Welcome to mirror list, hosted at ThFree Co, Russian Federation.

math_solvers.c « intern « blenlib « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: b5650410a7023c8f3a637d4f027177d11d1d8fa0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
/* SPDX-License-Identifier: GPL-2.0-or-later
 * Copyright 2015 Blender Foundation. All rights reserved. */

/** \file
 * \ingroup bli
 */

#include "MEM_guardedalloc.h"

#include "BLI_math.h"
#include "BLI_utildefines.h"

#include "BLI_strict_flags.h"

#include "eigen_capi.h"

/********************************** Eigen Solvers *********************************/

bool BLI_eigen_solve_selfadjoint_m3(const float m3[3][3],
                                    float r_eigen_values[3],
                                    float r_eigen_vectors[3][3])
{
#ifndef NDEBUG
  /* We must assert given matrix is self-adjoint (i.e. symmetric) */
  if ((m3[0][1] != m3[1][0]) || (m3[0][2] != m3[2][0]) || (m3[1][2] != m3[2][1])) {
    BLI_assert(0);
  }
#endif

  return EIG_self_adjoint_eigen_solve(
      3, (const float *)m3, r_eigen_values, (float *)r_eigen_vectors);
}

void BLI_svd_m3(const float m3[3][3], float r_U[3][3], float r_S[3], float r_V[3][3])
{
  EIG_svd_square_matrix(3, (const float *)m3, (float *)r_U, (float *)r_S, (float *)r_V);
}

/***************************** Simple Solvers ************************************/

bool BLI_tridiagonal_solve(
    const float *a, const float *b, const float *c, const float *d, float *r_x, const int count)
{
  if (count < 1) {
    return false;
  }

  size_t bytes = sizeof(double) * (unsigned)count;
  double *c1 = (double *)MEM_mallocN(bytes * 2, "tridiagonal_c1d1");
  double *d1 = c1 + count;

  if (!c1) {
    return false;
  }

  int i;
  double c_prev, d_prev, x_prev;

  /* forward pass */

  c1[0] = c_prev = ((double)c[0]) / b[0];
  d1[0] = d_prev = ((double)d[0]) / b[0];

  for (i = 1; i < count; i++) {
    double denum = b[i] - a[i] * c_prev;

    c1[i] = c_prev = c[i] / denum;
    d1[i] = d_prev = (d[i] - a[i] * d_prev) / denum;
  }

  /* back pass */

  x_prev = d_prev;
  r_x[--i] = ((float)x_prev);

  while (--i >= 0) {
    x_prev = d1[i] - c1[i] * x_prev;
    r_x[i] = ((float)x_prev);
  }

  MEM_freeN(c1);

  return isfinite(x_prev);
}

bool BLI_tridiagonal_solve_cyclic(
    const float *a, const float *b, const float *c, const float *d, float *r_x, const int count)
{
  if (count < 1) {
    return false;
  }

  /* Degenerate case not handled correctly by the generic formula. */
  if (count == 1) {
    r_x[0] = d[0] / (a[0] + b[0] + c[0]);

    return isfinite(r_x[0]);
  }

  /* Degenerate case that works but can be simplified. */
  if (count == 2) {
    const float a2[2] = {0, a[1] + c[1]};
    const float c2[2] = {a[0] + c[0], 0};

    return BLI_tridiagonal_solve(a2, b, c2, d, r_x, count);
  }

  /* If not really cyclic, fall back to the simple solver. */
  float a0 = a[0], cN = c[count - 1];

  if (a0 == 0.0f && cN == 0.0f) {
    return BLI_tridiagonal_solve(a, b, c, d, r_x, count);
  }

  size_t bytes = sizeof(float) * (unsigned)count;
  float *tmp = (float *)MEM_mallocN(bytes * 2, "tridiagonal_ex");
  float *b2 = tmp + count;

  if (!tmp) {
    return false;
  }

  /* Prepare the non-cyclic system; relies on tridiagonal_solve ignoring values. */
  memcpy(b2, b, bytes);
  b2[0] -= a0;
  b2[count - 1] -= cN;

  memset(tmp, 0, bytes);
  tmp[0] = a0;
  tmp[count - 1] = cN;

  /* solve for partial solution and adjustment vector */
  bool success = BLI_tridiagonal_solve(a, b2, c, tmp, tmp, count) &&
                 BLI_tridiagonal_solve(a, b2, c, d, r_x, count);

  /* apply adjustment */
  if (success) {
    float coeff = (r_x[0] + r_x[count - 1]) / (1.0f + tmp[0] + tmp[count - 1]);

    for (int i = 0; i < count; i++) {
      r_x[i] -= coeff * tmp[i];
    }
  }

  MEM_freeN(tmp);

  return success;
}

bool BLI_newton3d_solve(Newton3D_DeltaFunc func_delta,
                        Newton3D_JacobianFunc func_jacobian,
                        Newton3D_CorrectionFunc func_correction,
                        void *userdata,
                        float epsilon,
                        int max_iterations,
                        bool trace,
                        const float x_init[3],
                        float result[3])
{
  float fdelta[3], fdeltav, next_fdeltav;
  float jacobian[3][3], step[3], x[3], x_next[3];

  epsilon *= epsilon;

  copy_v3_v3(x, x_init);

  func_delta(userdata, x, fdelta);
  fdeltav = len_squared_v3(fdelta);

  if (trace) {
    printf("START (%g, %g, %g) %g %g\n", x[0], x[1], x[2], fdeltav, epsilon);
  }

  for (int i = 0; i == 0 || (i < max_iterations && fdeltav > epsilon); i++) {
    /* Newton's method step. */
    func_jacobian(userdata, x, jacobian);

    if (!invert_m3(jacobian)) {
      return false;
    }

    mul_v3_m3v3(step, jacobian, fdelta);
    sub_v3_v3v3(x_next, x, step);

    /* Custom out-of-bounds value correction. */
    if (func_correction) {
      if (trace) {
        printf("%3d * (%g, %g, %g)\n", i, x_next[0], x_next[1], x_next[2]);
      }

      if (!func_correction(userdata, x, step, x_next)) {
        return false;
      }
    }

    func_delta(userdata, x_next, fdelta);
    next_fdeltav = len_squared_v3(fdelta);

    if (trace) {
      printf("%3d ? (%g, %g, %g) %g\n", i, x_next[0], x_next[1], x_next[2], next_fdeltav);
    }

    /* Line search correction. */
    while (next_fdeltav > fdeltav && next_fdeltav > epsilon) {
      float g0 = sqrtf(fdeltav), g1 = sqrtf(next_fdeltav);
      float g01 = -g0 / len_v3(step);
      float det = 2.0f * (g1 - g0 - g01);
      float l = (det == 0.0f) ? 0.1f : -g01 / det;
      CLAMP_MIN(l, 0.1f);

      mul_v3_fl(step, l);
      sub_v3_v3v3(x_next, x, step);

      func_delta(userdata, x_next, fdelta);
      next_fdeltav = len_squared_v3(fdelta);

      if (trace) {
        printf("%3d . (%g, %g, %g) %g\n", i, x_next[0], x_next[1], x_next[2], next_fdeltav);
      }
    }

    copy_v3_v3(x, x_next);
    fdeltav = next_fdeltav;
  }

  bool success = (fdeltav <= epsilon);

  if (trace) {
    printf("%s  (%g, %g, %g) %g\n", success ? "OK  " : "FAIL", x[0], x[1], x[2], fdeltav);
  }

  copy_v3_v3(result, x);
  return success;
}