Welcome to mirror list, hosted at ThFree Co, Russian Federation.

math_geom_inline.c « intern « blenlib « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: db317f5e81d59ece84755f02c151c0c36ac90ce3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
/*
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 *
 * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
 * All rights reserved.
 *
 * The Original Code is: some of this file.
 *
 * */

/** \file
 * \ingroup bli
 */

#ifndef __MATH_GEOM_INLINE_C__
#define __MATH_GEOM_INLINE_C__

#include "BLI_math.h"
#include "BLI_math_vector.h"

#include <string.h>

/* A few small defines. Keep'em local! */
#define SMALL_NUMBER 1.e-8f

/********************************** Polygons *********************************/

MINLINE float cross_tri_v2(const float v1[2], const float v2[2], const float v3[2])
{
  return (v1[0] - v2[0]) * (v2[1] - v3[1]) + (v1[1] - v2[1]) * (v3[0] - v2[0]);
}

MINLINE float area_tri_signed_v2(const float v1[2], const float v2[2], const float v3[2])
{
  return 0.5f * ((v1[0] - v2[0]) * (v2[1] - v3[1]) + (v1[1] - v2[1]) * (v3[0] - v2[0]));
}

MINLINE float area_tri_v2(const float v1[2], const float v2[2], const float v3[2])
{
  return fabsf(area_tri_signed_v2(v1, v2, v3));
}

MINLINE float area_squared_tri_v2(const float v1[2], const float v2[2], const float v3[2])
{
  float area = area_tri_signed_v2(v1, v2, v3);
  return area * area;
}

/****************************** Spherical Harmonics **************************/

MINLINE void zero_sh(float r[9])
{
  memset(r, 0, sizeof(float[9]));
}

MINLINE void copy_sh_sh(float r[9], const float a[9])
{
  memcpy(r, a, sizeof(float[9]));
}

MINLINE void mul_sh_fl(float r[9], const float f)
{
  int i;

  for (i = 0; i < 9; i++) {
    r[i] *= f;
  }
}

MINLINE void add_sh_shsh(float r[9], const float a[9], const float b[9])
{
  int i;

  for (i = 0; i < 9; i++) {
    r[i] = a[i] + b[i];
  }
}

MINLINE float dot_shsh(const float a[9], const float b[9])
{
  float r = 0.0f;
  int i;

  for (i = 0; i < 9; i++) {
    r += a[i] * b[i];
  }

  return r;
}

MINLINE float diffuse_shv3(float sh[9], const float v[3])
{
  /* See formula (13) in:
   * "An Efficient Representation for Irradiance Environment Maps" */
  static const float c1 = 0.429043f, c2 = 0.511664f, c3 = 0.743125f;
  static const float c4 = 0.886227f, c5 = 0.247708f;
  float x, y, z, sum;

  x = v[0];
  y = v[1];
  z = v[2];

  sum = c1 * sh[8] * (x * x - y * y);
  sum += c3 * sh[6] * z * z;
  sum += c4 * sh[0];
  sum += -c5 * sh[6];
  sum += 2.0f * c1 * (sh[4] * x * y + sh[7] * x * z + sh[5] * y * z);
  sum += 2.0f * c2 * (sh[3] * x + sh[1] * y + sh[2] * z);

  return sum;
}

MINLINE void vec_fac_to_sh(float r[9], const float v[3], const float f)
{
  /* See formula (3) in:
   * "An Efficient Representation for Irradiance Environment Maps" */
  float sh[9], x, y, z;

  x = v[0];
  y = v[1];
  z = v[2];

  sh[0] = 0.282095f;

  sh[1] = 0.488603f * y;
  sh[2] = 0.488603f * z;
  sh[3] = 0.488603f * x;

  sh[4] = 1.092548f * x * y;
  sh[5] = 1.092548f * y * z;
  sh[6] = 0.315392f * (3.0f * z * z - 1.0f);
  sh[7] = 1.092548f * x * z;
  sh[8] = 0.546274f * (x * x - y * y);

  mul_sh_fl(sh, f);
  copy_sh_sh(r, sh);
}

MINLINE float eval_shv3(float sh[9], const float v[3])
{
  float tmp[9];

  vec_fac_to_sh(tmp, v, 1.0f);
  return dot_shsh(tmp, sh);
}

MINLINE void madd_sh_shfl(float r[9], const float sh[9], const float f)
{
  float tmp[9];

  copy_sh_sh(tmp, sh);
  mul_sh_fl(tmp, f);
  add_sh_shsh(r, r, tmp);
}

/* get the 2 dominant axis values, 0==X, 1==Y, 2==Z */
MINLINE void axis_dominant_v3(int *r_axis_a, int *r_axis_b, const float axis[3])
{
  const float xn = fabsf(axis[0]);
  const float yn = fabsf(axis[1]);
  const float zn = fabsf(axis[2]);

  if (zn >= xn && zn >= yn) {
    *r_axis_a = 0;
    *r_axis_b = 1;
  }
  else if (yn >= xn && yn >= zn) {
    *r_axis_a = 0;
    *r_axis_b = 2;
  }
  else {
    *r_axis_a = 1;
    *r_axis_b = 2;
  }
}

/* same as axis_dominant_v3 but return the max value */
MINLINE float axis_dominant_v3_max(int *r_axis_a, int *r_axis_b, const float axis[3])
{
  const float xn = fabsf(axis[0]);
  const float yn = fabsf(axis[1]);
  const float zn = fabsf(axis[2]);

  if (zn >= xn && zn >= yn) {
    *r_axis_a = 0;
    *r_axis_b = 1;
    return zn;
  }
  else if (yn >= xn && yn >= zn) {
    *r_axis_a = 0;
    *r_axis_b = 2;
    return yn;
  }
  else {
    *r_axis_a = 1;
    *r_axis_b = 2;
    return xn;
  }
}

/* get the single dominant axis value, 0==X, 1==Y, 2==Z */
MINLINE int axis_dominant_v3_single(const float vec[3])
{
  const float x = fabsf(vec[0]);
  const float y = fabsf(vec[1]);
  const float z = fabsf(vec[2]);
  return ((x > y) ? ((x > z) ? 0 : 2) : ((y > z) ? 1 : 2));
}

/* the dominant axis of an orthogonal vector */
MINLINE int axis_dominant_v3_ortho_single(const float vec[3])
{
  const float x = fabsf(vec[0]);
  const float y = fabsf(vec[1]);
  const float z = fabsf(vec[2]);
  return ((x < y) ? ((x < z) ? 0 : 2) : ((y < z) ? 1 : 2));
}

MINLINE int max_axis_v3(const float vec[3])
{
  const float x = vec[0];
  const float y = vec[1];
  const float z = vec[2];
  return ((x > y) ? ((x > z) ? 0 : 2) : ((y > z) ? 1 : 2));
}

MINLINE int min_axis_v3(const float vec[3])
{
  const float x = vec[0];
  const float y = vec[1];
  const float z = vec[2];
  return ((x < y) ? ((x < z) ? 0 : 2) : ((y < z) ? 1 : 2));
}

/**
 * Simple method to find how many tri's we need when we already know the corner+poly count.
 *
 * \param poly_count: The number of ngon's/tris (1-2 sided faces will give incorrect results)
 * \param corner_count: also known as loops in BMesh/DNA
 */
MINLINE int poly_to_tri_count(const int poly_count, const int corner_count)
{
  BLI_assert(!poly_count || corner_count > poly_count * 2);
  return corner_count - (poly_count * 2);
}

MINLINE float plane_point_side_v3(const float plane[4], const float co[3])
{
  return dot_v3v3(co, plane) + plane[3];
}

/* useful to calculate an even width shell, by taking the angle between 2 planes.
 * The return value is a scale on the offset.
 * no angle between planes is 1.0, as the angle between the 2 planes approaches 180d
 * the distance gets very high, 180d would be inf, but this case isn't valid */
MINLINE float shell_angle_to_dist(const float angle)
{
  return (UNLIKELY(angle < SMALL_NUMBER)) ? 1.0f : fabsf(1.0f / cosf(angle));
}
/**
 * equivalent to ``shell_angle_to_dist(angle_normalized_v3v3(a, b))``
 */
MINLINE float shell_v3v3_normalized_to_dist(const float a[3], const float b[3])
{
  const float angle_cos = fabsf(dot_v3v3(a, b));
  BLI_ASSERT_UNIT_V3(a);
  BLI_ASSERT_UNIT_V3(b);
  return (UNLIKELY(angle_cos < SMALL_NUMBER)) ? 1.0f : (1.0f / angle_cos);
}
/**
 * equivalent to ``shell_angle_to_dist(angle_normalized_v2v2(a, b))``
 */
MINLINE float shell_v2v2_normalized_to_dist(const float a[2], const float b[2])
{
  const float angle_cos = fabsf(dot_v2v2(a, b));
  BLI_ASSERT_UNIT_V2(a);
  BLI_ASSERT_UNIT_V2(b);
  return (UNLIKELY(angle_cos < SMALL_NUMBER)) ? 1.0f : (1.0f / angle_cos);
}

/**
 * equivalent to ``shell_angle_to_dist(angle_normalized_v3v3(a, b) / 2)``
 */
MINLINE float shell_v3v3_mid_normalized_to_dist(const float a[3], const float b[3])
{
  float angle_cos;
  float ab[3];
  BLI_ASSERT_UNIT_V3(a);
  BLI_ASSERT_UNIT_V3(b);
  add_v3_v3v3(ab, a, b);
  angle_cos = (normalize_v3(ab) != 0.0f) ? fabsf(dot_v3v3(a, ab)) : 0.0f;
  return (UNLIKELY(angle_cos < SMALL_NUMBER)) ? 1.0f : (1.0f / angle_cos);
}

/**
 * equivalent to ``shell_angle_to_dist(angle_normalized_v2v2(a, b) / 2)``
 */
MINLINE float shell_v2v2_mid_normalized_to_dist(const float a[2], const float b[2])
{
  float angle_cos;
  float ab[2];
  BLI_ASSERT_UNIT_V2(a);
  BLI_ASSERT_UNIT_V2(b);
  add_v2_v2v2(ab, a, b);
  angle_cos = (normalize_v2(ab) != 0.0f) ? fabsf(dot_v2v2(a, ab)) : 0.0f;
  return (UNLIKELY(angle_cos < SMALL_NUMBER)) ? 1.0f : (1.0f / angle_cos);
}

#undef SMALL_NUMBER

#endif /* __MATH_GEOM_INLINE_C__ */