Welcome to mirror list, hosted at ThFree Co, Russian Federation.

math_base_inline.c « intern « blenlib « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 8d2d80c2a35ae60f5f86add84cdd419da552950a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
/*
 * ***** BEGIN GPL LICENSE BLOCK *****
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 *
 * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
 * All rights reserved.
 *
 * The Original Code is: some of this file.
 *
 * ***** END GPL LICENSE BLOCK *****
 * */

/** \file blender/blenlib/intern/math_base_inline.c
 *  \ingroup bli
 */

#ifndef __MATH_BASE_INLINE_C__
#define __MATH_BASE_INLINE_C__

#include <float.h>
#include <stdio.h>
#include <stdlib.h>

#ifdef __SSE2__
#  include <emmintrin.h>
#endif

#include "BLI_math_base.h"

/* copied from BLI_utildefines.h */
#ifdef __GNUC__
#  define UNLIKELY(x)     __builtin_expect(!!(x), 0)
#else
#  define UNLIKELY(x)     (x)
#endif

/* powf is really slow for raising to integer powers. */
MINLINE float pow2f(float x)
{
	return x * x;
}
MINLINE float pow3f(float x)
{
	return pow2f(x) * x;
}
MINLINE float pow4f(float x)
{
	return pow2f(pow2f(x));
}
MINLINE float pow7f(float x)
{
	return pow2f(pow3f(x)) * x;
}

MINLINE float sqrt3f(float f)
{
	if      (UNLIKELY(f == 0.0f)) return 0.0f;
	else if (UNLIKELY(f <  0.0f)) return -(float)(exp(log(-f) / 3.0));
	else                          return  (float)(exp(log( f) / 3.0));
}

MINLINE double sqrt3d(double d)
{
	if      (UNLIKELY(d == 0.0)) return 0.0;
	else if (UNLIKELY(d <  0.0)) return -exp(log(-d) / 3.0);
	else                         return  exp(log( d) / 3.0);
}

MINLINE float sqrtf_signed(float f)
{
	return (f >= 0.0f) ? sqrtf(f) : -sqrtf(-f);
}

MINLINE float saacos(float fac)
{
	if      (UNLIKELY(fac <= -1.0f)) return (float)M_PI;
	else if (UNLIKELY(fac >=  1.0f)) return 0.0f;
	else                             return acosf(fac);
}

MINLINE float saasin(float fac)
{
	if      (UNLIKELY(fac <= -1.0f)) return (float)-M_PI / 2.0f;
	else if (UNLIKELY(fac >=  1.0f)) return (float) M_PI / 2.0f;
	else                             return asinf(fac);
}

MINLINE float sasqrt(float fac)
{
	if (UNLIKELY(fac <= 0.0f)) return 0.0f;
	else                       return sqrtf(fac);
}

MINLINE float saacosf(float fac)
{
	if      (UNLIKELY(fac <= -1.0f)) return (float)M_PI;
	else if (UNLIKELY(fac >=  1.0f)) return 0.0f;
	else                             return acosf(fac);
}

MINLINE float saasinf(float fac)
{
	if      (UNLIKELY(fac <= -1.0f)) return (float)-M_PI / 2.0f;
	else if (UNLIKELY(fac >=  1.0f)) return (float) M_PI / 2.0f;
	else                             return asinf(fac);
}

MINLINE float sasqrtf(float fac)
{
	if (UNLIKELY(fac <= 0.0f)) return 0.0f;
	else                       return sqrtf(fac);
}

MINLINE float interpf(float target, float origin, float fac)
{
	return (fac * target) + (1.0f - fac) * origin;
}

/* used for zoom values*/
MINLINE float power_of_2(float val)
{
	return (float)pow(2.0, ceil(log((double)val) / M_LN2));
}

MINLINE int is_power_of_2_i(int n)
{
	return (n & (n - 1)) == 0;
}

MINLINE int power_of_2_max_i(int n)
{
	if (is_power_of_2_i(n))
		return n;

	do {
		n = n & (n - 1);
	} while (!is_power_of_2_i(n));

	return n * 2;
}

MINLINE int power_of_2_min_i(int n)
{
	while (!is_power_of_2_i(n))
		n = n & (n - 1);

	return n;
}

MINLINE unsigned int power_of_2_max_u(unsigned int x)
{
	x -= 1;
	x |= (x >>  1);
	x |= (x >>  2);
	x |= (x >>  4);
	x |= (x >>  8);
	x |= (x >> 16);
	return x + 1;
}

MINLINE unsigned power_of_2_min_u(unsigned x)
{
	x |= (x >>  1);
	x |= (x >>  2);
	x |= (x >>  4);
	x |= (x >>  8);
	x |= (x >> 16);
	return x - (x >> 1);
}

MINLINE int iroundf(float a)
{
	return (int)floorf(a + 0.5f);
}

/* integer division that rounds 0.5 up, particularly useful for color blending
 * with integers, to avoid gradual darkening when rounding down */
MINLINE int divide_round_i(int a, int b)
{
	return (2 * a + b) / (2 * b);
}

/**
 * modulo that handles negative numbers, works the same as Python's.
 */
MINLINE int mod_i(int i, int n)
{
	return (i % n + n) % n;
}

MINLINE float min_ff(float a, float b)
{
	return (a < b) ? a : b;
}
MINLINE float max_ff(float a, float b)
{
	return (a > b) ? a : b;
}

MINLINE int min_ii(int a, int b)
{
	return (a < b) ? a : b;
}
MINLINE int max_ii(int a, int b)
{
	return (b < a) ? a : b;
}

MINLINE float min_fff(float a, float b, float c)
{
	return min_ff(min_ff(a, b), c);
}
MINLINE float max_fff(float a, float b, float c)
{
	return max_ff(max_ff(a, b), c);
}

MINLINE int min_iii(int a, int b, int c)
{
	return min_ii(min_ii(a, b), c);
}
MINLINE int max_iii(int a, int b, int c)
{
	return max_ii(max_ii(a, b), c);
}

MINLINE float min_ffff(float a, float b, float c, float d)
{
	return min_ff(min_fff(a, b, c), d);
}
MINLINE float max_ffff(float a, float b, float c, float d)
{
	return max_ff(max_fff(a, b, c), d);
}

MINLINE int min_iiii(int a, int b, int c, int d)
{
	return min_ii(min_iii(a, b, c), d);
}
MINLINE int max_iiii(int a, int b, int c, int d)
{
	return max_ii(max_iii(a, b, c), d);
}

/**
 * Almost-equal for IEEE floats, using absolute difference method.
 *
 * \param max_diff the maximum absolute difference.
 */
MINLINE int compare_ff(float a, float b, const float max_diff)
{
	return fabsf(a - b) <= max_diff;
}

/**
 * Almost-equal for IEEE floats, using their integer representation (mixing ULP and absolute difference methods).
 *
 * \param max_diff is the maximum absolute difference (allows to take care of the near-zero area,
 *                 where relative difference methods cannot really work).
 * \param max_ulps is the 'maximum number of floats + 1' allowed between \a a and \a b to consider them equal.
 *
 * \see https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
 */
MINLINE int compare_ff_relative(float a, float b, const float max_diff, const int max_ulps)
{
	union {float f; int i;} ua, ub;

#if 0  /* No BLI_assert in INLINE :/ */
	BLI_assert(sizeof(float) == sizeof(int));
	BLI_assert(max_ulps < (1 << 22));
#endif

	if (fabsf(a - b) <= max_diff) {
		return 1;
	}

	ua.f = a;
	ub.f = b;

	/* Important to compare sign from integers, since (-0.0f < 0) is false
	 * (though this shall not be an issue in common cases)... */
	return ((ua.i < 0) != (ub.i < 0)) ? 0 : (abs(ua.i - ub.i) <= max_ulps) ? 1 : 0;
}

MINLINE float signf(float f)
{
	return (f < 0.f) ? -1.f : 1.f;
}

MINLINE int signum_i_ex(float a, float eps)
{
	if (a >  eps) return  1;
	if (a < -eps) return -1;
	else          return  0;
}

MINLINE int signum_i(float a)
{
	if (a > 0.0f) return  1;
	if (a < 0.0f) return -1;
	else          return  0;
}

/* Internal helpers for SSE2 implementation.
 *
 * NOTE: Are to be called ONLY from inside `#ifdef __SSE2__` !!!
 */

#ifdef __SSE2__

/* Calculate initial guess for arg^exp based on float representation
 * This method gives a constant bias, which can be easily compensated by
 * multiplicating with bias_coeff.
 * Gives better results for exponents near 1 (e. g. 4/5).
 * exp = exponent, encoded as uint32_t
 * e2coeff = 2^(127/exponent - 127) * bias_coeff^(1/exponent), encoded as
 * uint32_t
 *
 * We hope that exp and e2coeff gets properly inlined
 */
MALWAYS_INLINE __m128 _bli_math_fastpow(const int exp,
                                        const int e2coeff,
                                        const __m128 arg)
{
	__m128 ret;
	ret = _mm_mul_ps(arg, _mm_castsi128_ps(_mm_set1_epi32(e2coeff)));
	ret = _mm_cvtepi32_ps(_mm_castps_si128(ret));
	ret = _mm_mul_ps(ret, _mm_castsi128_ps(_mm_set1_epi32(exp)));
	ret = _mm_castsi128_ps(_mm_cvtps_epi32(ret));
	return ret;
}

/* Improve x ^ 1.0f/5.0f solution with Newton-Raphson method */
MALWAYS_INLINE __m128 _bli_math_improve_5throot_solution(
    const __m128 old_result,
    const __m128 x)
{
	__m128 approx2 = _mm_mul_ps(old_result, old_result);
	__m128 approx4 = _mm_mul_ps(approx2, approx2);
	__m128 t = _mm_div_ps(x, approx4);
	__m128 summ = _mm_add_ps(_mm_mul_ps(_mm_set1_ps(4.0f), old_result), t); /* fma */
	return _mm_mul_ps(summ, _mm_set1_ps(1.0f / 5.0f));
}

/* Calculate powf(x, 2.4). Working domain: 1e-10 < x < 1e+10 */
MALWAYS_INLINE __m128 _bli_math_fastpow24(const __m128 arg)
{
	/* max, avg and |avg| errors were calculated in gcc without FMA instructions
	 * The final precision should be better than powf in glibc */

	/* Calculate x^4/5, coefficient 0.994 was constructed manually to minimize
	 * avg error.
	 */
	/* 0x3F4CCCCD = 4/5 */
	/* 0x4F55A7FB = 2^(127/(4/5) - 127) * 0.994^(1/(4/5)) */
	/* error max = 0.17	avg = 0.0018	|avg| = 0.05 */
	__m128 x = _bli_math_fastpow(0x3F4CCCCD, 0x4F55A7FB, arg);
	__m128 arg2 = _mm_mul_ps(arg, arg);
	__m128 arg4 = _mm_mul_ps(arg2, arg2);
	/* error max = 0.018        avg = 0.0031    |avg| = 0.0031  */
	x = _bli_math_improve_5throot_solution(x, arg4);
	/* error max = 0.00021    avg = 1.6e-05    |avg| = 1.6e-05 */
	x = _bli_math_improve_5throot_solution(x, arg4);
	/* error max = 6.1e-07    avg = 5.2e-08    |avg| = 1.1e-07 */
	x = _bli_math_improve_5throot_solution(x, arg4);
	return _mm_mul_ps(x, _mm_mul_ps(x, x));
}

/* Calculate powf(x, 1.0f / 2.4) */
MALWAYS_INLINE __m128 _bli_math_fastpow512(const __m128 arg)
{
	/* 5/12 is too small, so compute the 4th root of 20/12 instead.
	 * 20/12 = 5/3 = 1 + 2/3 = 2 - 1/3. 2/3 is a suitable argument for fastpow.
	 * weighting coefficient: a^-1/2 = 2 a; a = 2^-2/3
	 */
	__m128 xf = _bli_math_fastpow(0x3f2aaaab, 0x5eb504f3, arg);
	__m128 xover = _mm_mul_ps(arg, xf);
	__m128 xfm1 = _mm_rsqrt_ps(xf);
	__m128 x2 = _mm_mul_ps(arg, arg);
	__m128 xunder = _mm_mul_ps(x2, xfm1);
	/* sqrt2 * over + 2 * sqrt2 * under */
	__m128 xavg = _mm_mul_ps(_mm_set1_ps(1.0f / (3.0f * 0.629960524947437f) * 0.999852f),
	                         _mm_add_ps(xover, xunder));
	xavg = _mm_mul_ps(xavg, _mm_rsqrt_ps(xavg));
	xavg = _mm_mul_ps(xavg, _mm_rsqrt_ps(xavg));
	return xavg;
}

MALWAYS_INLINE __m128 _bli_math_blend_sse(const __m128 mask,
                                          const __m128 a,
                                          const __m128 b)
{
	return _mm_or_ps(_mm_and_ps(mask, a), _mm_andnot_ps(mask, b));
}

#endif  /* __SSE2__ */

#endif /* __MATH_BASE_INLINE_C__ */