of doubles. */
          duplicates[index] = index;
        }
      }
    }
    MEM_freeN(order);
  }
  else {
    for (uint i = 0; i < tree->nodes_len; i++) {
      const uint node_index = i;
      const int index = p.nodes[node_index].index;
      if (ELEM(duplicates[index], -1, index)) {
        p.search = index;
        copy_vn_vn(p.search_co, tree->nodes[node_index].co);
        int found_prev = found;
        deduplicate_recursive(&p, tree->root);
        if (found != found_prev) {
          /* Prevent chains of doubles. */
          duplicates[index] = index;
        }
      }
    }
  }
  return found;
}

/** \} */

/* -------------------------------------------------------------------- */
/** \name BLI_kdtree_3d_deduplicate
 * \{ */

static int kdtree_node_cmp_deduplicate(const void *n0_p, const void *n1_p)
{
  const KDTreeNode *n0 = n0_p;
  const KDTreeNode *n1 = n1_p;
  for (uint j = 0; j < KD_DIMS; j++) {
    if (n0->co[j] < n1->co[j]) {
      return -1;
    }
    else if (n0->co[j] > n1->co[j]) {
      return 1;
    }
  }
  /* Sort by pointer so the first added will be used.
   * assignment below ignores const correctness,
   * however the values aren't used for sorting and are to be discarded. */
  if (n0 < n1) {
    ((KDTreeNode *)n1)->d = KD_DIMS; /* tag invalid */
    return -1;
  }
  else {
    ((KDTreeNode *)n0)->d = KD_DIMS; /* tag invalid */
    return 1;
  }
}

/**
 * Remove exact duplicates (run before balancing).
 *
 * Keep the first element added when duplicates are found.
 */
int BLI_kdtree_nd_(deduplicate)(KDTree *tree)
{
#ifdef DEBUG
  tree->is_balanced = false;
#endif
  qsort(tree->nodes, (size_t)tree->nodes_len, sizeof(*tree->nodes), kdtree_node_cmp_deduplicate);
  uint j = 0;
  for (uint i = 0; i < tree->nodes_len; i++) {
    if (tree->nodes[i].d != KD_DIMS) {
      if (i != j) {
        tree->nodes[j] = tree->nodes[i];
      }
      j++;
    }
  }
  tree->nodes_len = j;
  return (int)tree->nodes_len;
}

/** \} */