Welcome to mirror list, hosted at ThFree Co, Russian Federation.

math_solvers.c « intern « blenlib « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 5a300e556a30f0bb7779bb73c3c71a88bb43d074 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
/*
 * ***** BEGIN GPL LICENSE BLOCK *****
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 *
 * The Original Code is Copyright (C) 2015 by Blender Foundation.
 * All rights reserved.
 *
 * The Original Code is: all of this file.
 *
 * ***** END GPL LICENSE BLOCK *****
 * */

/** \file blender/blenlib/intern/math_solvers.c
 *  \ingroup bli
 */

#include "MEM_guardedalloc.h"

#include "BLI_math.h"
#include "BLI_utildefines.h"

#include "BLI_strict_flags.h"

#include "eigen_capi.h"

/********************************** Eigen Solvers *********************************/

/**
 * \brief Compute the eigen values and/or vectors of given 3D symmetric (aka adjoint) matrix.
 *
 * \param m3 the 3D symmetric matrix.
 * \return r_eigen_values the computed eigen values (NULL if not needed).
 * \return r_eigen_vectors the computed eigen vectors (NULL if not needed).
 */
bool BLI_eigen_solve_selfadjoint_m3(const float m3[3][3], float r_eigen_values[3], float r_eigen_vectors[3][3])
{
#ifndef NDEBUG
	/* We must assert given matrix is self-adjoint (i.e. symmetric) */
	if ((m3[0][1] != m3[1][0]) ||
	    (m3[0][2] != m3[2][0]) ||
	    (m3[1][2] != m3[2][1]))
	{
		BLI_assert(0);
	}
#endif

	return EIG_self_adjoint_eigen_solve(3, (const float *)m3, r_eigen_values, (float *)r_eigen_vectors);
}

/**
 * \brief Compute the SVD (Singular Values Decomposition) of given 3D  matrix (m3 = USV*).
 *
 * \param m3 the matrix to decompose.
 * \return r_U the computed left singular vector of \a m3 (NULL if not needed).
 * \return r_S the computed singular values of \a m3 (NULL if not needed).
 * \return r_V the computed right singular vector of \a m3 (NULL if not needed).
 */
void BLI_svd_m3(const float m3[3][3], float r_U[3][3], float r_S[3], float r_V[3][3])
{
	EIG_svd_square_matrix(3, (const float *)m3, (float *)r_U, (float *)r_S, (float *)r_V);
}

/***************************** Simple Solvers ************************************/

/**
 * \brief Solve a tridiagonal system of equations:
 *
 * a[i] * x[i-1] + b[i] * x[i] + c[i] * x[i+1] = d[i]
 *
 * Ignores a[0] and c[count-1]. Uses Thomas algorithm, e.g. see wiki.
 *
 * \param x output vector, may be shared with any of the input ones
 * \return true if success
 */
bool BLI_tridiagonal_solve(const float *a, const float *b, const float *c, const float *d, float *x, const int count)
{
	if (count < 0)
		return false;

	size_t bytes = sizeof(float)*(unsigned)count;
	float *c1 = (float *)MEM_mallocN(bytes*2, "tridiagonal_c1d1");
	float *d1 = c1 + count;

	if (!c1)
		return false;

	int i;
	double c_prev, d_prev, x_prev;

	/* forward pass */

	c_prev = ((double)c[0]) / b[0];
	d_prev = ((double)d[0]) / b[0];

	c1[0] = ((float)c_prev);
	d1[0] = ((float)d_prev);

	for (i = 1; i < count; i++) {
		double denum = b[i] - a[i]*c_prev;

		c_prev = c[i] / denum;
		d_prev = (d[i] - a[i]*d_prev) / denum;

		c1[i] = ((float)c_prev);
		d1[i] = ((float)d_prev);
	}

	/* back pass */

	x_prev = d_prev;
	x[--i] = ((float)x_prev);

	while (--i >= 0) {
		x_prev = d1[i] - c1[i] * x_prev;
		x[i] = ((float)x_prev);
	}

	MEM_freeN(c1);

	return isfinite(x_prev);
}

/**
 * \brief Solve a possibly cyclic tridiagonal system using the Sherman-Morrison formula.
 *
 * \param x output vector, may be shared with any of the input ones
 * \return true if success
 */
bool BLI_tridiagonal_solve_cyclic(const float *a, const float *b, const float *c, const float *d, float *x, const int count)
{
	if (count < 1)
		return false;

	float a0 = a[0], cN = c[count-1];

	if (a0 == 0.0f && cN == 0.0f) {
		return BLI_tridiagonal_solve(a, b, c, d, x, count);
	}

	size_t bytes = sizeof(float)*(unsigned)count;
	float *tmp = (float*)MEM_mallocN(bytes*2, "tridiagonal_ex");
	float *b2 = tmp + count;

	if (!tmp)
		return false;

	/* prepare the noncyclic system; relies on tridiagonal_solve ignoring values */
	memcpy(b2, b, bytes);
	b2[0] -= a0;
	b2[count-1] -= cN;

	memset(tmp, 0, bytes);
	tmp[0] = a0;
	tmp[count-1] = cN;

	/* solve for partial solution and adjustment vector */
	bool success =
		BLI_tridiagonal_solve(a, b2, c, tmp, tmp, count) &&
		BLI_tridiagonal_solve(a, b2, c, d, x, count);

	/* apply adjustment */
	if (success) {
		float coeff = (x[0] + x[count-1]) / (1.0f + tmp[0] + tmp[count-1]);

		for (int i = 0; i < count; i++)
			x[i] -= coeff * tmp[i];
	}

	MEM_freeN(tmp);

	return success;
}