Welcome to mirror list, hosted at ThFree Co, Russian Federation.

math_base_inline.c « intern « blenlib « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 6e3846e59c6a5420b450ea985969bc2d3839e81e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
/*
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 *
 * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
 * All rights reserved.
 *
 * The Original Code is: some of this file.
 */

/** \file
 * \ingroup bli
 */

#ifndef __MATH_BASE_INLINE_C__
#define __MATH_BASE_INLINE_C__

#include <float.h>
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>

#include "BLI_math_base.h"
#include "BLI_simd.h"

#ifdef __cplusplus
extern "C" {
#endif

/* copied from BLI_utildefines.h */
#ifdef __GNUC__
#  define UNLIKELY(x) __builtin_expect(!!(x), 0)
#else
#  define UNLIKELY(x) (x)
#endif

/* powf is really slow for raising to integer powers. */
MINLINE float pow2f(float x)
{
  return x * x;
}
MINLINE float pow3f(float x)
{
  return pow2f(x) * x;
}
MINLINE float pow4f(float x)
{
  return pow2f(pow2f(x));
}
MINLINE float pow5f(float x)
{
  return pow4f(x) * x;
}
MINLINE float pow7f(float x)
{
  return pow2f(pow3f(x)) * x;
}

MINLINE float sqrt3f(float f)
{
  if (UNLIKELY(f == 0.0f)) {
    return 0.0f;
  }
  else if (UNLIKELY(f < 0.0f)) {
    return -(float)(exp(log(-f) / 3.0));
  }
  else {
    return (float)(exp(log(f) / 3.0));
  }
}

MINLINE double sqrt3d(double d)
{
  if (UNLIKELY(d == 0.0)) {
    return 0.0;
  }
  else if (UNLIKELY(d < 0.0)) {
    return -exp(log(-d) / 3.0);
  }
  else {
    return exp(log(d) / 3.0);
  }
}

MINLINE float sqrtf_signed(float f)
{
  return (f >= 0.0f) ? sqrtf(f) : -sqrtf(-f);
}

MINLINE float saacos(float fac)
{
  if (UNLIKELY(fac <= -1.0f)) {
    return (float)M_PI;
  }
  else if (UNLIKELY(fac >= 1.0f)) {
    return 0.0f;
  }
  else {
    return acosf(fac);
  }
}

MINLINE float saasin(float fac)
{
  if (UNLIKELY(fac <= -1.0f)) {
    return (float)-M_PI / 2.0f;
  }
  else if (UNLIKELY(fac >= 1.0f)) {
    return (float)M_PI / 2.0f;
  }
  else {
    return asinf(fac);
  }
}

MINLINE float sasqrt(float fac)
{
  if (UNLIKELY(fac <= 0.0f)) {
    return 0.0f;
  }
  else {
    return sqrtf(fac);
  }
}

MINLINE float saacosf(float fac)
{
  if (UNLIKELY(fac <= -1.0f)) {
    return (float)M_PI;
  }
  else if (UNLIKELY(fac >= 1.0f)) {
    return 0.0f;
  }
  else {
    return acosf(fac);
  }
}

MINLINE float saasinf(float fac)
{
  if (UNLIKELY(fac <= -1.0f)) {
    return (float)-M_PI / 2.0f;
  }
  else if (UNLIKELY(fac >= 1.0f)) {
    return (float)M_PI / 2.0f;
  }
  else {
    return asinf(fac);
  }
}

MINLINE float sasqrtf(float fac)
{
  if (UNLIKELY(fac <= 0.0f)) {
    return 0.0f;
  }
  else {
    return sqrtf(fac);
  }
}

MINLINE float interpf(float target, float origin, float fac)
{
  return (fac * target) + (1.0f - fac) * origin;
}

MINLINE double interpd(double target, double origin, double fac)
{
  return (fac * target) + (1.0f - fac) * origin;
}

MINLINE float ratiof(float min, float max, float pos)
{
  float range = max - min;
  return range == 0 ? 0 : ((pos - min) / range);
}

MINLINE double ratiod(double min, double max, double pos)
{
  double range = max - min;
  return range == 0 ? 0 : ((pos - min) / range);
}

/* Map a normalized value, i.e. from interval [0, 1] to interval [a, b]. */
MINLINE float scalenorm(float a, float b, float x)
{
  BLI_assert(x <= 1 && x >= 0);
  return (x * (b - a)) + a;
}

/* Used for zoom values. */
MINLINE float power_of_2(float val)
{
  return (float)pow(2.0, ceil(log((double)val) / M_LN2));
}

MINLINE int is_power_of_2_i(int n)
{
  return (n & (n - 1)) == 0;
}

MINLINE int power_of_2_max_i(int n)
{
  if (is_power_of_2_i(n)) {
    return n;
  }

  do {
    n = n & (n - 1);
  } while (!is_power_of_2_i(n));

  return n * 2;
}

MINLINE int power_of_2_min_i(int n)
{
  while (!is_power_of_2_i(n)) {
    n = n & (n - 1);
  }

  return n;
}

MINLINE unsigned int power_of_2_max_u(unsigned int x)
{
  x -= 1;
  x |= (x >> 1);
  x |= (x >> 2);
  x |= (x >> 4);
  x |= (x >> 8);
  x |= (x >> 16);
  return x + 1;
}

MINLINE unsigned int power_of_2_min_u(unsigned int x)
{
  x |= (x >> 1);
  x |= (x >> 2);
  x |= (x >> 4);
  x |= (x >> 8);
  x |= (x >> 16);
  return x - (x >> 1);
}

MINLINE unsigned int log2_floor_u(unsigned int x)
{
  return x <= 1 ? 0 : 1 + log2_floor_u(x >> 1);
}

MINLINE unsigned int log2_ceil_u(unsigned int x)
{
  if (is_power_of_2_i((int)x)) {
    return log2_floor_u(x);
  }
  else {
    return log2_floor_u(x) + 1;
  }
}

/* rounding and clamping */

#define _round_clamp_fl_impl(arg, ty, min, max) \
  { \
    float r = floorf(arg + 0.5f); \
    if (UNLIKELY(r <= (float)min)) { \
      return (ty)min; \
    } \
    else if (UNLIKELY(r >= (float)max)) { \
      return (ty)max; \
    } \
    else { \
      return (ty)r; \
    } \
  }

#define _round_clamp_db_impl(arg, ty, min, max) \
  { \
    double r = floor(arg + 0.5); \
    if (UNLIKELY(r <= (double)min)) { \
      return (ty)min; \
    } \
    else if (UNLIKELY(r >= (double)max)) { \
      return (ty)max; \
    } \
    else { \
      return (ty)r; \
    } \
  }

#define _round_fl_impl(arg, ty) \
  { \
    return (ty)floorf(arg + 0.5f); \
  }
#define _round_db_impl(arg, ty) \
  { \
    return (ty)floor(arg + 0.5); \
  }

MINLINE signed char round_fl_to_char(float a){_round_fl_impl(a, signed char)} MINLINE
    unsigned char round_fl_to_uchar(float a){_round_fl_impl(a, unsigned char)} MINLINE
    short round_fl_to_short(float a){_round_fl_impl(a, short)} MINLINE
    unsigned short round_fl_to_ushort(float a){_round_fl_impl(a, unsigned short)} MINLINE
    int round_fl_to_int(float a){_round_fl_impl(a, int)} MINLINE
    unsigned int round_fl_to_uint(float a){_round_fl_impl(a, unsigned int)}

MINLINE signed char round_db_to_char(double a){_round_db_impl(a, signed char)} MINLINE
    unsigned char round_db_to_uchar(double a){_round_db_impl(a, unsigned char)} MINLINE
    short round_db_to_short(double a){_round_db_impl(a, short)} MINLINE
    unsigned short round_db_to_ushort(double a){_round_db_impl(a, unsigned short)} MINLINE
    int round_db_to_int(double a){_round_db_impl(a, int)} MINLINE
    unsigned int round_db_to_uint(double a)
{
  _round_db_impl(a, unsigned int)
}

#undef _round_fl_impl
#undef _round_db_impl

MINLINE signed char round_fl_to_char_clamp(float a){
    _round_clamp_fl_impl(a, signed char, SCHAR_MIN, SCHAR_MAX)} MINLINE
    unsigned char round_fl_to_uchar_clamp(float a){
        _round_clamp_fl_impl(a, unsigned char, 0, UCHAR_MAX)} MINLINE
    short round_fl_to_short_clamp(float a){
        _round_clamp_fl_impl(a, short, SHRT_MIN, SHRT_MAX)} MINLINE
    unsigned short round_fl_to_ushort_clamp(float a){
        _round_clamp_fl_impl(a, unsigned short, 0, USHRT_MAX)} MINLINE
    int round_fl_to_int_clamp(float a){_round_clamp_fl_impl(a, int, INT_MIN, INT_MAX)} MINLINE
    unsigned int round_fl_to_uint_clamp(float a){
        _round_clamp_fl_impl(a, unsigned int, 0, UINT_MAX)}

MINLINE signed char round_db_to_char_clamp(double a){
    _round_clamp_db_impl(a, signed char, SCHAR_MIN, SCHAR_MAX)} MINLINE
    unsigned char round_db_to_uchar_clamp(double a){
        _round_clamp_db_impl(a, unsigned char, 0, UCHAR_MAX)} MINLINE
    short round_db_to_short_clamp(double a){
        _round_clamp_db_impl(a, short, SHRT_MIN, SHRT_MAX)} MINLINE
    unsigned short round_db_to_ushort_clamp(double a){
        _round_clamp_db_impl(a, unsigned short, 0, USHRT_MAX)} MINLINE
    int round_db_to_int_clamp(double a){_round_clamp_db_impl(a, int, INT_MIN, INT_MAX)} MINLINE
    unsigned int round_db_to_uint_clamp(double a)
{
  _round_clamp_db_impl(a, unsigned int, 0, UINT_MAX)
}

#undef _round_clamp_fl_impl
#undef _round_clamp_db_impl

/* integer division that rounds 0.5 up, particularly useful for color blending
 * with integers, to avoid gradual darkening when rounding down */
MINLINE int divide_round_i(int a, int b)
{
  return (2 * a + b) / (2 * b);
}

/**
 * Integer division that floors negative result.
 * \note This works like Python's int division.
 */
MINLINE int divide_floor_i(int a, int b)
{
  int d = a / b;
  int r = a % b; /* Optimizes into a single division. */
  return r ? d - ((a < 0) ^ (b < 0)) : d;
}

/**
 * Integer division that returns the ceiling, instead of flooring like normal C division.
 */
MINLINE uint divide_ceil_u(uint a, uint b)
{
  return (a + b - 1) / b;
}

/**
 * modulo that handles negative numbers, works the same as Python's.
 */
MINLINE int mod_i(int i, int n)
{
  return (i % n + n) % n;
}

MINLINE float fractf(float a)
{
  return a - floorf(a);
}

/* Adapted from godot-engine math_funcs.h. */
MINLINE float wrapf(float value, float max, float min)
{
  float range = max - min;
  return (range != 0.0f) ? value - (range * floorf((value - min) / range)) : min;
}

MINLINE float pingpongf(float value, float scale)
{
  if (scale == 0.0f) {
    return 0.0f;
  }
  return fabsf(fractf((value - scale) / (scale * 2.0f)) * scale * 2.0f - scale);
}

/* Square. */

MINLINE int square_s(short a)
{
  return a * a;
}

MINLINE int square_i(int a)
{
  return a * a;
}

MINLINE unsigned int square_uint(unsigned int a)
{
  return a * a;
}

MINLINE int square_uchar(unsigned char a)
{
  return a * a;
}

MINLINE float square_f(float a)
{
  return a * a;
}

MINLINE double square_d(double a)
{
  return a * a;
}

/* Cube. */

MINLINE int cube_s(short a)
{
  return a * a * a;
}

MINLINE int cube_i(int a)
{
  return a * a * a;
}

MINLINE unsigned int cube_uint(unsigned int a)
{
  return a * a * a;
}

MINLINE int cube_uchar(unsigned char a)
{
  return a * a * a;
}

MINLINE float cube_f(float a)
{
  return a * a * a;
}

MINLINE double cube_d(double a)
{
  return a * a * a;
}

/* Min/max */

MINLINE float min_ff(float a, float b)
{
  return (a < b) ? a : b;
}
MINLINE float max_ff(float a, float b)
{
  return (a > b) ? a : b;
}
/* See: https://www.iquilezles.org/www/articles/smin/smin.htm. */
MINLINE float smoothminf(float a, float b, float c)
{
  if (c != 0.0f) {
    float h = max_ff(c - fabsf(a - b), 0.0f) / c;
    return min_ff(a, b) - h * h * h * c * (1.0f / 6.0f);
  }
  else {
    return min_ff(a, b);
  }
}

MINLINE double min_dd(double a, double b)
{
  return (a < b) ? a : b;
}
MINLINE double max_dd(double a, double b)
{
  return (a > b) ? a : b;
}

MINLINE int min_ii(int a, int b)
{
  return (a < b) ? a : b;
}
MINLINE int max_ii(int a, int b)
{
  return (b < a) ? a : b;
}

MINLINE uint min_uu(uint a, uint b)
{
  return (a < b) ? a : b;
}
MINLINE uint max_uu(uint a, uint b)
{
  return (b < a) ? a : b;
}

MINLINE float min_fff(float a, float b, float c)
{
  return min_ff(min_ff(a, b), c);
}
MINLINE float max_fff(float a, float b, float c)
{
  return max_ff(max_ff(a, b), c);
}

MINLINE int min_iii(int a, int b, int c)
{
  return min_ii(min_ii(a, b), c);
}
MINLINE int max_iii(int a, int b, int c)
{
  return max_ii(max_ii(a, b), c);
}

MINLINE float min_ffff(float a, float b, float c, float d)
{
  return min_ff(min_fff(a, b, c), d);
}
MINLINE float max_ffff(float a, float b, float c, float d)
{
  return max_ff(max_fff(a, b, c), d);
}

MINLINE int min_iiii(int a, int b, int c, int d)
{
  return min_ii(min_iii(a, b, c), d);
}
MINLINE int max_iiii(int a, int b, int c, int d)
{
  return max_ii(max_iii(a, b, c), d);
}

MINLINE size_t min_zz(size_t a, size_t b)
{
  return (a < b) ? a : b;
}
MINLINE size_t max_zz(size_t a, size_t b)
{
  return (b < a) ? a : b;
}

MINLINE char min_cc(char a, char b)
{
  return (a < b) ? a : b;
}
MINLINE char max_cc(char a, char b)
{
  return (b < a) ? a : b;
}

MINLINE int clamp_i(int value, int min, int max)
{
  return min_ii(max_ii(value, min), max);
}

MINLINE float clamp_f(float value, float min, float max)
{
  if (value > max) {
    return max;
  }
  else if (value < min) {
    return min;
  }
  return value;
}

MINLINE size_t clamp_z(size_t value, size_t min, size_t max)
{
  return min_zz(max_zz(value, min), max);
}

/**
 * Almost-equal for IEEE floats, using absolute difference method.
 *
 * \param max_diff: the maximum absolute difference.
 */
MINLINE int compare_ff(float a, float b, const float max_diff)
{
  return fabsf(a - b) <= max_diff;
}

/**
 * Almost-equal for IEEE floats, using their integer representation
 * (mixing ULP and absolute difference methods).
 *
 * \param max_diff: is the maximum absolute difference (allows to take care of the near-zero area,
 * where relative difference methods cannot really work).
 * \param max_ulps: is the 'maximum number of floats + 1'
 * allowed between \a a and \a b to consider them equal.
 *
 * \see https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
 */
MINLINE int compare_ff_relative(float a, float b, const float max_diff, const int max_ulps)
{
  union {
    float f;
    int i;
  } ua, ub;

  BLI_assert(sizeof(float) == sizeof(int));
  BLI_assert(max_ulps < (1 << 22));

  if (fabsf(a - b) <= max_diff) {
    return 1;
  }

  ua.f = a;
  ub.f = b;

  /* Important to compare sign from integers, since (-0.0f < 0) is false
   * (though this shall not be an issue in common cases)... */
  return ((ua.i < 0) != (ub.i < 0)) ? 0 : (abs(ua.i - ub.i) <= max_ulps) ? 1 : 0;
}

MINLINE float signf(float f)
{
  return (f < 0.0f) ? -1.0f : 1.0f;
}

MINLINE float compatible_signf(float f)
{
  if (f > 0.0f) {
    return 1.0f;
  }
  if (f < 0.0f) {
    return -1.0f;
  }
  else {
    return 0.0f;
  }
}

MINLINE int signum_i_ex(float a, float eps)
{
  if (a > eps) {
    return 1;
  }
  if (a < -eps) {
    return -1;
  }
  else {
    return 0;
  }
}

MINLINE int signum_i(float a)
{
  if (a > 0.0f) {
    return 1;
  }
  if (a < 0.0f) {
    return -1;
  }
  else {
    return 0;
  }
}

/**
 * Returns number of (base ten) *significant* digits of integer part of given float
 * (negative in case of decimal-only floats, 0.01 returns -1 e.g.).
 */
MINLINE int integer_digits_f(const float f)
{
  return (f == 0.0f) ? 0 : (int)floor(log10(fabs(f))) + 1;
}

/**
 * Returns number of (base ten) *significant* digits of integer part of given double
 * (negative in case of decimal-only floats, 0.01 returns -1 e.g.).
 */
MINLINE int integer_digits_d(const double d)
{
  return (d == 0.0) ? 0 : (int)floor(log10(fabs(d))) + 1;
}

MINLINE int integer_digits_i(const int i)
{
  return (int)log10((double)i) + 1;
}

/* Internal helpers for SSE2 implementation.
 *
 * NOTE: Are to be called ONLY from inside `#ifdef BLI_HAVE_SSE2` !!!
 */

#ifdef BLI_HAVE_SSE2

/* Calculate initial guess for arg^exp based on float representation
 * This method gives a constant bias, which can be easily compensated by
 * multiplying with bias_coeff.
 * Gives better results for exponents near 1 (e. g. 4/5).
 * exp = exponent, encoded as uint32_t
 * e2coeff = 2^(127/exponent - 127) * bias_coeff^(1/exponent), encoded as
 * uint32_t
 *
 * We hope that exp and e2coeff gets properly inlined
 */
MALWAYS_INLINE __m128 _bli_math_fastpow(const int exp, const int e2coeff, const __m128 arg)
{
  __m128 ret;
  ret = _mm_mul_ps(arg, _mm_castsi128_ps(_mm_set1_epi32(e2coeff)));
  ret = _mm_cvtepi32_ps(_mm_castps_si128(ret));
  ret = _mm_mul_ps(ret, _mm_castsi128_ps(_mm_set1_epi32(exp)));
  ret = _mm_castsi128_ps(_mm_cvtps_epi32(ret));
  return ret;
}

/* Improve x ^ 1.0f/5.0f solution with Newton-Raphson method */
MALWAYS_INLINE __m128 _bli_math_improve_5throot_solution(const __m128 old_result, const __m128 x)
{
  __m128 approx2 = _mm_mul_ps(old_result, old_result);
  __m128 approx4 = _mm_mul_ps(approx2, approx2);
  __m128 t = _mm_div_ps(x, approx4);
  __m128 summ = _mm_add_ps(_mm_mul_ps(_mm_set1_ps(4.0f), old_result), t); /* FMA. */
  return _mm_mul_ps(summ, _mm_set1_ps(1.0f / 5.0f));
}

/* Calculate powf(x, 2.4). Working domain: 1e-10 < x < 1e+10 */
MALWAYS_INLINE __m128 _bli_math_fastpow24(const __m128 arg)
{
  /* max, avg and |avg| errors were calculated in gcc without FMA instructions
   * The final precision should be better than powf in glibc */

  /* Calculate x^4/5, coefficient 0.994 was constructed manually to minimize
   * avg error.
   */
  /* 0x3F4CCCCD = 4/5 */
  /* 0x4F55A7FB = 2^(127/(4/5) - 127) * 0.994^(1/(4/5)) */
  /* error max = 0.17, avg = 0.0018, |avg| = 0.05 */
  __m128 x = _bli_math_fastpow(0x3F4CCCCD, 0x4F55A7FB, arg);
  __m128 arg2 = _mm_mul_ps(arg, arg);
  __m128 arg4 = _mm_mul_ps(arg2, arg2);
  /* error max = 0.018        avg = 0.0031    |avg| = 0.0031 */
  x = _bli_math_improve_5throot_solution(x, arg4);
  /* error max = 0.00021    avg = 1.6e-05    |avg| = 1.6e-05 */
  x = _bli_math_improve_5throot_solution(x, arg4);
  /* error max = 6.1e-07    avg = 5.2e-08    |avg| = 1.1e-07 */
  x = _bli_math_improve_5throot_solution(x, arg4);
  return _mm_mul_ps(x, _mm_mul_ps(x, x));
}

/* Calculate powf(x, 1.0f / 2.4) */
MALWAYS_INLINE __m128 _bli_math_fastpow512(const __m128 arg)
{
  /* 5/12 is too small, so compute the 4th root of 20/12 instead.
   * 20/12 = 5/3 = 1 + 2/3 = 2 - 1/3. 2/3 is a suitable argument for fastpow.
   * weighting coefficient: a^-1/2 = 2 a; a = 2^-2/3
   */
  __m128 xf = _bli_math_fastpow(0x3f2aaaab, 0x5eb504f3, arg);
  __m128 xover = _mm_mul_ps(arg, xf);
  __m128 xfm1 = _mm_rsqrt_ps(xf);
  __m128 x2 = _mm_mul_ps(arg, arg);
  __m128 xunder = _mm_mul_ps(x2, xfm1);
  /* sqrt2 * over + 2 * sqrt2 * under */
  __m128 xavg = _mm_mul_ps(_mm_set1_ps(1.0f / (3.0f * 0.629960524947437f) * 0.999852f),
                           _mm_add_ps(xover, xunder));
  xavg = _mm_mul_ps(xavg, _mm_rsqrt_ps(xavg));
  xavg = _mm_mul_ps(xavg, _mm_rsqrt_ps(xavg));
  return xavg;
}

MALWAYS_INLINE __m128 _bli_math_blend_sse(const __m128 mask, const __m128 a, const __m128 b)
{
  return _mm_or_ps(_mm_and_ps(mask, a), _mm_andnot_ps(mask, b));
}

#endif /* BLI_HAVE_SSE2 */

/* Low level conversion functions */
MINLINE unsigned char unit_float_to_uchar_clamp(float val)
{
  return (unsigned char)((
      (val <= 0.0f) ? 0 : ((val > (1.0f - 0.5f / 255.0f)) ? 255 : ((255.0f * val) + 0.5f))));
}
#define unit_float_to_uchar_clamp(val) \
  ((CHECK_TYPE_INLINE(val, float)), unit_float_to_uchar_clamp(val))

MINLINE unsigned short unit_float_to_ushort_clamp(float val)
{
  return (unsigned short)((val >= 1.0f - 0.5f / 65535) ? 65535 :
                          (val <= 0.0f)                ? 0 :
                                                         (val * 65535.0f + 0.5f));
}
#define unit_float_to_ushort_clamp(val) \
  ((CHECK_TYPE_INLINE(val, float)), unit_float_to_ushort_clamp(val))

MINLINE unsigned char unit_ushort_to_uchar(unsigned short val)
{
  return (unsigned char)(((val) >= 65535 - 128) ? 255 : ((val) + 128) >> 8);
}
#define unit_ushort_to_uchar(val) \
  ((CHECK_TYPE_INLINE(val, unsigned short)), unit_ushort_to_uchar(val))

#define unit_float_to_uchar_clamp_v3(v1, v2) \
  { \
    (v1)[0] = unit_float_to_uchar_clamp((v2[0])); \
    (v1)[1] = unit_float_to_uchar_clamp((v2[1])); \
    (v1)[2] = unit_float_to_uchar_clamp((v2[2])); \
  } \
  ((void)0)
#define unit_float_to_uchar_clamp_v4(v1, v2) \
  { \
    (v1)[0] = unit_float_to_uchar_clamp((v2[0])); \
    (v1)[1] = unit_float_to_uchar_clamp((v2[1])); \
    (v1)[2] = unit_float_to_uchar_clamp((v2[2])); \
    (v1)[3] = unit_float_to_uchar_clamp((v2[3])); \
  } \
  ((void)0)

#ifdef __cplusplus
}
#endif

#endif /* __MATH_BASE_INLINE_C__ */