Welcome to mirror list, hosted at ThFree Co, Russian Federation.

math_matrix.c « intern « blenlib « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: f523bd07c098992f0074b52f19f7ad05e3f57012 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
/*
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 *
 * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
 * All rights reserved.
 *
 * The Original Code is: some of this file.
 */

/** \file
 * \ingroup bli
 */

#include "BLI_math.h"
#include <assert.h>

#include "BLI_strict_flags.h"

#ifndef MATH_STANDALONE
#  include "eigen_capi.h"
#endif

/********************************* Init **************************************/

void zero_m2(float m[2][2])
{
  memset(m, 0, sizeof(float[2][2]));
}

void zero_m3(float m[3][3])
{
  memset(m, 0, sizeof(float[3][3]));
}

void zero_m4(float m[4][4])
{
  memset(m, 0, sizeof(float[4][4]));
}

void unit_m2(float m[2][2])
{
  m[0][0] = m[1][1] = 1.0f;
  m[0][1] = 0.0f;
  m[1][0] = 0.0f;
}

void unit_m3(float m[3][3])
{
  m[0][0] = m[1][1] = m[2][2] = 1.0f;
  m[0][1] = m[0][2] = 0.0f;
  m[1][0] = m[1][2] = 0.0f;
  m[2][0] = m[2][1] = 0.0f;
}

void unit_m4(float m[4][4])
{
  m[0][0] = m[1][1] = m[2][2] = m[3][3] = 1.0f;
  m[0][1] = m[0][2] = m[0][3] = 0.0f;
  m[1][0] = m[1][2] = m[1][3] = 0.0f;
  m[2][0] = m[2][1] = m[2][3] = 0.0f;
  m[3][0] = m[3][1] = m[3][2] = 0.0f;
}

void unit_m4_db(double m[4][4])
{
  m[0][0] = m[1][1] = m[2][2] = m[3][3] = 1.0f;
  m[0][1] = m[0][2] = m[0][3] = 0.0f;
  m[1][0] = m[1][2] = m[1][3] = 0.0f;
  m[2][0] = m[2][1] = m[2][3] = 0.0f;
  m[3][0] = m[3][1] = m[3][2] = 0.0f;
}

void copy_m2_m2(float m1[2][2], const float m2[2][2])
{
  memcpy(m1, m2, sizeof(float[2][2]));
}

void copy_m3_m3(float m1[3][3], const float m2[3][3])
{
  /* destination comes first: */
  memcpy(m1, m2, sizeof(float[3][3]));
}

void copy_m4_m4(float m1[4][4], const float m2[4][4])
{
  memcpy(m1, m2, sizeof(float[4][4]));
}

void copy_m4_m4_db(double m1[4][4], const double m2[4][4])
{
  memcpy(m1, m2, sizeof(double[4][4]));
}

void copy_m3_m4(float m1[3][3], const float m2[4][4])
{
  m1[0][0] = m2[0][0];
  m1[0][1] = m2[0][1];
  m1[0][2] = m2[0][2];

  m1[1][0] = m2[1][0];
  m1[1][1] = m2[1][1];
  m1[1][2] = m2[1][2];

  m1[2][0] = m2[2][0];
  m1[2][1] = m2[2][1];
  m1[2][2] = m2[2][2];
}

void copy_m4_m3(float m1[4][4], const float m2[3][3]) /* no clear */
{
  m1[0][0] = m2[0][0];
  m1[0][1] = m2[0][1];
  m1[0][2] = m2[0][2];

  m1[1][0] = m2[1][0];
  m1[1][1] = m2[1][1];
  m1[1][2] = m2[1][2];

  m1[2][0] = m2[2][0];
  m1[2][1] = m2[2][1];
  m1[2][2] = m2[2][2];

  /*  Reevan's Bugfix */
  m1[0][3] = 0.0f;
  m1[1][3] = 0.0f;
  m1[2][3] = 0.0f;

  m1[3][0] = 0.0f;
  m1[3][1] = 0.0f;
  m1[3][2] = 0.0f;
  m1[3][3] = 1.0f;
}

void copy_m3_m2(float m1[3][3], const float m2[2][2])
{
  m1[0][0] = m2[0][0];
  m1[0][1] = m2[0][1];
  m1[0][2] = 0.0f;

  m1[1][0] = m2[1][0];
  m1[1][1] = m2[1][1];
  m1[1][2] = 0.0f;

  m1[2][0] = 0.0f;
  m1[2][1] = 0.0f;
  m1[2][2] = 1.0f;
}

void copy_m4_m2(float m1[4][4], const float m2[2][2])
{
  m1[0][0] = m2[0][0];
  m1[0][1] = m2[0][1];
  m1[0][2] = 0.0f;
  m1[0][3] = 0.0f;

  m1[1][0] = m2[1][0];
  m1[1][1] = m2[1][1];
  m1[1][2] = 0.0f;
  m1[1][3] = 0.0f;

  m1[2][0] = 0.0f;
  m1[2][1] = 0.0f;
  m1[2][2] = 1.0f;
  m1[2][3] = 0.0f;

  m1[3][0] = 0.0f;
  m1[3][1] = 0.0f;
  m1[3][2] = 0.0f;
  m1[3][3] = 1.0f;
}

void copy_m4d_m4(double m1[4][4], const float m2[4][4])
{
  m1[0][0] = m2[0][0];
  m1[0][1] = m2[0][1];
  m1[0][2] = m2[0][2];
  m1[0][3] = m2[0][3];

  m1[1][0] = m2[1][0];
  m1[1][1] = m2[1][1];
  m1[1][2] = m2[1][2];
  m1[1][3] = m2[1][3];

  m1[2][0] = m2[2][0];
  m1[2][1] = m2[2][1];
  m1[2][2] = m2[2][2];
  m1[2][3] = m2[2][3];

  m1[3][0] = m2[3][0];
  m1[3][1] = m2[3][1];
  m1[3][2] = m2[3][2];
  m1[3][3] = m2[3][3];
}

void copy_m3_m3d(float R[3][3], const double A[3][3])
{
  /* Keep it stupid simple for better data flow in CPU. */
  R[0][0] = (float)A[0][0];
  R[0][1] = (float)A[0][1];
  R[0][2] = (float)A[0][2];

  R[1][0] = (float)A[1][0];
  R[1][1] = (float)A[1][1];
  R[1][2] = (float)A[1][2];

  R[2][0] = (float)A[2][0];
  R[2][1] = (float)A[2][1];
  R[2][2] = (float)A[2][2];
}

void swap_m3m3(float m1[3][3], float m2[3][3])
{
  float t;
  int i, j;

  for (i = 0; i < 3; i++) {
    for (j = 0; j < 3; j++) {
      t = m1[i][j];
      m1[i][j] = m2[i][j];
      m2[i][j] = t;
    }
  }
}

void swap_m4m4(float m1[4][4], float m2[4][4])
{
  float t;
  int i, j;

  for (i = 0; i < 4; i++) {
    for (j = 0; j < 4; j++) {
      t = m1[i][j];
      m1[i][j] = m2[i][j];
      m2[i][j] = t;
    }
  }
}

void shuffle_m4(float R[4][4], const int index[4])
{
  zero_m4(R);
  for (int k = 0; k < 4; k++) {
    if (index[k] >= 0) {
      R[index[k]][k] = 1.0f;
    }
  }
}

/******************************** Arithmetic *********************************/

void mul_m4_m4m4(float R[4][4], const float A[4][4], const float B[4][4])
{
  if (A == R) {
    mul_m4_m4_post(R, B);
  }
  else if (B == R) {
    mul_m4_m4_pre(R, A);
  }
  else {
    mul_m4_m4m4_uniq(R, A, B);
  }
}

void mul_m4_m4m4_uniq(float R[4][4], const float A[4][4], const float B[4][4])
{
  BLI_assert(R != A && R != B);

  /* matrix product: R[j][k] = A[j][i] . B[i][k] */
#ifdef __SSE2__
  __m128 A0 = _mm_loadu_ps(A[0]);
  __m128 A1 = _mm_loadu_ps(A[1]);
  __m128 A2 = _mm_loadu_ps(A[2]);
  __m128 A3 = _mm_loadu_ps(A[3]);

  for (int i = 0; i < 4; i++) {
    __m128 B0 = _mm_set1_ps(B[i][0]);
    __m128 B1 = _mm_set1_ps(B[i][1]);
    __m128 B2 = _mm_set1_ps(B[i][2]);
    __m128 B3 = _mm_set1_ps(B[i][3]);

    __m128 sum = _mm_add_ps(_mm_add_ps(_mm_mul_ps(B0, A0), _mm_mul_ps(B1, A1)),
                            _mm_add_ps(_mm_mul_ps(B2, A2), _mm_mul_ps(B3, A3)));

    _mm_storeu_ps(R[i], sum);
  }
#else
  R[0][0] = B[0][0] * A[0][0] + B[0][1] * A[1][0] + B[0][2] * A[2][0] + B[0][3] * A[3][0];
  R[0][1] = B[0][0] * A[0][1] + B[0][1] * A[1][1] + B[0][2] * A[2][1] + B[0][3] * A[3][1];
  R[0][2] = B[0][0] * A[0][2] + B[0][1] * A[1][2] + B[0][2] * A[2][2] + B[0][3] * A[3][2];
  R[0][3] = B[0][0] * A[0][3] + B[0][1] * A[1][3] + B[0][2] * A[2][3] + B[0][3] * A[3][3];

  R[1][0] = B[1][0] * A[0][0] + B[1][1] * A[1][0] + B[1][2] * A[2][0] + B[1][3] * A[3][0];
  R[1][1] = B[1][0] * A[0][1] + B[1][1] * A[1][1] + B[1][2] * A[2][1] + B[1][3] * A[3][1];
  R[1][2] = B[1][0] * A[0][2] + B[1][1] * A[1][2] + B[1][2] * A[2][2] + B[1][3] * A[3][2];
  R[1][3] = B[1][0] * A[0][3] + B[1][1] * A[1][3] + B[1][2] * A[2][3] + B[1][3] * A[3][3];

  R[2][0] = B[2][0] * A[0][0] + B[2][1] * A[1][0] + B[2][2] * A[2][0] + B[2][3] * A[3][0];
  R[2][1] = B[2][0] * A[0][1] + B[2][1] * A[1][1] + B[2][2] * A[2][1] + B[2][3] * A[3][1];
  R[2][2] = B[2][0] * A[0][2] + B[2][1] * A[1][2] + B[2][2] * A[2][2] + B[2][3] * A[3][2];
  R[2][3] = B[2][0] * A[0][3] + B[2][1] * A[1][3] + B[2][2] * A[2][3] + B[2][3] * A[3][3];

  R[3][0] = B[3][0] * A[0][0] + B[3][1] * A[1][0] + B[3][2] * A[2][0] + B[3][3] * A[3][0];
  R[3][1] = B[3][0] * A[0][1] + B[3][1] * A[1][1] + B[3][2] * A[2][1] + B[3][3] * A[3][1];
  R[3][2] = B[3][0] * A[0][2] + B[3][1] * A[1][2] + B[3][2] * A[2][2] + B[3][3] * A[3][2];
  R[3][3] = B[3][0] * A[0][3] + B[3][1] * A[1][3] + B[3][2] * A[2][3] + B[3][3] * A[3][3];
#endif
}

void mul_m4_m4m4_db_uniq(double R[4][4], const double A[4][4], const double B[4][4])
{
  BLI_assert(R != A && R != B);

  /* matrix product: R[j][k] = A[j][i] . B[i][k] */

  R[0][0] = B[0][0] * A[0][0] + B[0][1] * A[1][0] + B[0][2] * A[2][0] + B[0][3] * A[3][0];
  R[0][1] = B[0][0] * A[0][1] + B[0][1] * A[1][1] + B[0][2] * A[2][1] + B[0][3] * A[3][1];
  R[0][2] = B[0][0] * A[0][2] + B[0][1] * A[1][2] + B[0][2] * A[2][2] + B[0][3] * A[3][2];
  R[0][3] = B[0][0] * A[0][3] + B[0][1] * A[1][3] + B[0][2] * A[2][3] + B[0][3] * A[3][3];

  R[1][0] = B[1][0] * A[0][0] + B[1][1] * A[1][0] + B[1][2] * A[2][0] + B[1][3] * A[3][0];
  R[1][1] = B[1][0] * A[0][1] + B[1][1] * A[1][1] + B[1][2] * A[2][1] + B[1][3] * A[3][1];
  R[1][2] = B[1][0] * A[0][2] + B[1][1] * A[1][2] + B[1][2] * A[2][2] + B[1][3] * A[3][2];
  R[1][3] = B[1][0] * A[0][3] + B[1][1] * A[1][3] + B[1][2] * A[2][3] + B[1][3] * A[3][3];

  R[2][0] = B[2][0] * A[0][0] + B[2][1] * A[1][0] + B[2][2] * A[2][0] + B[2][3] * A[3][0];
  R[2][1] = B[2][0] * A[0][1] + B[2][1] * A[1][1] + B[2][2] * A[2][1] + B[2][3] * A[3][1];
  R[2][2] = B[2][0] * A[0][2] + B[2][1] * A[1][2] + B[2][2] * A[2][2] + B[2][3] * A[3][2];
  R[2][3] = B[2][0] * A[0][3] + B[2][1] * A[1][3] + B[2][2] * A[2][3] + B[2][3] * A[3][3];

  R[3][0] = B[3][0] * A[0][0] + B[3][1] * A[1][0] + B[3][2] * A[2][0] + B[3][3] * A[3][0];
  R[3][1] = B[3][0] * A[0][1] + B[3][1] * A[1][1] + B[3][2] * A[2][1] + B[3][3] * A[3][1];
  R[3][2] = B[3][0] * A[0][2] + B[3][1] * A[1][2] + B[3][2] * A[2][2] + B[3][3] * A[3][2];
  R[3][3] = B[3][0] * A[0][3] + B[3][1] * A[1][3] + B[3][2] * A[2][3] + B[3][3] * A[3][3];
}

void mul_m4db_m4db_m4fl_uniq(double R[4][4], const double A[4][4], const float B[4][4])
{
  /* Remove second check since types don't match. */
  BLI_assert(R != A /* && R != B */);

  /* matrix product: R[j][k] = A[j][i] . B[i][k] */

  R[0][0] = B[0][0] * A[0][0] + B[0][1] * A[1][0] + B[0][2] * A[2][0] + B[0][3] * A[3][0];
  R[0][1] = B[0][0] * A[0][1] + B[0][1] * A[1][1] + B[0][2] * A[2][1] + B[0][3] * A[3][1];
  R[0][2] = B[0][0] * A[0][2] + B[0][1] * A[1][2] + B[0][2] * A[2][2] + B[0][3] * A[3][2];
  R[0][3] = B[0][0] * A[0][3] + B[0][1] * A[1][3] + B[0][2] * A[2][3] + B[0][3] * A[3][3];

  R[1][0] = B[1][0] * A[0][0] + B[1][1] * A[1][0] + B[1][2] * A[2][0] + B[1][3] * A[3][0];
  R[1][1] = B[1][0] * A[0][1] + B[1][1] * A[1][1] + B[1][2] * A[2][1] + B[1][3] * A[3][1];
  R[1][2] = B[1][0] * A[0][2] + B[1][1] * A[1][2] + B[1][2] * A[2][2] + B[1][3] * A[3][2];
  R[1][3] = B[1][0] * A[0][3] + B[1][1] * A[1][3] + B[1][2] * A[2][3] + B[1][3] * A[3][3];

  R[2][0] = B[2][0] * A[0][0] + B[2][1] * A[1][0] + B[2][2] * A[2][0] + B[2][3] * A[3][0];
  R[2][1] = B[2][0] * A[0][1] + B[2][1] * A[1][1] + B[2][2] * A[2][1] + B[2][3] * A[3][1];
  R[2][2] = B[2][0] * A[0][2] + B[2][1] * A[1][2] + B[2][2] * A[2][2] + B[2][3] * A[3][2];
  R[2][3] = B[2][0] * A[0][3] + B[2][1] * A[1][3] + B[2][2] * A[2][3] + B[2][3] * A[3][3];

  R[3][0] = B[3][0] * A[0][0] + B[3][1] * A[1][0] + B[3][2] * A[2][0] + B[3][3] * A[3][0];
  R[3][1] = B[3][0] * A[0][1] + B[3][1] * A[1][1] + B[3][2] * A[2][1] + B[3][3] * A[3][1];
  R[3][2] = B[3][0] * A[0][2] + B[3][1] * A[1][2] + B[3][2] * A[2][2] + B[3][3] * A[3][2];
  R[3][3] = B[3][0] * A[0][3] + B[3][1] * A[1][3] + B[3][2] * A[2][3] + B[3][3] * A[3][3];
}

void mul_m4_m4_pre(float R[4][4], const float A[4][4])
{
  BLI_assert(A != R);
  float B[4][4];
  copy_m4_m4(B, R);
  mul_m4_m4m4_uniq(R, A, B);
}

void mul_m4_m4_post(float R[4][4], const float B[4][4])
{
  BLI_assert(B != R);
  float A[4][4];
  copy_m4_m4(A, R);
  mul_m4_m4m4_uniq(R, A, B);
}

void mul_m3_m3m3(float R[3][3], const float A[3][3], const float B[3][3])
{
  if (A == R) {
    mul_m3_m3_post(R, B);
  }
  else if (B == R) {
    mul_m3_m3_pre(R, A);
  }
  else {
    mul_m3_m3m3_uniq(R, A, B);
  }
}

void mul_m3_m3_pre(float R[3][3], const float A[3][3])
{
  BLI_assert(A != R);
  float B[3][3];
  copy_m3_m3(B, R);
  mul_m3_m3m3_uniq(R, A, B);
}

void mul_m3_m3_post(float R[3][3], const float B[3][3])
{
  BLI_assert(B != R);
  float A[3][3];
  copy_m3_m3(A, R);
  mul_m3_m3m3_uniq(R, A, B);
}

void mul_m3_m3m3_uniq(float R[3][3], const float A[3][3], const float B[3][3])
{
  BLI_assert(R != A && R != B);

  R[0][0] = B[0][0] * A[0][0] + B[0][1] * A[1][0] + B[0][2] * A[2][0];
  R[0][1] = B[0][0] * A[0][1] + B[0][1] * A[1][1] + B[0][2] * A[2][1];
  R[0][2] = B[0][0] * A[0][2] + B[0][1] * A[1][2] + B[0][2] * A[2][2];

  R[1][0] = B[1][0] * A[0][0] + B[1][1] * A[1][0] + B[1][2] * A[2][0];
  R[1][1] = B[1][0] * A[0][1] + B[1][1] * A[1][1] + B[1][2] * A[2][1];
  R[1][2] = B[1][0] * A[0][2] + B[1][1] * A[1][2] + B[1][2] * A[2][2];

  R[2][0] = B[2][0] * A[0][0] + B[2][1] * A[1][0] + B[2][2] * A[2][0];
  R[2][1] = B[2][0] * A[0][1] + B[2][1] * A[1][1] + B[2][2] * A[2][1];
  R[2][2] = B[2][0] * A[0][2] + B[2][1] * A[1][2] + B[2][2] * A[2][2];
}

void mul_m4_m4m3(float m1[4][4], const float m3_[4][4], const float m2_[3][3])
{
  float m2[3][3], m3[4][4];

  /* copy so it works when m1 is the same pointer as m2 or m3 */
  /* TODO: avoid copying when matrices are different */
  copy_m3_m3(m2, m2_);
  copy_m4_m4(m3, m3_);

  m1[0][0] = m2[0][0] * m3[0][0] + m2[0][1] * m3[1][0] + m2[0][2] * m3[2][0];
  m1[0][1] = m2[0][0] * m3[0][1] + m2[0][1] * m3[1][1] + m2[0][2] * m3[2][1];
  m1[0][2] = m2[0][0] * m3[0][2] + m2[0][1] * m3[1][2] + m2[0][2] * m3[2][2];
  m1[1][0] = m2[1][0] * m3[0][0] + m2[1][1] * m3[1][0] + m2[1][2] * m3[2][0];
  m1[1][1] = m2[1][0] * m3[0][1] + m2[1][1] * m3[1][1] + m2[1][2] * m3[2][1];
  m1[1][2] = m2[1][0] * m3[0][2] + m2[1][1] * m3[1][2] + m2[1][2] * m3[2][2];
  m1[2][0] = m2[2][0] * m3[0][0] + m2[2][1] * m3[1][0] + m2[2][2] * m3[2][0];
  m1[2][1] = m2[2][0] * m3[0][1] + m2[2][1] * m3[1][1] + m2[2][2] * m3[2][1];
  m1[2][2] = m2[2][0] * m3[0][2] + m2[2][1] * m3[1][2] + m2[2][2] * m3[2][2];
}

/* m1 = m2 * m3, ignore the elements on the 4th row/column of m2 */
void mul_m3_m3m4(float m1[3][3], const float m3_[3][3], const float m2_[4][4])
{
  float m2[4][4], m3[3][3];

  /* copy so it works when m1 is the same pointer as m2 or m3 */
  /* TODO: avoid copying when matrices are different */
  copy_m4_m4(m2, m2_);
  copy_m3_m3(m3, m3_);

  /* m1[i][j] = m2[i][k] * m3[k][j] */
  m1[0][0] = m2[0][0] * m3[0][0] + m2[0][1] * m3[1][0] + m2[0][2] * m3[2][0];
  m1[0][1] = m2[0][0] * m3[0][1] + m2[0][1] * m3[1][1] + m2[0][2] * m3[2][1];
  m1[0][2] = m2[0][0] * m3[0][2] + m2[0][1] * m3[1][2] + m2[0][2] * m3[2][2];

  m1[1][0] = m2[1][0] * m3[0][0] + m2[1][1] * m3[1][0] + m2[1][2] * m3[2][0];
  m1[1][1] = m2[1][0] * m3[0][1] + m2[1][1] * m3[1][1] + m2[1][2] * m3[2][1];
  m1[1][2] = m2[1][0] * m3[0][2] + m2[1][1] * m3[1][2] + m2[1][2] * m3[2][2];

  m1[2][0] = m2[2][0] * m3[0][0] + m2[2][1] * m3[1][0] + m2[2][2] * m3[2][0];
  m1[2][1] = m2[2][0] * m3[0][1] + m2[2][1] * m3[1][1] + m2[2][2] * m3[2][1];
  m1[2][2] = m2[2][0] * m3[0][2] + m2[2][1] * m3[1][2] + m2[2][2] * m3[2][2];
}

/* m1 = m2 * m3, ignore the elements on the 4th row/column of m3 */
void mul_m3_m4m3(float m1[3][3], const float m3_[4][4], const float m2_[3][3])
{
  float m2[3][3], m3[4][4];

  /* copy so it works when m1 is the same pointer as m2 or m3 */
  /* TODO: avoid copying when matrices are different */
  copy_m3_m3(m2, m2_);
  copy_m4_m4(m3, m3_);

  /* m1[i][j] = m2[i][k] * m3[k][j] */
  m1[0][0] = m2[0][0] * m3[0][0] + m2[0][1] * m3[1][0] + m2[0][2] * m3[2][0];
  m1[0][1] = m2[0][0] * m3[0][1] + m2[0][1] * m3[1][1] + m2[0][2] * m3[2][1];
  m1[0][2] = m2[0][0] * m3[0][2] + m2[0][1] * m3[1][2] + m2[0][2] * m3[2][2];

  m1[1][0] = m2[1][0] * m3[0][0] + m2[1][1] * m3[1][0] + m2[1][2] * m3[2][0];
  m1[1][1] = m2[1][0] * m3[0][1] + m2[1][1] * m3[1][1] + m2[1][2] * m3[2][1];
  m1[1][2] = m2[1][0] * m3[0][2] + m2[1][1] * m3[1][2] + m2[1][2] * m3[2][2];

  m1[2][0] = m2[2][0] * m3[0][0] + m2[2][1] * m3[1][0] + m2[2][2] * m3[2][0];
  m1[2][1] = m2[2][0] * m3[0][1] + m2[2][1] * m3[1][1] + m2[2][2] * m3[2][1];
  m1[2][2] = m2[2][0] * m3[0][2] + m2[2][1] * m3[1][2] + m2[2][2] * m3[2][2];
}

void mul_m4_m3m4(float m1[4][4], const float m3_[3][3], const float m2_[4][4])
{
  float m2[4][4], m3[3][3];

  /* copy so it works when m1 is the same pointer as m2 or m3 */
  /* TODO: avoid copying when matrices are different */
  copy_m4_m4(m2, m2_);
  copy_m3_m3(m3, m3_);

  m1[0][0] = m2[0][0] * m3[0][0] + m2[0][1] * m3[1][0] + m2[0][2] * m3[2][0];
  m1[0][1] = m2[0][0] * m3[0][1] + m2[0][1] * m3[1][1] + m2[0][2] * m3[2][1];
  m1[0][2] = m2[0][0] * m3[0][2] + m2[0][1] * m3[1][2] + m2[0][2] * m3[2][2];
  m1[1][0] = m2[1][0] * m3[0][0] + m2[1][1] * m3[1][0] + m2[1][2] * m3[2][0];
  m1[1][1] = m2[1][0] * m3[0][1] + m2[1][1] * m3[1][1] + m2[1][2] * m3[2][1];
  m1[1][2] = m2[1][0] * m3[0][2] + m2[1][1] * m3[1][2] + m2[1][2] * m3[2][2];
  m1[2][0] = m2[2][0] * m3[0][0] + m2[2][1] * m3[1][0] + m2[2][2] * m3[2][0];
  m1[2][1] = m2[2][0] * m3[0][1] + m2[2][1] * m3[1][1] + m2[2][2] * m3[2][1];
  m1[2][2] = m2[2][0] * m3[0][2] + m2[2][1] * m3[1][2] + m2[2][2] * m3[2][2];
}

void mul_m3_m4m4(float m1[3][3], const float m3[4][4], const float m2[4][4])
{
  m1[0][0] = m2[0][0] * m3[0][0] + m2[0][1] * m3[1][0] + m2[0][2] * m3[2][0];
  m1[0][1] = m2[0][0] * m3[0][1] + m2[0][1] * m3[1][1] + m2[0][2] * m3[2][1];
  m1[0][2] = m2[0][0] * m3[0][2] + m2[0][1] * m3[1][2] + m2[0][2] * m3[2][2];
  m1[1][0] = m2[1][0] * m3[0][0] + m2[1][1] * m3[1][0] + m2[1][2] * m3[2][0];
  m1[1][1] = m2[1][0] * m3[0][1] + m2[1][1] * m3[1][1] + m2[1][2] * m3[2][1];
  m1[1][2] = m2[1][0] * m3[0][2] + m2[1][1] * m3[1][2] + m2[1][2] * m3[2][2];
  m1[2][0] = m2[2][0] * m3[0][0] + m2[2][1] * m3[1][0] + m2[2][2] * m3[2][0];
  m1[2][1] = m2[2][0] * m3[0][1] + m2[2][1] * m3[1][1] + m2[2][2] * m3[2][1];
  m1[2][2] = m2[2][0] * m3[0][2] + m2[2][1] * m3[1][2] + m2[2][2] * m3[2][2];
}

/** \name Macro helpers for: mul_m3_series
 * \{ */
void _va_mul_m3_series_3(float r[3][3], const float m1[3][3], const float m2[3][3])
{
  mul_m3_m3m3(r, m1, m2);
}
void _va_mul_m3_series_4(float r[3][3],
                         const float m1[3][3],
                         const float m2[3][3],
                         const float m3[3][3])
{
  mul_m3_m3m3(r, m1, m2);
  mul_m3_m3m3(r, r, m3);
}
void _va_mul_m3_series_5(float r[3][3],
                         const float m1[3][3],
                         const float m2[3][3],
                         const float m3[3][3],
                         const float m4[3][3])
{
  mul_m3_m3m3(r, m1, m2);
  mul_m3_m3m3(r, r, m3);
  mul_m3_m3m3(r, r, m4);
}
void _va_mul_m3_series_6(float r[3][3],
                         const float m1[3][3],
                         const float m2[3][3],
                         const float m3[3][3],
                         const float m4[3][3],
                         const float m5[3][3])
{
  mul_m3_m3m3(r, m1, m2);
  mul_m3_m3m3(r, r, m3);
  mul_m3_m3m3(r, r, m4);
  mul_m3_m3m3(r, r, m5);
}
void _va_mul_m3_series_7(float r[3][3],
                         const float m1[3][3],
                         const float m2[3][3],
                         const float m3[3][3],
                         const float m4[3][3],
                         const float m5[3][3],
                         const float m6[3][3])
{
  mul_m3_m3m3(r, m1, m2);
  mul_m3_m3m3(r, r, m3);
  mul_m3_m3m3(r, r, m4);
  mul_m3_m3m3(r, r, m5);
  mul_m3_m3m3(r, r, m6);
}
void _va_mul_m3_series_8(float r[3][3],
                         const float m1[3][3],
                         const float m2[3][3],
                         const float m3[3][3],
                         const float m4[3][3],
                         const float m5[3][3],
                         const float m6[3][3],
                         const float m7[3][3])
{
  mul_m3_m3m3(r, m1, m2);
  mul_m3_m3m3(r, r, m3);
  mul_m3_m3m3(r, r, m4);
  mul_m3_m3m3(r, r, m5);
  mul_m3_m3m3(r, r, m6);
  mul_m3_m3m3(r, r, m7);
}
void _va_mul_m3_series_9(float r[3][3],
                         const float m1[3][3],
                         const float m2[3][3],
                         const float m3[3][3],
                         const float m4[3][3],
                         const float m5[3][3],
                         const float m6[3][3],
                         const float m7[3][3],
                         const float m8[3][3])
{
  mul_m3_m3m3(r, m1, m2);
  mul_m3_m3m3(r, r, m3);
  mul_m3_m3m3(r, r, m4);
  mul_m3_m3m3(r, r, m5);
  mul_m3_m3m3(r, r, m6);
  mul_m3_m3m3(r, r, m7);
  mul_m3_m3m3(r, r, m8);
}
/** \} */

/** \name Macro helpers for: mul_m4_series
 * \{ */
void _va_mul_m4_series_3(float r[4][4], const float m1[4][4], const float m2[4][4])
{
  mul_m4_m4m4(r, m1, m2);
}
void _va_mul_m4_series_4(float r[4][4],
                         const float m1[4][4],
                         const float m2[4][4],
                         const float m3[4][4])
{
  mul_m4_m4m4(r, m1, m2);
  mul_m4_m4m4(r, r, m3);
}
void _va_mul_m4_series_5(float r[4][4],
                         const float m1[4][4],
                         const float m2[4][4],
                         const float m3[4][4],
                         const float m4[4][4])
{
  mul_m4_m4m4(r, m1, m2);
  mul_m4_m4m4(r, r, m3);
  mul_m4_m4m4(r, r, m4);
}
void _va_mul_m4_series_6(float r[4][4],
                         const float m1[4][4],
                         const float m2[4][4],
                         const float m3[4][4],
                         const float m4[4][4],
                         const float m5[4][4])
{
  mul_m4_m4m4(r, m1, m2);
  mul_m4_m4m4(r, r, m3);
  mul_m4_m4m4(r, r, m4);
  mul_m4_m4m4(r, r, m5);
}
void _va_mul_m4_series_7(float r[4][4],
                         const float m1[4][4],
                         const float m2[4][4],
                         const float m3[4][4],
                         const float m4[4][4],
                         const float m5[4][4],
                         const float m6[4][4])
{
  mul_m4_m4m4(r, m1, m2);
  mul_m4_m4m4(r, r, m3);
  mul_m4_m4m4(r, r, m4);
  mul_m4_m4m4(r, r, m5);
  mul_m4_m4m4(r, r, m6);
}
void _va_mul_m4_series_8(float r[4][4],
                         const float m1[4][4],
                         const float m2[4][4],
                         const float m3[4][4],
                         const float m4[4][4],
                         const float m5[4][4],
                         const float m6[4][4],
                         const float m7[4][4])
{
  mul_m4_m4m4(r, m1, m2);
  mul_m4_m4m4(r, r, m3);
  mul_m4_m4m4(r, r, m4);
  mul_m4_m4m4(r, r, m5);
  mul_m4_m4m4(r, r, m6);
  mul_m4_m4m4(r, r, m7);
}
void _va_mul_m4_series_9(float r[4][4],
                         const float m1[4][4],
                         const float m2[4][4],
                         const float m3[4][4],
                         const float m4[4][4],
                         const float m5[4][4],
                         const float m6[4][4],
                         const float m7[4][4],
                         const float m8[4][4])
{
  mul_m4_m4m4(r, m1, m2);
  mul_m4_m4m4(r, r, m3);
  mul_m4_m4m4(r, r, m4);
  mul_m4_m4m4(r, r, m5);
  mul_m4_m4m4(r, r, m6);
  mul_m4_m4m4(r, r, m7);
  mul_m4_m4m4(r, r, m8);
}
/** \} */

void mul_v2_m3v2(float r[2], const float m[3][3], const float v[2])
{
  float temp[3], warped[3];

  copy_v2_v2(temp, v);
  temp[2] = 1.0f;

  mul_v3_m3v3(warped, m, temp);

  r[0] = warped[0] / warped[2];
  r[1] = warped[1] / warped[2];
}

void mul_m3_v2(const float m[3][3], float r[2])
{
  mul_v2_m3v2(r, m, r);
}

void mul_m4_v3(const float mat[4][4], float vec[3])
{
  const float x = vec[0];
  const float y = vec[1];

  vec[0] = x * mat[0][0] + y * mat[1][0] + mat[2][0] * vec[2] + mat[3][0];
  vec[1] = x * mat[0][1] + y * mat[1][1] + mat[2][1] * vec[2] + mat[3][1];
  vec[2] = x * mat[0][2] + y * mat[1][2] + mat[2][2] * vec[2] + mat[3][2];
}

void mul_v3_m4v3(float r[3], const float mat[4][4], const float vec[3])
{
  const float x = vec[0];
  const float y = vec[1];

  r[0] = x * mat[0][0] + y * mat[1][0] + mat[2][0] * vec[2] + mat[3][0];
  r[1] = x * mat[0][1] + y * mat[1][1] + mat[2][1] * vec[2] + mat[3][1];
  r[2] = x * mat[0][2] + y * mat[1][2] + mat[2][2] * vec[2] + mat[3][2];
}

void mul_v3_m4v3_db(double r[3], const double mat[4][4], const double vec[3])
{
  const double x = vec[0];
  const double y = vec[1];

  r[0] = x * mat[0][0] + y * mat[1][0] + mat[2][0] * vec[2] + mat[3][0];
  r[1] = x * mat[0][1] + y * mat[1][1] + mat[2][1] * vec[2] + mat[3][1];
  r[2] = x * mat[0][2] + y * mat[1][2] + mat[2][2] * vec[2] + mat[3][2];
}
void mul_v4_m4v3_db(double r[4], const double mat[4][4], const double vec[3])
{
  const double x = vec[0];
  const double y = vec[1];

  r[0] = x * mat[0][0] + y * mat[1][0] + mat[2][0] * vec[2] + mat[3][0];
  r[1] = x * mat[0][1] + y * mat[1][1] + mat[2][1] * vec[2] + mat[3][1];
  r[2] = x * mat[0][2] + y * mat[1][2] + mat[2][2] * vec[2] + mat[3][2];
  r[3] = x * mat[0][3] + y * mat[1][3] + mat[2][3] * vec[2] + mat[3][3];
}

void mul_v2_m4v3(float r[2], const float mat[4][4], const float vec[3])
{
  const float x = vec[0];

  r[0] = x * mat[0][0] + vec[1] * mat[1][0] + mat[2][0] * vec[2] + mat[3][0];
  r[1] = x * mat[0][1] + vec[1] * mat[1][1] + mat[2][1] * vec[2] + mat[3][1];
}

void mul_v2_m2v2(float r[2], const float mat[2][2], const float vec[2])
{
  const float x = vec[0];

  r[0] = mat[0][0] * x + mat[1][0] * vec[1];
  r[1] = mat[0][1] * x + mat[1][1] * vec[1];
}

void mul_m2_v2(const float mat[2][2], float vec[2])
{
  mul_v2_m2v2(vec, mat, vec);
}

/** Same as #mul_m4_v3() but doesn't apply translation component. */
void mul_mat3_m4_v3(const float mat[4][4], float vec[3])
{
  const float x = vec[0];
  const float y = vec[1];

  vec[0] = x * mat[0][0] + y * mat[1][0] + mat[2][0] * vec[2];
  vec[1] = x * mat[0][1] + y * mat[1][1] + mat[2][1] * vec[2];
  vec[2] = x * mat[0][2] + y * mat[1][2] + mat[2][2] * vec[2];
}

void mul_v3_mat3_m4v3(float r[3], const float mat[4][4], const float vec[3])
{
  const float x = vec[0];
  const float y = vec[1];

  r[0] = x * mat[0][0] + y * mat[1][0] + mat[2][0] * vec[2];
  r[1] = x * mat[0][1] + y * mat[1][1] + mat[2][1] * vec[2];
  r[2] = x * mat[0][2] + y * mat[1][2] + mat[2][2] * vec[2];
}

void mul_v3_mat3_m4v3_db(double r[3], const double mat[4][4], const double vec[3])
{
  const double x = vec[0];
  const double y = vec[1];

  r[0] = x * mat[0][0] + y * mat[1][0] + mat[2][0] * vec[2];
  r[1] = x * mat[0][1] + y * mat[1][1] + mat[2][1] * vec[2];
  r[2] = x * mat[0][2] + y * mat[1][2] + mat[2][2] * vec[2];
}

void mul_project_m4_v3(const float mat[4][4], float vec[3])
{
  /* absolute value to not flip the frustum upside down behind the camera */
  const float w = fabsf(mul_project_m4_v3_zfac(mat, vec));
  mul_m4_v3(mat, vec);

  vec[0] /= w;
  vec[1] /= w;
  vec[2] /= w;
}

void mul_v3_project_m4_v3(float r[3], const float mat[4][4], const float vec[3])
{
  const float w = fabsf(mul_project_m4_v3_zfac(mat, vec));
  mul_v3_m4v3(r, mat, vec);

  r[0] /= w;
  r[1] /= w;
  r[2] /= w;
}

void mul_v2_project_m4_v3(float r[2], const float mat[4][4], const float vec[3])
{
  const float w = fabsf(mul_project_m4_v3_zfac(mat, vec));
  mul_v2_m4v3(r, mat, vec);

  r[0] /= w;
  r[1] /= w;
}

void mul_v4_m4v4(float r[4], const float mat[4][4], const float v[4])
{
  const float x = v[0];
  const float y = v[1];
  const float z = v[2];

  r[0] = x * mat[0][0] + y * mat[1][0] + z * mat[2][0] + mat[3][0] * v[3];
  r[1] = x * mat[0][1] + y * mat[1][1] + z * mat[2][1] + mat[3][1] * v[3];
  r[2] = x * mat[0][2] + y * mat[1][2] + z * mat[2][2] + mat[3][2] * v[3];
  r[3] = x * mat[0][3] + y * mat[1][3] + z * mat[2][3] + mat[3][3] * v[3];
}

void mul_m4_v4(const float mat[4][4], float r[4])
{
  mul_v4_m4v4(r, mat, r);
}

void mul_v4d_m4v4d(double r[4], const float mat[4][4], const double v[4])
{
  const double x = v[0];
  const double y = v[1];
  const double z = v[2];

  r[0] = x * (double)mat[0][0] + y * (double)mat[1][0] + z * (double)mat[2][0] +
         (double)mat[3][0] * v[3];
  r[1] = x * (double)mat[0][1] + y * (double)mat[1][1] + z * (double)mat[2][1] +
         (double)mat[3][1] * v[3];
  r[2] = x * (double)mat[0][2] + y * (double)mat[1][2] + z * (double)mat[2][2] +
         (double)mat[3][2] * v[3];
  r[3] = x * (double)mat[0][3] + y * (double)mat[1][3] + z * (double)mat[2][3] +
         (double)mat[3][3] * v[3];
}

void mul_m4_v4d(const float mat[4][4], double r[4])
{
  mul_v4d_m4v4d(r, mat, r);
}

void mul_v4_m4v3(float r[4], const float M[4][4], const float v[3])
{
  /* v has implicit w = 1.0f */
  r[0] = v[0] * M[0][0] + v[1] * M[1][0] + M[2][0] * v[2] + M[3][0];
  r[1] = v[0] * M[0][1] + v[1] * M[1][1] + M[2][1] * v[2] + M[3][1];
  r[2] = v[0] * M[0][2] + v[1] * M[1][2] + M[2][2] * v[2] + M[3][2];
  r[3] = v[0] * M[0][3] + v[1] * M[1][3] + M[2][3] * v[2] + M[3][3];
}

void mul_v3_m3v3(float r[3], const float M[3][3], const float a[3])
{
  float t[3];
  copy_v3_v3(t, a);

  r[0] = M[0][0] * t[0] + M[1][0] * t[1] + M[2][0] * t[2];
  r[1] = M[0][1] * t[0] + M[1][1] * t[1] + M[2][1] * t[2];
  r[2] = M[0][2] * t[0] + M[1][2] * t[1] + M[2][2] * t[2];
}

void mul_v3_m3v3_db(double r[3], const double M[3][3], const double a[3])
{
  double t[3];
  copy_v3_v3_db(t, a);

  r[0] = M[0][0] * t[0] + M[1][0] * t[1] + M[2][0] * t[2];
  r[1] = M[0][1] * t[0] + M[1][1] * t[1] + M[2][1] * t[2];
  r[2] = M[0][2] * t[0] + M[1][2] * t[1] + M[2][2] * t[2];
}

void mul_v2_m3v3(float r[2], const float M[3][3], const float a[3])
{
  float t[3];
  copy_v3_v3(t, a);

  r[0] = M[0][0] * t[0] + M[1][0] * t[1] + M[2][0] * t[2];
  r[1] = M[0][1] * t[0] + M[1][1] * t[1] + M[2][1] * t[2];
}

void mul_m3_v3(const float M[3][3], float r[3])
{
  mul_v3_m3v3(r, M, (const float[3]){UNPACK3(r)});
}

void mul_m3_v3_db(const double M[3][3], double r[3])
{
  mul_v3_m3v3_db(r, M, (const double[3]){UNPACK3(r)});
}

void mul_transposed_m3_v3(const float mat[3][3], float vec[3])
{
  const float x = vec[0];
  const float y = vec[1];

  vec[0] = x * mat[0][0] + y * mat[0][1] + mat[0][2] * vec[2];
  vec[1] = x * mat[1][0] + y * mat[1][1] + mat[1][2] * vec[2];
  vec[2] = x * mat[2][0] + y * mat[2][1] + mat[2][2] * vec[2];
}

void mul_transposed_mat3_m4_v3(const float mat[4][4], float vec[3])
{
  const float x = vec[0];
  const float y = vec[1];

  vec[0] = x * mat[0][0] + y * mat[0][1] + mat[0][2] * vec[2];
  vec[1] = x * mat[1][0] + y * mat[1][1] + mat[1][2] * vec[2];
  vec[2] = x * mat[2][0] + y * mat[2][1] + mat[2][2] * vec[2];
}

void mul_m3_fl(float m[3][3], float f)
{
  int i, j;

  for (i = 0; i < 3; i++) {
    for (j = 0; j < 3; j++) {
      m[i][j] *= f;
    }
  }
}

void mul_m4_fl(float m[4][4], float f)
{
  int i, j;

  for (i = 0; i < 4; i++) {
    for (j = 0; j < 4; j++) {
      m[i][j] *= f;
    }
  }
}

void mul_mat3_m4_fl(float m[4][4], float f)
{
  int i, j;

  for (i = 0; i < 3; i++) {
    for (j = 0; j < 3; j++) {
      m[i][j] *= f;
    }
  }
}

void negate_m3(float m[3][3])
{
  int i, j;

  for (i = 0; i < 3; i++) {
    for (j = 0; j < 3; j++) {
      m[i][j] *= -1.0f;
    }
  }
}

void negate_mat3_m4(float m[4][4])
{
  int i, j;

  for (i = 0; i < 3; i++) {
    for (j = 0; j < 3; j++) {
      m[i][j] *= -1.0f;
    }
  }
}

void negate_m4(float m[4][4])
{
  int i, j;

  for (i = 0; i < 4; i++) {
    for (j = 0; j < 4; j++) {
      m[i][j] *= -1.0f;
    }
  }
}

void mul_m3_v3_double(const float mat[3][3], double vec[3])
{
  const double x = vec[0];
  const double y = vec[1];

  vec[0] = x * (double)mat[0][0] + y * (double)mat[1][0] + (double)mat[2][0] * vec[2];
  vec[1] = x * (double)mat[0][1] + y * (double)mat[1][1] + (double)mat[2][1] * vec[2];
  vec[2] = x * (double)mat[0][2] + y * (double)mat[1][2] + (double)mat[2][2] * vec[2];
}

void add_m3_m3m3(float m1[3][3], const float m2[3][3], const float m3[3][3])
{
  int i, j;

  for (i = 0; i < 3; i++) {
    for (j = 0; j < 3; j++) {
      m1[i][j] = m2[i][j] + m3[i][j];
    }
  }
}

void add_m4_m4m4(float m1[4][4], const float m2[4][4], const float m3[4][4])
{
  int i, j;

  for (i = 0; i < 4; i++) {
    for (j = 0; j < 4; j++) {
      m1[i][j] = m2[i][j] + m3[i][j];
    }
  }
}

void madd_m3_m3m3fl(float m1[3][3], const float m2[3][3], const float m3[3][3], const float f)
{
  int i, j;

  for (i = 0; i < 3; i++) {
    for (j = 0; j < 3; j++) {
      m1[i][j] = m2[i][j] + m3[i][j] * f;
    }
  }
}

void madd_m4_m4m4fl(float m1[4][4], const float m2[4][4], const float m3[4][4], const float f)
{
  int i, j;

  for (i = 0; i < 4; i++) {
    for (j = 0; j < 4; j++) {
      m1[i][j] = m2[i][j] + m3[i][j] * f;
    }
  }
}

void sub_m3_m3m3(float m1[3][3], const float m2[3][3], const float m3[3][3])
{
  int i, j;

  for (i = 0; i < 3; i++) {
    for (j = 0; j < 3; j++) {
      m1[i][j] = m2[i][j] - m3[i][j];
    }
  }
}

void sub_m4_m4m4(float m1[4][4], const float m2[4][4], const float m3[4][4])
{
  int i, j;

  for (i = 0; i < 4; i++) {
    for (j = 0; j < 4; j++) {
      m1[i][j] = m2[i][j] - m3[i][j];
    }
  }
}

float determinant_m3_array(const float m[3][3])
{
  return (m[0][0] * (m[1][1] * m[2][2] - m[1][2] * m[2][1]) -
          m[1][0] * (m[0][1] * m[2][2] - m[0][2] * m[2][1]) +
          m[2][0] * (m[0][1] * m[1][2] - m[0][2] * m[1][1]));
}

float determinant_m4_mat3_array(const float m[4][4])
{
  return (m[0][0] * (m[1][1] * m[2][2] - m[1][2] * m[2][1]) -
          m[1][0] * (m[0][1] * m[2][2] - m[0][2] * m[2][1]) +
          m[2][0] * (m[0][1] * m[1][2] - m[0][2] * m[1][1]));
}

bool invert_m3_ex(float m[3][3], const float epsilon)
{
  float tmp[3][3];
  const bool success = invert_m3_m3_ex(tmp, m, epsilon);

  copy_m3_m3(m, tmp);
  return success;
}

bool invert_m3_m3_ex(float m1[3][3], const float m2[3][3], const float epsilon)
{
  float det;
  int a, b;
  bool success;

  BLI_assert(epsilon >= 0.0f);

  /* calc adjoint */
  adjoint_m3_m3(m1, m2);

  /* then determinant old matrix! */
  det = determinant_m3_array(m2);

  success = (fabsf(det) > epsilon);

  if (LIKELY(det != 0.0f)) {
    det = 1.0f / det;
    for (a = 0; a < 3; a++) {
      for (b = 0; b < 3; b++) {
        m1[a][b] *= det;
      }
    }
  }
  return success;
}

bool invert_m3(float m[3][3])
{
  float tmp[3][3];
  const bool success = invert_m3_m3(tmp, m);

  copy_m3_m3(m, tmp);
  return success;
}

bool invert_m3_m3(float m1[3][3], const float m2[3][3])
{
  float det;
  int a, b;
  bool success;

  /* calc adjoint */
  adjoint_m3_m3(m1, m2);

  /* then determinant old matrix! */
  det = determinant_m3_array(m2);

  success = (det != 0.0f);

  if (LIKELY(det != 0.0f)) {
    det = 1.0f / det;
    for (a = 0; a < 3; a++) {
      for (b = 0; b < 3; b++) {
        m1[a][b] *= det;
      }
    }
  }

  return success;
}

bool invert_m4(float m[4][4])
{
  float tmp[4][4];
  const bool success = invert_m4_m4(tmp, m);

  copy_m4_m4(m, tmp);
  return success;
}

/**
 * Computes the inverse of mat and puts it in inverse.
 * Uses Gaussian Elimination with partial (maximal column) pivoting.
 * \return true on success (i.e. can always find a pivot) and false on failure.
 * Mark Segal - 1992.
 *
 * \note this has worse performance than #EIG_invert_m4_m4 (Eigen), but e.g.
 * for non-invertible scale matrices, finding a partial solution can
 * be useful to have a valid local transform center, see T57767.
 */
bool invert_m4_m4_fallback(float inverse[4][4], const float mat[4][4])
{
#ifndef MATH_STANDALONE
  if (EIG_invert_m4_m4(inverse, mat)) {
    return true;
  }
#endif

  int i, j, k;
  double temp;
  float tempmat[4][4];
  float max;
  int maxj;

  BLI_assert(inverse != mat);

  /* Set inverse to identity */
  for (i = 0; i < 4; i++) {
    for (j = 0; j < 4; j++) {
      inverse[i][j] = 0;
    }
  }
  for (i = 0; i < 4; i++) {
    inverse[i][i] = 1;
  }

  /* Copy original matrix so we don't mess it up */
  for (i = 0; i < 4; i++) {
    for (j = 0; j < 4; j++) {
      tempmat[i][j] = mat[i][j];
    }
  }

  for (i = 0; i < 4; i++) {
    /* Look for row with max pivot */
    max = fabsf(tempmat[i][i]);
    maxj = i;
    for (j = i + 1; j < 4; j++) {
      if (fabsf(tempmat[j][i]) > max) {
        max = fabsf(tempmat[j][i]);
        maxj = j;
      }
    }
    /* Swap rows if necessary */
    if (maxj != i) {
      for (k = 0; k < 4; k++) {
        SWAP(float, tempmat[i][k], tempmat[maxj][k]);
        SWAP(float, inverse[i][k], inverse[maxj][k]);
      }
    }

    if (UNLIKELY(tempmat[i][i] == 0.0f)) {
      return false; /* No non-zero pivot */
    }
    temp = (double)tempmat[i][i];
    for (k = 0; k < 4; k++) {
      tempmat[i][k] = (float)((double)tempmat[i][k] / temp);
      inverse[i][k] = (float)((double)inverse[i][k] / temp);
    }
    for (j = 0; j < 4; j++) {
      if (j != i) {
        temp = tempmat[j][i];
        for (k = 0; k < 4; k++) {
          tempmat[j][k] -= (float)((double)tempmat[i][k] * temp);
          inverse[j][k] -= (float)((double)inverse[i][k] * temp);
        }
      }
    }
  }
  return true;
}

bool invert_m4_m4(float inverse[4][4], const float mat[4][4])
{
#ifndef MATH_STANDALONE
  /* Use optimized matrix inverse from Eigen, since performance
   * impact of this function is significant in complex rigs. */
  return EIG_invert_m4_m4(inverse, mat);
#else
  return invert_m4_m4_fallback(inverse, mat);
#endif
}

/**
 * Combines transformations, handling scale separately in a manner equivalent
 * to the Aligned Inherit Scale mode, in order to avoid creating shear.
 * If A scale is uniform, the result is equivalent to ordinary multiplication.
 */
void mul_m4_m4m4_aligned_scale(float R[4][4], const float A[4][4], const float B[4][4])
{
  float loc_a[3], rot_a[3][3], size_a[3];
  float loc_b[3], rot_b[3][3], size_b[3];
  float loc_r[3], rot_r[3][3], size_r[3];

  mat4_to_loc_rot_size(loc_a, rot_a, size_a, A);
  mat4_to_loc_rot_size(loc_b, rot_b, size_b, B);

  mul_v3_m4v3(loc_r, A, loc_b);
  mul_m3_m3m3_uniq(rot_r, rot_a, rot_b);
  mul_v3_v3v3(size_r, size_a, size_b);

  loc_rot_size_to_mat4(R, loc_r, rot_r, size_r);
}

/****************************** Linear Algebra *******************************/

void transpose_m3(float mat[3][3])
{
  float t;

  t = mat[0][1];
  mat[0][1] = mat[1][0];
  mat[1][0] = t;
  t = mat[0][2];
  mat[0][2] = mat[2][0];
  mat[2][0] = t;
  t = mat[1][2];
  mat[1][2] = mat[2][1];
  mat[2][1] = t;
}

void transpose_m3_m3(float rmat[3][3], const float mat[3][3])
{
  BLI_assert(rmat != mat);

  rmat[0][0] = mat[0][0];
  rmat[0][1] = mat[1][0];
  rmat[0][2] = mat[2][0];
  rmat[1][0] = mat[0][1];
  rmat[1][1] = mat[1][1];
  rmat[1][2] = mat[2][1];
  rmat[2][0] = mat[0][2];
  rmat[2][1] = mat[1][2];
  rmat[2][2] = mat[2][2];
}

/* seems obscure but in-fact a common operation */
void transpose_m3_m4(float rmat[3][3], const float mat[4][4])
{
  BLI_assert(&rmat[0][0] != &mat[0][0]);

  rmat[0][0] = mat[0][0];
  rmat[0][1] = mat[1][0];
  rmat[0][2] = mat[2][0];
  rmat[1][0] = mat[0][1];
  rmat[1][1] = mat[1][1];
  rmat[1][2] = mat[2][1];
  rmat[2][0] = mat[0][2];
  rmat[2][1] = mat[1][2];
  rmat[2][2] = mat[2][2];
}

void transpose_m4(float mat[4][4])
{
  float t;

  t = mat[0][1];
  mat[0][1] = mat[1][0];
  mat[1][0] = t;
  t = mat[0][2];
  mat[0][2] = mat[2][0];
  mat[2][0] = t;
  t = mat[0][3];
  mat[0][3] = mat[3][0];
  mat[3][0] = t;

  t = mat[1][2];
  mat[1][2] = mat[2][1];
  mat[2][1] = t;
  t = mat[1][3];
  mat[1][3] = mat[3][1];
  mat[3][1] = t;

  t = mat[2][3];
  mat[2][3] = mat[3][2];
  mat[3][2] = t;
}

void transpose_m4_m4(float rmat[4][4], const float mat[4][4])
{
  BLI_assert(rmat != mat);

  rmat[0][0] = mat[0][0];
  rmat[0][1] = mat[1][0];
  rmat[0][2] = mat[2][0];
  rmat[0][3] = mat[3][0];
  rmat[1][0] = mat[0][1];
  rmat[1][1] = mat[1][1];
  rmat[1][2] = mat[2][1];
  rmat[1][3] = mat[3][1];
  rmat[2][0] = mat[0][2];
  rmat[2][1] = mat[1][2];
  rmat[2][2] = mat[2][2];
  rmat[2][3] = mat[3][2];
  rmat[3][0] = mat[0][3];
  rmat[3][1] = mat[1][3];
  rmat[3][2] = mat[2][3];
  rmat[3][3] = mat[3][3];
}

/* TODO: return bool */
int compare_m4m4(const float mat1[4][4], const float mat2[4][4], float limit)
{
  if (compare_v4v4(mat1[0], mat2[0], limit)) {
    if (compare_v4v4(mat1[1], mat2[1], limit)) {
      if (compare_v4v4(mat1[2], mat2[2], limit)) {
        if (compare_v4v4(mat1[3], mat2[3], limit)) {
          return 1;
        }
      }
    }
  }
  return 0;
}

/**
 * Make an orthonormal matrix around the selected axis of the given matrix.
 *
 * \param axis: Axis to build the orthonormal basis around.
 */
void orthogonalize_m3(float mat[3][3], int axis)
{
  float size[3];
  mat3_to_size(size, mat);
  normalize_v3(mat[axis]);
  switch (axis) {
    case 0:
      if (dot_v3v3(mat[0], mat[1]) < 1) {
        cross_v3_v3v3(mat[2], mat[0], mat[1]);
        normalize_v3(mat[2]);
        cross_v3_v3v3(mat[1], mat[2], mat[0]);
      }
      else if (dot_v3v3(mat[0], mat[2]) < 1) {
        cross_v3_v3v3(mat[1], mat[2], mat[0]);
        normalize_v3(mat[1]);
        cross_v3_v3v3(mat[2], mat[0], mat[1]);
      }
      else {
        float vec[3];

        vec[0] = mat[0][1];
        vec[1] = mat[0][2];
        vec[2] = mat[0][0];

        cross_v3_v3v3(mat[2], mat[0], vec);
        normalize_v3(mat[2]);
        cross_v3_v3v3(mat[1], mat[2], mat[0]);
      }
      break;
    case 1:
      if (dot_v3v3(mat[1], mat[0]) < 1) {
        cross_v3_v3v3(mat[2], mat[0], mat[1]);
        normalize_v3(mat[2]);
        cross_v3_v3v3(mat[0], mat[1], mat[2]);
      }
      else if (dot_v3v3(mat[0], mat[2]) < 1) {
        cross_v3_v3v3(mat[0], mat[1], mat[2]);
        normalize_v3(mat[0]);
        cross_v3_v3v3(mat[2], mat[0], mat[1]);
      }
      else {
        float vec[3];

        vec[0] = mat[1][1];
        vec[1] = mat[1][2];
        vec[2] = mat[1][0];

        cross_v3_v3v3(mat[0], mat[1], vec);
        normalize_v3(mat[0]);
        cross_v3_v3v3(mat[2], mat[0], mat[1]);
      }
      break;
    case 2:
      if (dot_v3v3(mat[2], mat[0]) < 1) {
        cross_v3_v3v3(mat[1], mat[2], mat[0]);
        normalize_v3(mat[1]);
        cross_v3_v3v3(mat[0], mat[1], mat[2]);
      }
      else if (dot_v3v3(mat[2], mat[1]) < 1) {
        cross_v3_v3v3(mat[0], mat[1], mat[2]);
        normalize_v3(mat[0]);
        cross_v3_v3v3(mat[1], mat[2], mat[0]);
      }
      else {
        float vec[3];

        vec[0] = mat[2][1];
        vec[1] = mat[2][2];
        vec[2] = mat[2][0];

        cross_v3_v3v3(mat[0], vec, mat[2]);
        normalize_v3(mat[0]);
        cross_v3_v3v3(mat[1], mat[2], mat[0]);
      }
      break;
    default:
      BLI_assert(0);
      break;
  }
  mul_v3_fl(mat[0], size[0]);
  mul_v3_fl(mat[1], size[1]);
  mul_v3_fl(mat[2], size[2]);
}

/**
 * Make an orthonormal matrix around the selected axis of the given matrix.
 *
 * \param axis: Axis to build the orthonormal basis around.
 */
void orthogonalize_m4(float mat[4][4], int axis)
{
  float size[3];
  mat4_to_size(size, mat);
  normalize_v3(mat[axis]);
  switch (axis) {
    case 0:
      if (dot_v3v3(mat[0], mat[1]) < 1) {
        cross_v3_v3v3(mat[2], mat[0], mat[1]);
        normalize_v3(mat[2]);
        cross_v3_v3v3(mat[1], mat[2], mat[0]);
      }
      else if (dot_v3v3(mat[0], mat[2]) < 1) {
        cross_v3_v3v3(mat[1], mat[2], mat[0]);
        normalize_v3(mat[1]);
        cross_v3_v3v3(mat[2], mat[0], mat[1]);
      }
      else {
        float vec[3];

        vec[0] = mat[0][1];
        vec[1] = mat[0][2];
        vec[2] = mat[0][0];

        cross_v3_v3v3(mat[2], mat[0], vec);
        normalize_v3(mat[2]);
        cross_v3_v3v3(mat[1], mat[2], mat[0]);
      }
      break;
    case 1:
      if (dot_v3v3(mat[1], mat[0]) < 1) {
        cross_v3_v3v3(mat[2], mat[0], mat[1]);
        normalize_v3(mat[2]);
        cross_v3_v3v3(mat[0], mat[1], mat[2]);
      }
      else if (dot_v3v3(mat[0], mat[2]) < 1) {
        cross_v3_v3v3(mat[0], mat[1], mat[2]);
        normalize_v3(mat[0]);
        cross_v3_v3v3(mat[2], mat[0], mat[1]);
      }
      else {
        float vec[3];

        vec[0] = mat[1][1];
        vec[1] = mat[1][2];
        vec[2] = mat[1][0];

        cross_v3_v3v3(mat[0], mat[1], vec);
        normalize_v3(mat[0]);
        cross_v3_v3v3(mat[2], mat[0], mat[1]);
      }
      break;
    case 2:
      if (dot_v3v3(mat[2], mat[0]) < 1) {
        cross_v3_v3v3(mat[1], mat[2], mat[0]);
        normalize_v3(mat[1]);
        cross_v3_v3v3(mat[0], mat[1], mat[2]);
      }
      else if (dot_v3v3(mat[2], mat[1]) < 1) {
        cross_v3_v3v3(mat[0], mat[1], mat[2]);
        normalize_v3(mat[0]);
        cross_v3_v3v3(mat[1], mat[2], mat[0]);
      }
      else {
        float vec[3];

        vec[0] = mat[2][1];
        vec[1] = mat[2][2];
        vec[2] = mat[2][0];

        cross_v3_v3v3(mat[0], vec, mat[2]);
        normalize_v3(mat[0]);
        cross_v3_v3v3(mat[1], mat[2], mat[0]);
      }
      break;
    default:
      BLI_assert(0);
      break;
  }
  mul_v3_fl(mat[0], size[0]);
  mul_v3_fl(mat[1], size[1]);
  mul_v3_fl(mat[2], size[2]);
}

/** Make an orthonormal basis around v1 in a way that is stable and symmetric. */
static void orthogonalize_stable(float v1[3], float v2[3], float v3[3], bool normalize)
{
  /* Make secondary axis vectors orthogonal to the primary via
   * plane projection, which preserves the determinant. */
  float len_sq_v1 = len_squared_v3(v1);

  if (len_sq_v1 > 0.0f) {
    madd_v3_v3fl(v2, v1, -dot_v3v3(v2, v1) / len_sq_v1);
    madd_v3_v3fl(v3, v1, -dot_v3v3(v3, v1) / len_sq_v1);

    if (normalize) {
      mul_v3_fl(v1, 1.0f / sqrtf(len_sq_v1));
    }
  }

  /* Make secondary axis vectors orthogonal relative to each other. */
  float norm_v2[3], norm_v3[3], tmp[3];
  float length_v2 = normalize_v3_v3(norm_v2, v2);
  float length_v3 = normalize_v3_v3(norm_v3, v3);
  float cos_angle = dot_v3v3(norm_v2, norm_v3);
  float abs_cos_angle = fabsf(cos_angle);

  /* Apply correction if the shear angle is significant, and not degenerate. */
  if (abs_cos_angle > 1e-4f && abs_cos_angle < 1.0f - FLT_EPSILON) {
    /* Adjust v2 by half of the necessary angle correction.
     * Thus the angle change is the same for both axis directions. */
    float angle = acosf(cos_angle);
    float target_angle = angle + ((float)M_PI_2 - angle) / 2;

    madd_v3_v3fl(norm_v2, norm_v3, -cos_angle);
    mul_v3_fl(norm_v2, sinf(target_angle) / len_v3(norm_v2));
    madd_v3_v3fl(norm_v2, norm_v3, cosf(target_angle));

    /* Make v3 orthogonal. */
    cross_v3_v3v3(tmp, norm_v2, norm_v3);
    cross_v3_v3v3(norm_v3, tmp, norm_v2);
    normalize_v3(norm_v3);

    /* Re-apply scale, preserving area and proportion. */
    if (!normalize) {
      float scale_fac = sqrtf(sinf(angle));
      mul_v3_v3fl(v2, norm_v2, length_v2 * scale_fac);
      mul_v3_v3fl(v3, norm_v3, length_v3 * scale_fac);
    }
  }

  if (normalize) {
    copy_v3_v3(v2, norm_v2);
    copy_v3_v3(v3, norm_v3);
  }
}

/**
 * Make an orthonormal matrix around the selected axis of the given matrix,
 * in a way that is symmetric and stable to variations in the input, and
 * preserving the value of the determinant, i.e. the overall volume change.
 *
 * \param axis: Axis to build the orthonormal basis around.
 * \param normalize: Normalize the matrix instead of preserving volume.
 */
void orthogonalize_m3_stable(float R[3][3], int axis, bool normalize)
{
  switch (axis) {
    case 0:
      orthogonalize_stable(R[0], R[1], R[2], normalize);
      break;
    case 1:
      orthogonalize_stable(R[1], R[0], R[2], normalize);
      break;
    case 2:
      orthogonalize_stable(R[2], R[0], R[1], normalize);
      break;
    default:
      BLI_assert(0);
      break;
  }
}

/**
 * Make an orthonormal matrix around the selected axis of the given matrix,
 * in a way that is symmetric and stable to variations in the input, and
 * preserving the value of the determinant, i.e. the overall volume change.
 *
 * \param axis: Axis to build the orthonormal basis around.
 * \param normalize: Normalize the matrix instead of preserving volume.
 */
void orthogonalize_m4_stable(float R[4][4], int axis, bool normalize)
{
  switch (axis) {
    case 0:
      orthogonalize_stable(R[0], R[1], R[2], normalize);
      break;
    case 1:
      orthogonalize_stable(R[1], R[0], R[2], normalize);
      break;
    case 2:
      orthogonalize_stable(R[2], R[0], R[1], normalize);
      break;
    default:
      BLI_assert(0);
      break;
  }
}

bool is_orthogonal_m3(const float m[3][3])
{
  int i, j;

  for (i = 0; i < 3; i++) {
    for (j = 0; j < i; j++) {
      if (fabsf(dot_v3v3(m[i], m[j])) > 1e-5f) {
        return false;
      }
    }
  }

  return true;
}

bool is_orthogonal_m4(const float m[4][4])
{
  int i, j;

  for (i = 0; i < 4; i++) {
    for (j = 0; j < i; j++) {
      if (fabsf(dot_v4v4(m[i], m[j])) > 1e-5f) {
        return false;
      }
    }
  }

  return true;
}

bool is_orthonormal_m3(const float m[3][3])
{
  if (is_orthogonal_m3(m)) {
    int i;

    for (i = 0; i < 3; i++) {
      if (fabsf(dot_v3v3(m[i], m[i]) - 1) > 1e-5f) {
        return false;
      }
    }

    return true;
  }

  return false;
}

bool is_orthonormal_m4(const float m[4][4])
{
  if (is_orthogonal_m4(m)) {
    int i;

    for (i = 0; i < 4; i++) {
      if (fabsf(dot_v4v4(m[i], m[i]) - 1) > 1e-5f) {
        return false;
      }
    }

    return true;
  }

  return false;
}

bool is_uniform_scaled_m3(const float m[3][3])
{
  const float eps = 1e-7f;
  float t[3][3];
  float l1, l2, l3, l4, l5, l6;

  transpose_m3_m3(t, m);

  l1 = len_squared_v3(m[0]);
  l2 = len_squared_v3(m[1]);
  l3 = len_squared_v3(m[2]);

  l4 = len_squared_v3(t[0]);
  l5 = len_squared_v3(t[1]);
  l6 = len_squared_v3(t[2]);

  if (fabsf(l2 - l1) <= eps && fabsf(l3 - l1) <= eps && fabsf(l4 - l1) <= eps &&
      fabsf(l5 - l1) <= eps && fabsf(l6 - l1) <= eps) {
    return true;
  }

  return false;
}

bool is_uniform_scaled_m4(const float m[4][4])
{
  float t[3][3];
  copy_m3_m4(t, m);
  return is_uniform_scaled_m3(t);
}

void normalize_m2_ex(float mat[2][2], float r_scale[2])
{
  int i;
  for (i = 0; i < 2; i++) {
    r_scale[i] = normalize_v2(mat[i]);
  }
}

void normalize_m2(float mat[2][2])
{
  int i;
  for (i = 0; i < 2; i++) {
    normalize_v2(mat[i]);
  }
}

void normalize_m2_m2_ex(float rmat[2][2], const float mat[2][2], float r_scale[2])
{
  int i;
  for (i = 0; i < 2; i++) {
    r_scale[i] = normalize_v2_v2(rmat[i], mat[i]);
  }
}
void normalize_m2_m2(float rmat[2][2], const float mat[2][2])
{
  int i;
  for (i = 0; i < 2; i++) {
    normalize_v2_v2(rmat[i], mat[i]);
  }
}

void normalize_m3_ex(float mat[3][3], float r_scale[3])
{
  int i;
  for (i = 0; i < 3; i++) {
    r_scale[i] = normalize_v3(mat[i]);
  }
}
void normalize_m3(float mat[3][3])
{
  int i;
  for (i = 0; i < 3; i++) {
    normalize_v3(mat[i]);
  }
}

void normalize_m3_m3_ex(float rmat[3][3], const float mat[3][3], float r_scale[3])
{
  int i;
  for (i = 0; i < 3; i++) {
    r_scale[i] = normalize_v3_v3(rmat[i], mat[i]);
  }
}
void normalize_m3_m3(float rmat[3][3], const float mat[3][3])
{
  int i;
  for (i = 0; i < 3; i++) {
    normalize_v3_v3(rmat[i], mat[i]);
  }
}

void normalize_m4_ex(float mat[4][4], float r_scale[3])
{
  int i;
  for (i = 0; i < 3; i++) {
    r_scale[i] = normalize_v3(mat[i]);
    if (r_scale[i] != 0.0f) {
      mat[i][3] /= r_scale[i];
    }
  }
}
void normalize_m4(float mat[4][4])
{
  int i;
  for (i = 0; i < 3; i++) {
    float len = normalize_v3(mat[i]);
    if (len != 0.0f) {
      mat[i][3] /= len;
    }
  }
}

void normalize_m4_m4_ex(float rmat[4][4], const float mat[4][4], float r_scale[3])
{
  int i;
  for (i = 0; i < 3; i++) {
    r_scale[i] = normalize_v3_v3(rmat[i], mat[i]);
    rmat[i][3] = (r_scale[i] != 0.0f) ? (mat[i][3] / r_scale[i]) : mat[i][3];
  }
  copy_v4_v4(rmat[3], mat[3]);
}
void normalize_m4_m4(float rmat[4][4], const float mat[4][4])
{
  int i;
  for (i = 0; i < 3; i++) {
    float len = normalize_v3_v3(rmat[i], mat[i]);
    rmat[i][3] = (len != 0.0f) ? (mat[i][3] / len) : mat[i][3];
  }
  copy_v4_v4(rmat[3], mat[3]);
}

void adjoint_m2_m2(float m1[2][2], const float m[2][2])
{
  BLI_assert(m1 != m);
  m1[0][0] = m[1][1];
  m1[0][1] = -m[0][1];
  m1[1][0] = -m[1][0];
  m1[1][1] = m[0][0];
}

void adjoint_m3_m3(float m1[3][3], const float m[3][3])
{
  BLI_assert(m1 != m);
  m1[0][0] = m[1][1] * m[2][2] - m[1][2] * m[2][1];
  m1[0][1] = -m[0][1] * m[2][2] + m[0][2] * m[2][1];
  m1[0][2] = m[0][1] * m[1][2] - m[0][2] * m[1][1];

  m1[1][0] = -m[1][0] * m[2][2] + m[1][2] * m[2][0];
  m1[1][1] = m[0][0] * m[2][2] - m[0][2] * m[2][0];
  m1[1][2] = -m[0][0] * m[1][2] + m[0][2] * m[1][0];

  m1[2][0] = m[1][0] * m[2][1] - m[1][1] * m[2][0];
  m1[2][1] = -m[0][0] * m[2][1] + m[0][1] * m[2][0];
  m1[2][2] = m[0][0] * m[1][1] - m[0][1] * m[1][0];
}

void adjoint_m4_m4(float out[4][4], const float in[4][4]) /* out = ADJ(in) */
{
  float a1, a2, a3, a4, b1, b2, b3, b4;
  float c1, c2, c3, c4, d1, d2, d3, d4;

  a1 = in[0][0];
  b1 = in[0][1];
  c1 = in[0][2];
  d1 = in[0][3];

  a2 = in[1][0];
  b2 = in[1][1];
  c2 = in[1][2];
  d2 = in[1][3];

  a3 = in[2][0];
  b3 = in[2][1];
  c3 = in[2][2];
  d3 = in[2][3];

  a4 = in[3][0];
  b4 = in[3][1];
  c4 = in[3][2];
  d4 = in[3][3];

  out[0][0] = determinant_m3(b2, b3, b4, c2, c3, c4, d2, d3, d4);
  out[1][0] = -determinant_m3(a2, a3, a4, c2, c3, c4, d2, d3, d4);
  out[2][0] = determinant_m3(a2, a3, a4, b2, b3, b4, d2, d3, d4);
  out[3][0] = -determinant_m3(a2, a3, a4, b2, b3, b4, c2, c3, c4);

  out[0][1] = -determinant_m3(b1, b3, b4, c1, c3, c4, d1, d3, d4);
  out[1][1] = determinant_m3(a1, a3, a4, c1, c3, c4, d1, d3, d4);
  out[2][1] = -determinant_m3(a1, a3, a4, b1, b3, b4, d1, d3, d4);
  out[3][1] = determinant_m3(a1, a3, a4, b1, b3, b4, c1, c3, c4);

  out[0][2] = determinant_m3(b1, b2, b4, c1, c2, c4, d1, d2, d4);
  out[1][2] = -determinant_m3(a1, a2, a4, c1, c2, c4, d1, d2, d4);
  out[2][2] = determinant_m3(a1, a2, a4, b1, b2, b4, d1, d2, d4);
  out[3][2] = -determinant_m3(a1, a2, a4, b1, b2, b4, c1, c2, c4);

  out[0][3] = -determinant_m3(b1, b2, b3, c1, c2, c3, d1, d2, d3);
  out[1][3] = determinant_m3(a1, a2, a3, c1, c2, c3, d1, d2, d3);
  out[2][3] = -determinant_m3(a1, a2, a3, b1, b2, b3, d1, d2, d3);
  out[3][3] = determinant_m3(a1, a2, a3, b1, b2, b3, c1, c2, c3);
}

float determinant_m2(float a, float b, float c, float d)
{

  return a * d - b * c;
}

float determinant_m3(
    float a1, float a2, float a3, float b1, float b2, float b3, float c1, float c2, float c3)
{
  float ans;

  ans = (a1 * determinant_m2(b2, b3, c2, c3) - b1 * determinant_m2(a2, a3, c2, c3) +
         c1 * determinant_m2(a2, a3, b2, b3));

  return ans;
}

float determinant_m4(const float m[4][4])
{
  float ans;
  float a1, a2, a3, a4, b1, b2, b3, b4, c1, c2, c3, c4, d1, d2, d3, d4;

  a1 = m[0][0];
  b1 = m[0][1];
  c1 = m[0][2];
  d1 = m[0][3];

  a2 = m[1][0];
  b2 = m[1][1];
  c2 = m[1][2];
  d2 = m[1][3];

  a3 = m[2][0];
  b3 = m[2][1];
  c3 = m[2][2];
  d3 = m[2][3];

  a4 = m[3][0];
  b4 = m[3][1];
  c4 = m[3][2];
  d4 = m[3][3];

  ans = (a1 * determinant_m3(b2, b3, b4, c2, c3, c4, d2, d3, d4) -
         b1 * determinant_m3(a2, a3, a4, c2, c3, c4, d2, d3, d4) +
         c1 * determinant_m3(a2, a3, a4, b2, b3, b4, d2, d3, d4) -
         d1 * determinant_m3(a2, a3, a4, b2, b3, b4, c2, c3, c4));

  return ans;
}

/****************************** Transformations ******************************/

void size_to_mat3(float mat[3][3], const float size[3])
{
  mat[0][0] = size[0];
  mat[0][1] = 0.0f;
  mat[0][2] = 0.0f;
  mat[1][1] = size[1];
  mat[1][0] = 0.0f;
  mat[1][2] = 0.0f;
  mat[2][2] = size[2];
  mat[2][1] = 0.0f;
  mat[2][0] = 0.0f;
}

void size_to_mat4(float mat[4][4], const float size[3])
{
  mat[0][0] = size[0];
  mat[0][1] = 0.0f;
  mat[0][2] = 0.0f;
  mat[0][3] = 0.0f;
  mat[1][0] = 0.0f;
  mat[1][1] = size[1];
  mat[1][2] = 0.0f;
  mat[1][3] = 0.0f;
  mat[2][0] = 0.0f;
  mat[2][1] = 0.0f;
  mat[2][2] = size[2];
  mat[2][3] = 0.0f;
  mat[3][0] = 0.0f;
  mat[3][1] = 0.0f;
  mat[3][2] = 0.0f;
  mat[3][3] = 1.0f;
}

void mat3_to_size(float size[3], const float mat[3][3])
{
  size[0] = len_v3(mat[0]);
  size[1] = len_v3(mat[1]);
  size[2] = len_v3(mat[2]);
}

void mat4_to_size(float size[3], const float mat[4][4])
{
  size[0] = len_v3(mat[0]);
  size[1] = len_v3(mat[1]);
  size[2] = len_v3(mat[2]);
}

/**
 * Extract scale factors from the matrix, with correction to ensure
 * exact volume in case of a sheared matrix.
 */
void mat4_to_size_fix_shear(float size[3], const float mat[4][4])
{
  mat4_to_size(size, mat);

  float volume = size[0] * size[1] * size[2];

  if (volume != 0.0f) {
    mul_v3_fl(size, cbrtf(fabsf(mat4_to_volume_scale(mat) / volume)));
  }
}

/**
 * This computes the overall volume scale factor of a transformation matrix.
 * For an orthogonal matrix, it is the product of all three scale values.
 * Returns a negative value if the transform is flipped by negative scale.
 */
float mat3_to_volume_scale(const float mat[3][3])
{
  return determinant_m3_array(mat);
}

float mat4_to_volume_scale(const float mat[4][4])
{
  return determinant_m4_mat3_array(mat);
}

/**
 * This gets the average scale of a matrix, only use when your scaling
 * data that has no idea of scale axis, examples are bone-envelope-radius
 * and curve radius.
 */
float mat3_to_scale(const float mat[3][3])
{
  /* unit length vector */
  float unit_vec[3];
  copy_v3_fl(unit_vec, (float)M_SQRT1_3);
  mul_m3_v3(mat, unit_vec);
  return len_v3(unit_vec);
}

float mat4_to_scale(const float mat[4][4])
{
  /* unit length vector */
  float unit_vec[3];
  copy_v3_fl(unit_vec, (float)M_SQRT1_3);
  mul_mat3_m4_v3(mat, unit_vec);
  return len_v3(unit_vec);
}

/** Return 2D scale (in XY plane) of given mat4. */
float mat4_to_xy_scale(const float M[4][4])
{
  /* unit length vector in xy plane */
  float unit_vec[3] = {(float)M_SQRT1_2, (float)M_SQRT1_2, 0.0f};
  mul_mat3_m4_v3(M, unit_vec);
  return len_v3(unit_vec);
}

void mat3_to_rot_size(float rot[3][3], float size[3], const float mat3[3][3])
{
  /* keep rot as a 3x3 matrix, the caller can convert into a quat or euler */
  size[0] = normalize_v3_v3(rot[0], mat3[0]);
  size[1] = normalize_v3_v3(rot[1], mat3[1]);
  size[2] = normalize_v3_v3(rot[2], mat3[2]);
  if (UNLIKELY(is_negative_m3(rot))) {
    negate_m3(rot);
    negate_v3(size);
  }
}

void mat4_to_loc_rot_size(float loc[3], float rot[3][3], float size[3], const float wmat[4][4])
{
  float mat3[3][3]; /* wmat -> 3x3 */

  copy_m3_m4(mat3, wmat);
  mat3_to_rot_size(rot, size, mat3);

  /* location */
  copy_v3_v3(loc, wmat[3]);
}

void mat4_to_loc_quat(float loc[3], float quat[4], const float wmat[4][4])
{
  float mat3[3][3];
  float mat3_n[3][3]; /* normalized mat3 */

  copy_m3_m4(mat3, wmat);
  normalize_m3_m3(mat3_n, mat3);

  /* so scale doesn't interfere with rotation [#24291] */
  /* note: this is a workaround for negative matrix not working for rotation conversion, FIXME */
  if (is_negative_m3(mat3)) {
    negate_m3(mat3_n);
  }

  mat3_normalized_to_quat(quat, mat3_n);
  copy_v3_v3(loc, wmat[3]);
}

void mat4_decompose(float loc[3], float quat[4], float size[3], const float wmat[4][4])
{
  float rot[3][3];
  mat4_to_loc_rot_size(loc, rot, size, wmat);
  mat3_normalized_to_quat(quat, rot);
}

/**
 * Right polar decomposition:
 *     M = UP
 *
 * U is the 'rotation'-like component, the closest orthogonal matrix to M.
 * P is the 'scaling'-like component, defined in U space.
 *
 * See https://en.wikipedia.org/wiki/Polar_decomposition for more.
 */
#ifndef MATH_STANDALONE
void mat3_polar_decompose(const float mat3[3][3], float r_U[3][3], float r_P[3][3])
{
  /* From svd decomposition (M = WSV*), we have:
   *     U = WV*
   *     P = VSV*
   */
  float W[3][3], S[3][3], V[3][3], Vt[3][3];
  float sval[3];

  BLI_svd_m3(mat3, W, sval, V);

  size_to_mat3(S, sval);

  transpose_m3_m3(Vt, V);
  mul_m3_m3m3(r_U, W, Vt);
  mul_m3_series(r_P, V, S, Vt);
}
#endif

void scale_m3_fl(float m[3][3], float scale)
{
  m[0][0] = m[1][1] = m[2][2] = scale;
  m[0][1] = m[0][2] = 0.0;
  m[1][0] = m[1][2] = 0.0;
  m[2][0] = m[2][1] = 0.0;
}

void scale_m4_fl(float m[4][4], float scale)
{
  m[0][0] = m[1][1] = m[2][2] = scale;
  m[3][3] = 1.0;
  m[0][1] = m[0][2] = m[0][3] = 0.0;
  m[1][0] = m[1][2] = m[1][3] = 0.0;
  m[2][0] = m[2][1] = m[2][3] = 0.0;
  m[3][0] = m[3][1] = m[3][2] = 0.0;
}

void translate_m4(float mat[4][4], float Tx, float Ty, float Tz)
{
  mat[3][0] += (Tx * mat[0][0] + Ty * mat[1][0] + Tz * mat[2][0]);
  mat[3][1] += (Tx * mat[0][1] + Ty * mat[1][1] + Tz * mat[2][1]);
  mat[3][2] += (Tx * mat[0][2] + Ty * mat[1][2] + Tz * mat[2][2]);
}

/* TODO: enum for axis? */
/**
 * Rotate a matrix in-place.
 *
 * \note To create a new rotation matrix see:
 * #axis_angle_to_mat4_single, #axis_angle_to_mat3_single, #angle_to_mat2
 * (axis & angle args are compatible).
 */
void rotate_m4(float mat[4][4], const char axis, const float angle)
{
  const float angle_cos = cosf(angle);
  const float angle_sin = sinf(angle);

  BLI_assert(axis >= 'X' && axis <= 'Z');

  switch (axis) {
    case 'X':
      for (int col = 0; col < 4; col++) {
        float temp = angle_cos * mat[1][col] + angle_sin * mat[2][col];
        mat[2][col] = -angle_sin * mat[1][col] + angle_cos * mat[2][col];
        mat[1][col] = temp;
      }
      break;

    case 'Y':
      for (int col = 0; col < 4; col++) {
        float temp = angle_cos * mat[0][col] - angle_sin * mat[2][col];
        mat[2][col] = angle_sin * mat[0][col] + angle_cos * mat[2][col];
        mat[0][col] = temp;
      }
      break;

    case 'Z':
      for (int col = 0; col < 4; col++) {
        float temp = angle_cos * mat[0][col] + angle_sin * mat[1][col];
        mat[1][col] = -angle_sin * mat[0][col] + angle_cos * mat[1][col];
        mat[0][col] = temp;
      }
      break;
    default:
      BLI_assert(0);
      break;
  }
}

/** Scale a matrix in-place. */
void rescale_m4(float mat[4][4], const float scale[3])
{
  mul_v3_fl(mat[0], scale[0]);
  mul_v3_fl(mat[1], scale[1]);
  mul_v3_fl(mat[2], scale[2]);
}

/**
 * Scale or rotate around a pivot point,
 * a convenience function to avoid having to do inline.
 *
 * Since its common to make a scale/rotation matrix that pivots around an arbitrary point.
 *
 * Typical use case is to make 3x3 matrix, copy to 4x4, then pass to this function.
 */
void transform_pivot_set_m4(float mat[4][4], const float pivot[3])
{
  float tmat[4][4];

  unit_m4(tmat);

  copy_v3_v3(tmat[3], pivot);
  mul_m4_m4m4(mat, tmat, mat);

  /* invert the matrix */
  negate_v3(tmat[3]);
  mul_m4_m4m4(mat, mat, tmat);
}

void blend_m3_m3m3(float out[3][3],
                   const float dst[3][3],
                   const float src[3][3],
                   const float srcweight)
{
  float srot[3][3], drot[3][3];
  float squat[4], dquat[4], fquat[4];
  float sscale[3], dscale[3], fsize[3];
  float rmat[3][3], smat[3][3];

  mat3_to_rot_size(drot, dscale, dst);
  mat3_to_rot_size(srot, sscale, src);

  mat3_normalized_to_quat(dquat, drot);
  mat3_normalized_to_quat(squat, srot);

  /* do blending */
  interp_qt_qtqt(fquat, dquat, squat, srcweight);
  interp_v3_v3v3(fsize, dscale, sscale, srcweight);

  /* compose new matrix */
  quat_to_mat3(rmat, fquat);
  size_to_mat3(smat, fsize);
  mul_m3_m3m3(out, rmat, smat);
}

void blend_m4_m4m4(float out[4][4],
                   const float dst[4][4],
                   const float src[4][4],
                   const float srcweight)
{
  float sloc[3], dloc[3], floc[3];
  float srot[3][3], drot[3][3];
  float squat[4], dquat[4], fquat[4];
  float sscale[3], dscale[3], fsize[3];

  mat4_to_loc_rot_size(dloc, drot, dscale, dst);
  mat4_to_loc_rot_size(sloc, srot, sscale, src);

  mat3_normalized_to_quat(dquat, drot);
  mat3_normalized_to_quat(squat, srot);

  /* do blending */
  interp_v3_v3v3(floc, dloc, sloc, srcweight);
  interp_qt_qtqt(fquat, dquat, squat, srcweight);
  interp_v3_v3v3(fsize, dscale, sscale, srcweight);

  /* compose new matrix */
  loc_quat_size_to_mat4(out, floc, fquat, fsize);
}

/* for builds without Eigen */
#ifndef MATH_STANDALONE
/**
 * A polar-decomposition-based interpolation between matrix A and matrix B.
 *
 * \note This code is about five times slower as the 'naive' interpolation done by #blend_m3_m3m3
 * (it typically remains below 2 usec on an average i74700,
 * while #blend_m3_m3m3 remains below 0.4 usec).
 * However, it gives expected results even with non-uniformly scaled matrices,
 * see T46418 for an example.
 *
 * Based on "Matrix Animation and Polar Decomposition", by Ken Shoemake & Tom Duff
 *
 * \param R: Resulting interpolated matrix.
 * \param A: Input matrix which is totally effective with `t = 0.0`.
 * \param B: Input matrix which is totally effective with `t = 1.0`.
 * \param t: Interpolation factor.
 */
void interp_m3_m3m3(float R[3][3], const float A[3][3], const float B[3][3], const float t)
{
  /* 'Rotation' component ('U' part of polar decomposition,
   * the closest orthogonal matrix to M3 rot/scale
   * transformation matrix), spherically interpolated. */
  float U_A[3][3], U_B[3][3], U[3][3];
  float quat_A[4], quat_B[4], quat[4];
  /* 'Scaling' component ('P' part of polar decomposition, i.e. scaling in U-defined space),
   * linearly interpolated. */
  float P_A[3][3], P_B[3][3], P[3][3];

  int i;

  mat3_polar_decompose(A, U_A, P_A);
  mat3_polar_decompose(B, U_B, P_B);

  /* Quaternions cannot represent an axis flip. If such a singularity is detected, choose a
   * different decomposition of the matrix that still satisfies A = U_A * P_A but which has a
   * positive determinant and thus no axis flips. This resolves T77154.
   *
   * Note that a flip of two axes is just a rotation of 180 degrees around the third axis, and
   * three flipped axes are just an 180 degree rotation + a single axis flip. It is thus sufficient
   * to solve this problem for single axis flips. */
  if (determinant_m3_array(U_A) < 0) {
    mul_m3_fl(U_A, -1.0f);
    mul_m3_fl(P_A, -1.0f);
  }
  if (determinant_m3_array(U_B) < 0) {
    mul_m3_fl(U_B, -1.0f);
    mul_m3_fl(P_B, -1.0f);
  }

  mat3_to_quat(quat_A, U_A);
  mat3_to_quat(quat_B, U_B);
  interp_qt_qtqt(quat, quat_A, quat_B, t);
  quat_to_mat3(U, quat);

  for (i = 0; i < 3; i++) {
    interp_v3_v3v3(P[i], P_A[i], P_B[i], t);
  }

  /* And we reconstruct rot/scale matrix from interpolated polar components */
  mul_m3_m3m3(R, U, P);
}

/**
 * Complete transform matrix interpolation,
 * based on polar-decomposition-based interpolation from #interp_m3_m3m3.
 *
 * \param R: Resulting interpolated matrix.
 * \param A: Input matrix which is totally effective with `t = 0.0`.
 * \param B: Input matrix which is totally effective with `t = 1.0`.
 * \param t: Interpolation factor.
 */
void interp_m4_m4m4(float R[4][4], const float A[4][4], const float B[4][4], const float t)
{
  float A3[3][3], B3[3][3], R3[3][3];

  /* Location component, linearly interpolated. */
  float loc_A[3], loc_B[3], loc[3];

  copy_v3_v3(loc_A, A[3]);
  copy_v3_v3(loc_B, B[3]);
  interp_v3_v3v3(loc, loc_A, loc_B, t);

  copy_m3_m4(A3, A);
  copy_m3_m4(B3, B);

  interp_m3_m3m3(R3, A3, B3, t);

  copy_m4_m3(R, R3);
  copy_v3_v3(R[3], loc);
}
#endif /* MATH_STANDALONE */

bool is_negative_m3(const float mat[3][3])
{
  float vec[3];
  cross_v3_v3v3(vec, mat[0], mat[1]);
  return (dot_v3v3(vec, mat[2]) < 0.0f);
}

bool is_negative_m4(const float mat[4][4])
{
  float vec[3];
  cross_v3_v3v3(vec, mat[0], mat[1]);
  return (dot_v3v3(vec, mat[2]) < 0.0f);
}

bool is_zero_m3(const float mat[3][3])
{
  return (is_zero_v3(mat[0]) && is_zero_v3(mat[1]) && is_zero_v3(mat[2]));
}
bool is_zero_m4(const float mat[4][4])
{
  return (is_zero_v4(mat[0]) && is_zero_v4(mat[1]) && is_zero_v4(mat[2]) && is_zero_v4(mat[3]));
}

bool equals_m3m3(const float mat1[3][3], const float mat2[3][3])
{
  return (equals_v3v3(mat1[0], mat2[0]) && equals_v3v3(mat1[1], mat2[1]) &&
          equals_v3v3(mat1[2], mat2[2]));
}

bool equals_m4m4(const float mat1[4][4], const float mat2[4][4])
{
  return (equals_v4v4(mat1[0], mat2[0]) && equals_v4v4(mat1[1], mat2[1]) &&
          equals_v4v4(mat1[2], mat2[2]) && equals_v4v4(mat1[3], mat2[3]));
}

/**
 * Make a 4x4 matrix out of 3 transform components.
 * Matrices are made in the order: `scale * rot * loc`
 */
void loc_rot_size_to_mat4(float mat[4][4],
                          const float loc[3],
                          const float rot[3][3],
                          const float size[3])
{
  copy_m4_m3(mat, rot);
  rescale_m4(mat, size);
  copy_v3_v3(mat[3], loc);
}

/**
 * Make a 4x4 matrix out of 3 transform components.
 * Matrices are made in the order: `scale * rot * loc`
 *
 * TODO: need to have a version that allows for rotation order...
 */
void loc_eul_size_to_mat4(float mat[4][4],
                          const float loc[3],
                          const float eul[3],
                          const float size[3])
{
  float rmat[3][3], smat[3][3], tmat[3][3];

  /* initialize new matrix */
  unit_m4(mat);

  /* make rotation + scaling part */
  eul_to_mat3(rmat, eul);
  size_to_mat3(smat, size);
  mul_m3_m3m3(tmat, rmat, smat);

  /* copy rot/scale part to output matrix*/
  copy_m4_m3(mat, tmat);

  /* copy location to matrix */
  mat[3][0] = loc[0];
  mat[3][1] = loc[1];
  mat[3][2] = loc[2];
}

/**
 * Make a 4x4 matrix out of 3 transform components.
 * Matrices are made in the order: `scale * rot * loc`
 */
void loc_eulO_size_to_mat4(float mat[4][4],
                           const float loc[3],
                           const float eul[3],
                           const float size[3],
                           const short rotOrder)
{
  float rmat[3][3], smat[3][3], tmat[3][3];

  /* initialize new matrix */
  unit_m4(mat);

  /* make rotation + scaling part */
  eulO_to_mat3(rmat, eul, rotOrder);
  size_to_mat3(smat, size);
  mul_m3_m3m3(tmat, rmat, smat);

  /* copy rot/scale part to output matrix*/
  copy_m4_m3(mat, tmat);

  /* copy location to matrix */
  mat[3][0] = loc[0];
  mat[3][1] = loc[1];
  mat[3][2] = loc[2];
}

/**
 * Make a 4x4 matrix out of 3 transform components.
 * Matrices are made in the order: `scale * rot * loc`
 */
void loc_quat_size_to_mat4(float mat[4][4],
                           const float loc[3],
                           const float quat[4],
                           const float size[3])
{
  float rmat[3][3], smat[3][3], tmat[3][3];

  /* initialize new matrix */
  unit_m4(mat);

  /* make rotation + scaling part */
  quat_to_mat3(rmat, quat);
  size_to_mat3(smat, size);
  mul_m3_m3m3(tmat, rmat, smat);

  /* copy rot/scale part to output matrix*/
  copy_m4_m3(mat, tmat);

  /* copy location to matrix */
  mat[3][0] = loc[0];
  mat[3][1] = loc[1];
  mat[3][2] = loc[2];
}

void loc_axisangle_size_to_mat4(float mat[4][4],
                                const float loc[3],
                                const float axis[3],
                                const float angle,
                                const float size[3])
{
  float q[4];
  axis_angle_to_quat(q, axis, angle);
  loc_quat_size_to_mat4(mat, loc, q, size);
}

/*********************************** Other ***********************************/

void print_m3(const char *str, const float m[3][3])
{
  printf("%s\n", str);
  printf("%f %f %f\n", m[0][0], m[1][0], m[2][0]);
  printf("%f %f %f\n", m[0][1], m[1][1], m[2][1]);
  printf("%f %f %f\n", m[0][2], m[1][2], m[2][2]);
  printf("\n");
}

void print_m4(const char *str, const float m[4][4])
{
  printf("%s\n", str);
  printf("%f %f %f %f\n", m[0][0], m[1][0], m[2][0], m[3][0]);
  printf("%f %f %f %f\n", m[0][1], m[1][1], m[2][1], m[3][1]);
  printf("%f %f %f %f\n", m[0][2], m[1][2], m[2][2], m[3][2]);
  printf("%f %f %f %f\n", m[0][3], m[1][3], m[2][3], m[3][3]);
  printf("\n");
}

/*********************************** SVD ************************************
 * from TNT matrix library
 *
 * Compute the Single Value Decomposition of an arbitrary matrix A
 * That is compute the 3 matrices U,W,V with U column orthogonal (m,n)
 * ,W a diagonal matrix and V an orthogonal square matrix s.t.
 * A = U.W.Vt. From this decomposition it is trivial to compute the
 * (pseudo-inverse) of A as Ainv = V.Winv.tranpose(U).
 */

void svd_m4(float U[4][4], float s[4], float V[4][4], float A_[4][4])
{
  float A[4][4];
  float work1[4], work2[4];
  int m = 4;
  int n = 4;
  int maxiter = 200;
  int nu = min_ii(m, n);

  float *work = work1;
  float *e = work2;
  float eps;

  int i = 0, j = 0, k = 0, p, pp, iter;

  /* Reduce A to bidiagonal form, storing the diagonal elements
   * in s and the super-diagonal elements in e. */

  int nct = min_ii(m - 1, n);
  int nrt = max_ii(0, min_ii(n - 2, m));

  copy_m4_m4(A, A_);
  zero_m4(U);
  zero_v4(s);

  for (k = 0; k < max_ii(nct, nrt); k++) {
    if (k < nct) {

      /* Compute the transformation for the k-th column and
       * place the k-th diagonal in s[k].
       * Compute 2-norm of k-th column without under/overflow. */
      s[k] = 0;
      for (i = k; i < m; i++) {
        s[k] = hypotf(s[k], A[i][k]);
      }
      if (s[k] != 0.0f) {
        float invsk;
        if (A[k][k] < 0.0f) {
          s[k] = -s[k];
        }
        invsk = 1.0f / s[k];
        for (i = k; i < m; i++) {
          A[i][k] *= invsk;
        }
        A[k][k] += 1.0f;
      }
      s[k] = -s[k];
    }
    for (j = k + 1; j < n; j++) {
      if ((k < nct) && (s[k] != 0.0f)) {

        /* Apply the transformation. */

        float t = 0;
        for (i = k; i < m; i++) {
          t += A[i][k] * A[i][j];
        }
        t = -t / A[k][k];
        for (i = k; i < m; i++) {
          A[i][j] += t * A[i][k];
        }
      }

      /* Place the k-th row of A into e for the */
      /* subsequent calculation of the row transformation. */

      e[j] = A[k][j];
    }
    if (k < nct) {

      /* Place the transformation in U for subsequent back
       * multiplication. */

      for (i = k; i < m; i++) {
        U[i][k] = A[i][k];
      }
    }
    if (k < nrt) {

      /* Compute the k-th row transformation and place the
       * k-th super-diagonal in e[k].
       * Compute 2-norm without under/overflow. */
      e[k] = 0;
      for (i = k + 1; i < n; i++) {
        e[k] = hypotf(e[k], e[i]);
      }
      if (e[k] != 0.0f) {
        float invek;
        if (e[k + 1] < 0.0f) {
          e[k] = -e[k];
        }
        invek = 1.0f / e[k];
        for (i = k + 1; i < n; i++) {
          e[i] *= invek;
        }
        e[k + 1] += 1.0f;
      }
      e[k] = -e[k];
      if ((k + 1 < m) & (e[k] != 0.0f)) {
        float invek1;

        /* Apply the transformation. */

        for (i = k + 1; i < m; i++) {
          work[i] = 0.0f;
        }
        for (j = k + 1; j < n; j++) {
          for (i = k + 1; i < m; i++) {
            work[i] += e[j] * A[i][j];
          }
        }
        invek1 = 1.0f / e[k + 1];
        for (j = k + 1; j < n; j++) {
          float t = -e[j] * invek1;
          for (i = k + 1; i < m; i++) {
            A[i][j] += t * work[i];
          }
        }
      }

      /* Place the transformation in V for subsequent
       * back multiplication. */

      for (i = k + 1; i < n; i++) {
        V[i][k] = e[i];
      }
    }
  }

  /* Set up the final bidiagonal matrix or order p. */

  p = min_ii(n, m + 1);
  if (nct < n) {
    s[nct] = A[nct][nct];
  }
  if (m < p) {
    s[p - 1] = 0.0f;
  }
  if (nrt + 1 < p) {
    e[nrt] = A[nrt][p - 1];
  }
  e[p - 1] = 0.0f;

  /* If required, generate U. */

  for (j = nct; j < nu; j++) {
    for (i = 0; i < m; i++) {
      U[i][j] = 0.0f;
    }
    U[j][j] = 1.0f;
  }
  for (k = nct - 1; k >= 0; k--) {
    if (s[k] != 0.0f) {
      for (j = k + 1; j < nu; j++) {
        float t = 0;
        for (i = k; i < m; i++) {
          t += U[i][k] * U[i][j];
        }
        t = -t / U[k][k];
        for (i = k; i < m; i++) {
          U[i][j] += t * U[i][k];
        }
      }
      for (i = k; i < m; i++) {
        U[i][k] = -U[i][k];
      }
      U[k][k] = 1.0f + U[k][k];
      for (i = 0; i < k - 1; i++) {
        U[i][k] = 0.0f;
      }
    }
    else {
      for (i = 0; i < m; i++) {
        U[i][k] = 0.0f;
      }
      U[k][k] = 1.0f;
    }
  }

  /* If required, generate V. */

  for (k = n - 1; k >= 0; k--) {
    if ((k < nrt) & (e[k] != 0.0f)) {
      for (j = k + 1; j < nu; j++) {
        float t = 0;
        for (i = k + 1; i < n; i++) {
          t += V[i][k] * V[i][j];
        }
        t = -t / V[k + 1][k];
        for (i = k + 1; i < n; i++) {
          V[i][j] += t * V[i][k];
        }
      }
    }
    for (i = 0; i < n; i++) {
      V[i][k] = 0.0f;
    }
    V[k][k] = 1.0f;
  }

  /* Main iteration loop for the singular values. */

  pp = p - 1;
  iter = 0;
  eps = powf(2.0f, -52.0f);
  while (p > 0) {
    int kase = 0;

    /* Test for maximum iterations to avoid infinite loop */
    if (maxiter == 0) {
      break;
    }
    maxiter--;

    /* This section of the program inspects for
     * negligible elements in the s and e arrays.  On
     * completion the variables kase and k are set as follows.
     *
     * kase = 1: if s(p) and e[k - 1] are negligible and k<p
     * kase = 2: if s(k) is negligible and k<p
     * kase = 3: if e[k - 1] is negligible, k<p, and
     *              s(k), ..., s(p) are not negligible (qr step).
     * kase = 4: if e(p - 1) is negligible (convergence). */

    for (k = p - 2; k >= -1; k--) {
      if (k == -1) {
        break;
      }
      if (fabsf(e[k]) <= eps * (fabsf(s[k]) + fabsf(s[k + 1]))) {
        e[k] = 0.0f;
        break;
      }
    }
    if (k == p - 2) {
      kase = 4;
    }
    else {
      int ks;
      for (ks = p - 1; ks >= k; ks--) {
        float t;
        if (ks == k) {
          break;
        }
        t = (ks != p ? fabsf(e[ks]) : 0.f) + (ks != k + 1 ? fabsf(e[ks - 1]) : 0.0f);
        if (fabsf(s[ks]) <= eps * t) {
          s[ks] = 0.0f;
          break;
        }
      }
      if (ks == k) {
        kase = 3;
      }
      else if (ks == p - 1) {
        kase = 1;
      }
      else {
        kase = 2;
        k = ks;
      }
    }
    k++;

    /* Perform the task indicated by kase. */

    switch (kase) {

        /* Deflate negligible s(p). */

      case 1: {
        float f = e[p - 2];
        e[p - 2] = 0.0f;
        for (j = p - 2; j >= k; j--) {
          float t = hypotf(s[j], f);
          float invt = 1.0f / t;
          float cs = s[j] * invt;
          float sn = f * invt;
          s[j] = t;
          if (j != k) {
            f = -sn * e[j - 1];
            e[j - 1] = cs * e[j - 1];
          }

          for (i = 0; i < n; i++) {
            t = cs * V[i][j] + sn * V[i][p - 1];
            V[i][p - 1] = -sn * V[i][j] + cs * V[i][p - 1];
            V[i][j] = t;
          }
        }
        break;
      }

        /* Split at negligible s(k). */

      case 2: {
        float f = e[k - 1];
        e[k - 1] = 0.0f;
        for (j = k; j < p; j++) {
          float t = hypotf(s[j], f);
          float invt = 1.0f / t;
          float cs = s[j] * invt;
          float sn = f * invt;
          s[j] = t;
          f = -sn * e[j];
          e[j] = cs * e[j];

          for (i = 0; i < m; i++) {
            t = cs * U[i][j] + sn * U[i][k - 1];
            U[i][k - 1] = -sn * U[i][j] + cs * U[i][k - 1];
            U[i][j] = t;
          }
        }
        break;
      }

        /* Perform one qr step. */

      case 3: {

        /* Calculate the shift. */

        float scale = max_ff(
            max_ff(max_ff(max_ff(fabsf(s[p - 1]), fabsf(s[p - 2])), fabsf(e[p - 2])), fabsf(s[k])),
            fabsf(e[k]));
        float invscale = 1.0f / scale;
        float sp = s[p - 1] * invscale;
        float spm1 = s[p - 2] * invscale;
        float epm1 = e[p - 2] * invscale;
        float sk = s[k] * invscale;
        float ek = e[k] * invscale;
        float b = ((spm1 + sp) * (spm1 - sp) + epm1 * epm1) * 0.5f;
        float c = (sp * epm1) * (sp * epm1);
        float shift = 0.0f;
        float f, g;
        if ((b != 0.0f) || (c != 0.0f)) {
          shift = sqrtf(b * b + c);
          if (b < 0.0f) {
            shift = -shift;
          }
          shift = c / (b + shift);
        }
        f = (sk + sp) * (sk - sp) + shift;
        g = sk * ek;

        /* Chase zeros. */

        for (j = k; j < p - 1; j++) {
          float t = hypotf(f, g);
          /* division by zero checks added to avoid NaN (brecht) */
          float cs = (t == 0.0f) ? 0.0f : f / t;
          float sn = (t == 0.0f) ? 0.0f : g / t;
          if (j != k) {
            e[j - 1] = t;
          }
          f = cs * s[j] + sn * e[j];
          e[j] = cs * e[j] - sn * s[j];
          g = sn * s[j + 1];
          s[j + 1] = cs * s[j + 1];

          for (i = 0; i < n; i++) {
            t = cs * V[i][j] + sn * V[i][j + 1];
            V[i][j + 1] = -sn * V[i][j] + cs * V[i][j + 1];
            V[i][j] = t;
          }

          t = hypotf(f, g);
          /* division by zero checks added to avoid NaN (brecht) */
          cs = (t == 0.0f) ? 0.0f : f / t;
          sn = (t == 0.0f) ? 0.0f : g / t;
          s[j] = t;
          f = cs * e[j] + sn * s[j + 1];
          s[j + 1] = -sn * e[j] + cs * s[j + 1];
          g = sn * e[j + 1];
          e[j + 1] = cs * e[j + 1];
          if (j < m - 1) {
            for (i = 0; i < m; i++) {
              t = cs * U[i][j] + sn * U[i][j + 1];
              U[i][j + 1] = -sn * U[i][j] + cs * U[i][j + 1];
              U[i][j] = t;
            }
          }
        }
        e[p - 2] = f;
        iter = iter + 1;
        break;
      }
        /* Convergence. */

      case 4: {

        /* Make the singular values positive. */

        if (s[k] <= 0.0f) {
          s[k] = (s[k] < 0.0f ? -s[k] : 0.0f);

          for (i = 0; i <= pp; i++) {
            V[i][k] = -V[i][k];
          }
        }

        /* Order the singular values. */

        while (k < pp) {
          float t;
          if (s[k] >= s[k + 1]) {
            break;
          }
          t = s[k];
          s[k] = s[k + 1];
          s[k + 1] = t;
          if (k < n - 1) {
            for (i = 0; i < n; i++) {
              t = V[i][k + 1];
              V[i][k + 1] = V[i][k];
              V[i][k] = t;
            }
          }
          if (k < m - 1) {
            for (i = 0; i < m; i++) {
              t = U[i][k + 1];
              U[i][k + 1] = U[i][k];
              U[i][k] = t;
            }
          }
          k++;
        }
        iter = 0;
        p--;
        break;
      }
    }
  }
}

void pseudoinverse_m4_m4(float Ainv[4][4], const float A_[4][4], float epsilon)
{
  /* compute Moore-Penrose pseudo inverse of matrix, singular values
   * below epsilon are ignored for stability (truncated SVD) */
  float A[4][4], V[4][4], W[4], Wm[4][4], U[4][4];
  int i;

  transpose_m4_m4(A, A_);
  svd_m4(V, W, U, A);
  transpose_m4(U);
  transpose_m4(V);

  zero_m4(Wm);
  for (i = 0; i < 4; i++) {
    Wm[i][i] = (W[i] < epsilon) ? 0.0f : 1.0f / W[i];
  }

  transpose_m4(V);

  mul_m4_series(Ainv, U, Wm, V);
}

void pseudoinverse_m3_m3(float Ainv[3][3], const float A[3][3], float epsilon)
{
  /* try regular inverse when possible, otherwise fall back to slow svd */
  if (!invert_m3_m3(Ainv, A)) {
    float tmp[4][4], tmpinv[4][4];

    copy_m4_m3(tmp, A);
    pseudoinverse_m4_m4(tmpinv, tmp, epsilon);
    copy_m3_m4(Ainv, tmpinv);
  }
}

bool has_zero_axis_m4(const float matrix[4][4])
{
  return len_squared_v3(matrix[0]) < FLT_EPSILON || len_squared_v3(matrix[1]) < FLT_EPSILON ||
         len_squared_v3(matrix[2]) < FLT_EPSILON;
}

void invert_m4_m4_safe(float Ainv[4][4], const float A[4][4])
{
  if (!invert_m4_m4(Ainv, A)) {
    float Atemp[4][4];

    copy_m4_m4(Atemp, A);

    /* Matrix is degenerate (e.g. 0 scale on some axis), ideally we should
     * never be in this situation, but try to invert it anyway with tweak.
     */
    Atemp[0][0] += 1e-8f;
    Atemp[1][1] += 1e-8f;
    Atemp[2][2] += 1e-8f;

    if (!invert_m4_m4(Ainv, Atemp)) {
      unit_m4(Ainv);
    }
  }
}

/* -------------------------------------------------------------------- */
/** \name Invert (Safe Orthographic)
 *
 * Invert the matrix, filling in zeroed axes using the valid ones where possible.
 *
 * Unlike #invert_m4_m4_safe set degenerate axis unit length instead of adding a small value,
 * which has the results in:
 *
 * - Scaling by a large value on the resulting matrix.
 * - Changing axis which aren't degenerate.
 *
 * \note We could support passing in a length value if there is a good use-case
 * where we want to specify the length of the degenerate axes.
 * \{ */

/**
 * Return true if invert should be attempted again.
 *
 * \note Takes an array of points to be usable from 3x3 and 4x4 matrices.
 */
static bool invert_m3_m3_safe_ortho_prepare(float *mat[3])
{
  enum { X = 1 << 0, Y = 1 << 1, Z = 1 << 2 };
  int flag = 0;
  for (int i = 0; i < 3; i++) {
    flag |= (len_squared_v3(mat[i]) == 0.0f) ? (1 << i) : 0;
  }

  /* Either all or none are zero, either way we can't properly resolve this
   * since we need to fill invalid axes from valid ones. */
  if (ELEM(flag, 0, X | Y | Z)) {
    return false;
  }

  switch (flag) {
    case X | Y: {
      ortho_v3_v3(mat[1], mat[2]);
      ATTR_FALLTHROUGH;
    }
    case X: {
      cross_v3_v3v3(mat[0], mat[1], mat[2]);
      break;
    }

    case Y | Z: {
      ortho_v3_v3(mat[2], mat[0]);
      ATTR_FALLTHROUGH;
    }
    case Y: {
      cross_v3_v3v3(mat[1], mat[0], mat[2]);
      break;
    }

    case Z | X: {
      ortho_v3_v3(mat[0], mat[1]);
      ATTR_FALLTHROUGH;
    }
    case Z: {
      cross_v3_v3v3(mat[2], mat[0], mat[1]);
      break;
    }
    default: {
      BLI_assert(0); /* Unreachable! */
    }
  }

  for (int i = 0; i < 3; i++) {
    if (flag & (1 << i)) {
      if (UNLIKELY(normalize_v3(mat[i]) == 0.0f)) {
        mat[i][i] = 1.0f;
      }
    }
  }

  return true;
}

/**
 * A safe version of invert that uses valid axes, calculating the zero'd axis
 * based on the non-zero ones.
 *
 * This works well for transformation matrices, when a single axis is zerod.
 */
void invert_m4_m4_safe_ortho(float Ainv[4][4], const float A[4][4])
{
  if (UNLIKELY(!invert_m4_m4(Ainv, A))) {
    float Atemp[4][4];
    copy_m4_m4(Atemp, A);
    if (UNLIKELY(!(invert_m3_m3_safe_ortho_prepare((float *[3]){UNPACK3(Atemp)}) &&
                   invert_m4_m4(Ainv, Atemp)))) {
      unit_m4(Ainv);
    }
  }
}

void invert_m3_m3_safe_ortho(float Ainv[3][3], const float A[3][3])
{
  if (UNLIKELY(!invert_m3_m3(Ainv, A))) {
    float Atemp[3][3];
    copy_m3_m3(Atemp, A);
    if (UNLIKELY(!(invert_m3_m3_safe_ortho_prepare((float *[3]){UNPACK3(Atemp)}) &&
                   invert_m3_m3(Ainv, Atemp)))) {
      unit_m3(Ainv);
    }
  }
}

/** \} */

/**
 * #SpaceTransform struct encapsulates all needed data to convert between two coordinate spaces
 * (where conversion can be represented by a matrix multiplication).
 *
 * A SpaceTransform is initialized using:
 * - #BLI_SPACE_TRANSFORM_SETUP(&data,  ob1, ob2)
 *
 * After that the following calls can be used:
 * - Converts a coordinate in ob1 space to the corresponding ob2 space:
 *   #BLI_space_transform_apply(&data, co);
 * - Converts a coordinate in ob2 space to the corresponding ob1 space:
 *   #BLI_space_transform_invert(&data, co);
 *
 * Same concept as #BLI_space_transform_apply and #BLI_space_transform_invert,
 * but no is normalized after conversion (and not translated at all!):
 * - #BLI_space_transform_apply_normal(&data, no);
 * - #BLI_space_transform_invert_normal(&data, no);
 */

/**
 * Global-invariant transform.
 *
 * This defines a matrix transforming a point in local space to a point in target space
 * such that its global coordinates remain unchanged.
 *
 * In other words, if we have a global point P with local coordinates (x, y, z)
 * and global coordinates (X, Y, Z),
 * this defines a transform matrix TM such that (x', y', z') = TM * (x, y, z)
 * where (x', y', z') are the coordinates of P' in target space
 * such that it keeps (X, Y, Z) coordinates in global space.
 */
void BLI_space_transform_from_matrices(SpaceTransform *data,
                                       const float local[4][4],
                                       const float target[4][4])
{
  float itarget[4][4];
  invert_m4_m4(itarget, target);
  mul_m4_m4m4(data->local2target, itarget, local);
  invert_m4_m4(data->target2local, data->local2target);
}

/**
 * Local-invariant transform.
 *
 * This defines a matrix transforming a point in global space
 * such that its local coordinates (from local space to target space) remain unchanged.
 *
 * In other words, if we have a local point p with local coordinates (x, y, z)
 * and global coordinates (X, Y, Z),
 * this defines a transform matrix TM such that (X', Y', Z') = TM * (X, Y, Z)
 * where (X', Y', Z') are the coordinates of p' in global space
 * such that it keeps (x, y, z) coordinates in target space.
 */
void BLI_space_transform_global_from_matrices(SpaceTransform *data,
                                              const float local[4][4],
                                              const float target[4][4])
{
  float ilocal[4][4];
  invert_m4_m4(ilocal, local);
  mul_m4_m4m4(data->local2target, target, ilocal);
  invert_m4_m4(data->target2local, data->local2target);
}

void BLI_space_transform_apply(const SpaceTransform *data, float co[3])
{
  mul_v3_m4v3(co, ((SpaceTransform *)data)->local2target, co);
}

void BLI_space_transform_invert(const SpaceTransform *data, float co[3])
{
  mul_v3_m4v3(co, ((SpaceTransform *)data)->target2local, co);
}

void BLI_space_transform_apply_normal(const SpaceTransform *data, float no[3])
{
  mul_mat3_m4_v3(((SpaceTransform *)data)->local2target, no);
  normalize_v3(no);
}

void BLI_space_transform_invert_normal(const SpaceTransform *data, float no[3])
{
  mul_mat3_m4_v3(((SpaceTransform *)data)->target2local, no);
  normalize_v3(no);
}