Welcome to mirror list, hosted at ThFree Co, Russian Federation.

math_vector.c « intern « blenlib « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 887ec7d4d2cb04513f9902dda83b96b67d70be17 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
/*
 * ***** BEGIN GPL LICENSE BLOCK *****
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 *
 * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
 * All rights reserved.
 *
 * The Original Code is: some of this file.
 *
 * ***** END GPL LICENSE BLOCK *****
 * */

/** \file blender/blenlib/intern/math_vector.c
 *  \ingroup bli
 */

#include "BLI_math.h"

#include "BLI_strict_flags.h"

//******************************* Interpolation *******************************/

void interp_v2_v2v2(float target[2], const float a[2], const float b[2], const float t)
{
	const float s = 1.0f - t;

	target[0] = s * a[0] + t * b[0];
	target[1] = s * a[1] + t * b[1];
}

/* weight 3 2D vectors,
 * 'w' must be unit length but is not a vector, just 3 weights */
void interp_v2_v2v2v2(float p[2], const float v1[2], const float v2[2], const float v3[2], const float w[3])
{
	p[0] = v1[0] * w[0] + v2[0] * w[1] + v3[0] * w[2];
	p[1] = v1[1] * w[0] + v2[1] * w[1] + v3[1] * w[2];
}

void interp_v3_v3v3(float target[3], const float a[3], const float b[3], const float t)
{
	const float s = 1.0f - t;

	target[0] = s * a[0] + t * b[0];
	target[1] = s * a[1] + t * b[1];
	target[2] = s * a[2] + t * b[2];
}

void interp_v4_v4v4(float target[4], const float a[4], const float b[4], const float t)
{
	const float s = 1.0f - t;

	target[0] = s * a[0] + t * b[0];
	target[1] = s * a[1] + t * b[1];
	target[2] = s * a[2] + t * b[2];
	target[3] = s * a[3] + t * b[3];
}

/**
 * slerp, treat vectors as spherical coordinates
 * \see #interp_qt_qtqt
 *
 * \return success
 */
bool interp_v3_v3v3_slerp(float target[3], const float a[3], const float b[3], const float t)
{
	float cosom, w[2];

	BLI_ASSERT_UNIT_V3(a);
	BLI_ASSERT_UNIT_V3(b);

	cosom = dot_v3v3(a, b);

	/* direct opposites */
	if (UNLIKELY(cosom < (-1.0f + FLT_EPSILON))) {
		return false;
	}

	interp_dot_slerp(t, cosom, w);

	target[0] = w[0] * a[0] + w[1] * b[0];
	target[1] = w[0] * a[1] + w[1] * b[1];
	target[2] = w[0] * a[2] + w[1] * b[2];

	return true;
}
bool interp_v2_v2v2_slerp(float target[2], const float a[2], const float b[2], const float t)
{
	float cosom, w[2];

	BLI_ASSERT_UNIT_V2(a);
	BLI_ASSERT_UNIT_V2(b);

	cosom = dot_v2v2(a, b);

	/* direct opposites */
	if (UNLIKELY(cosom < (1.0f + FLT_EPSILON))) {
		return false;
	}

	interp_dot_slerp(t, cosom, w);

	target[0] = w[0] * a[0] + w[1] * b[0];
	target[1] = w[0] * a[1] + w[1] * b[1];

	return true;
}

/**
 * Same as #interp_v3_v3v3_slerp but uses fallback values for opposite vectors.
 */
void interp_v3_v3v3_slerp_safe(float target[3], const float a[3], const float b[3], const float t)
{
	if (UNLIKELY(!interp_v3_v3v3_slerp(target, a, b, t))) {
		/* axis are aligned so any otho vector is acceptable */
		float ab_ortho[3];
		ortho_v3_v3(ab_ortho, a);
		normalize_v3(ab_ortho);
		if (t < 0.5f) {
			if (UNLIKELY(!interp_v3_v3v3_slerp(target, a, ab_ortho, t * 2.0f))) {
				BLI_assert(0);
				copy_v3_v3(target, a);
			}
		}
		else {
			if (UNLIKELY(!interp_v3_v3v3_slerp(target, ab_ortho, b, (t - 0.5f) * 2.0f))) {
				BLI_assert(0);
				copy_v3_v3(target, b);
			}
		}
	}
}
void interp_v2_v2v2_slerp_safe(float target[2], const float a[2], const float b[2], const float t)
{
	if (UNLIKELY(!interp_v2_v2v2_slerp(target, a, b, t))) {
		/* axis are aligned so any otho vector is acceptable */
		float ab_ortho[2];
		ortho_v2_v2(ab_ortho, a);
		// normalize_v2(ab_ortho);
		if (t < 0.5f) {
			if (UNLIKELY(!interp_v2_v2v2_slerp(target, a, ab_ortho, t * 2.0f))) {
				BLI_assert(0);
				copy_v2_v2(target, a);
			}
		}
		else {
			if (UNLIKELY(!interp_v2_v2v2_slerp(target, ab_ortho, b, (t - 0.5f) * 2.0f))) {
				BLI_assert(0);
				copy_v2_v2(target, b);
			}
		}
	}
}

/* weight 3 vectors,
 * 'w' must be unit length but is not a vector, just 3 weights */
void interp_v3_v3v3v3(float p[3], const float v1[3], const float v2[3], const float v3[3], const float w[3])
{
	p[0] = v1[0] * w[0] + v2[0] * w[1] + v3[0] * w[2];
	p[1] = v1[1] * w[0] + v2[1] * w[1] + v3[1] * w[2];
	p[2] = v1[2] * w[0] + v2[2] * w[1] + v3[2] * w[2];
}

/* weight 3 vectors,
 * 'w' must be unit length but is not a vector, just 4 weights */
void interp_v3_v3v3v3v3(float p[3], const float v1[3], const float v2[3], const float v3[3], const float v4[3], const float w[4])
{
	p[0] = v1[0] * w[0] + v2[0] * w[1] + v3[0] * w[2] + v4[0] * w[3];
	p[1] = v1[1] * w[0] + v2[1] * w[1] + v3[1] * w[2] + v4[1] * w[3];
	p[2] = v1[2] * w[0] + v2[2] * w[1] + v3[2] * w[2] + v4[2] * w[3];
}

void interp_v4_v4v4v4(float p[4], const float v1[4], const float v2[4], const float v3[4], const float w[3])
{
	p[0] = v1[0] * w[0] + v2[0] * w[1] + v3[0] * w[2];
	p[1] = v1[1] * w[0] + v2[1] * w[1] + v3[1] * w[2];
	p[2] = v1[2] * w[0] + v2[2] * w[1] + v3[2] * w[2];
	p[3] = v1[3] * w[0] + v2[3] * w[1] + v3[3] * w[2];
}

void interp_v4_v4v4v4v4(float p[4], const float v1[4], const float v2[4], const float v3[4], const float v4[4], const float w[4])
{
	p[0] = v1[0] * w[0] + v2[0] * w[1] + v3[0] * w[2] + v4[0] * w[3];
	p[1] = v1[1] * w[0] + v2[1] * w[1] + v3[1] * w[2] + v4[1] * w[3];
	p[2] = v1[2] * w[0] + v2[2] * w[1] + v3[2] * w[2] + v4[2] * w[3];
	p[3] = v1[3] * w[0] + v2[3] * w[1] + v3[3] * w[2] + v4[3] * w[3];
}

void interp_v3_v3v3v3_uv(float p[3], const float v1[3], const float v2[3], const float v3[3], const float uv[2])
{
	p[0] = v1[0] + ((v2[0] - v1[0]) * uv[0]) + ((v3[0] - v1[0]) * uv[1]);
	p[1] = v1[1] + ((v2[1] - v1[1]) * uv[0]) + ((v3[1] - v1[1]) * uv[1]);
	p[2] = v1[2] + ((v2[2] - v1[2]) * uv[0]) + ((v3[2] - v1[2]) * uv[1]);
}

void interp_v3_v3v3_uchar(char unsigned target[3], const unsigned char a[3], const unsigned char b[3], const float t)
{
	const float s = 1.0f - t;

	target[0] = (char)floorf(s * a[0] + t * b[0]);
	target[1] = (char)floorf(s * a[1] + t * b[1]);
	target[2] = (char)floorf(s * a[2] + t * b[2]);
}
void interp_v3_v3v3_char(char target[3], const char a[3], const char b[3], const float t)
{
	interp_v3_v3v3_uchar((unsigned char *)target, (const unsigned char *)a, (const unsigned char *)b, t);
}

void interp_v4_v4v4_uchar(char unsigned target[4], const unsigned char a[4], const unsigned char b[4], const float t)
{
	const float s = 1.0f - t;

	target[0] = (char)floorf(s * a[0] + t * b[0]);
	target[1] = (char)floorf(s * a[1] + t * b[1]);
	target[2] = (char)floorf(s * a[2] + t * b[2]);
	target[3] = (char)floorf(s * a[3] + t * b[3]);
}
void interp_v4_v4v4_char(char target[4], const char a[4], const char b[4], const float t)
{
	interp_v4_v4v4_uchar((unsigned char *)target, (const unsigned char *)a, (const unsigned char *)b, t);
}

void mid_v3_v3v3(float v[3], const float v1[3], const float v2[3])
{
	v[0] = 0.5f * (v1[0] + v2[0]);
	v[1] = 0.5f * (v1[1] + v2[1]);
	v[2] = 0.5f * (v1[2] + v2[2]);
}

void mid_v2_v2v2(float v[2], const float v1[2], const float v2[2])
{
	v[0] = 0.5f * (v1[0] + v2[0]);
	v[1] = 0.5f * (v1[1] + v2[1]);
}

void mid_v3_v3v3v3(float v[3], const float v1[3], const float v2[3], const float v3[3])
{
	v[0] = (v1[0] + v2[0] + v3[0]) / 3.0f;
	v[1] = (v1[1] + v2[1] + v3[1]) / 3.0f;
	v[2] = (v1[2] + v2[2] + v3[2]) / 3.0f;
}

/**
 * Specialized function for calculating normals.
 * fastpath for:
 *
 * \code{.c}
 * add_v3_v3v3(r, a, b);
 * normalize_v3(r)
 * mul_v3_fl(r, angle_normalized_v3v3(a, b) / M_PI_2);
 * \endcode
 *
 * We can use the length of (a + b) to calculate the angle.
 */
void mid_v3_v3v3_angle_weighted(float r[3], const float a[3], const float b[3])
{
	/* trick, we want the middle of 2 normals as well as the angle between them
	 * avoid multiple calculations by */
	float angle;

	/* double check they are normalized */
	BLI_ASSERT_UNIT_V3(a);
	BLI_ASSERT_UNIT_V3(b);

	add_v3_v3v3(r, a, b);
	angle = ((float)(1.0 / (M_PI / 2.0)) *
	         /* normally we would only multiply by 2,
	          * but instead of an angle make this 0-1 factor */
	         2.0f) *
	        acosf(normalize_v3(r) / 2.0f);
	mul_v3_fl(r, angle);
}
/**
 * Same as mid_v3_v3v3_angle_weighted
 * but \a r is assumed to be accumulated normals, divided by their total.
 */
void mid_v3_angle_weighted(float r[3])
{
	/* trick, we want the middle of 2 normals as well as the angle between them
	 * avoid multiple calculations by */
	float angle;

	/* double check they are normalized */
	BLI_assert(len_squared_v3(r) <= 1.0f + FLT_EPSILON);

	angle = ((float)(1.0 / (M_PI / 2.0)) *
	         /* normally we would only multiply by 2,
	          * but instead of an angle make this 0-1 factor */
	         2.0f) *
	        acosf(normalize_v3(r));
	mul_v3_fl(r, angle);
}

/**
 * Equivalent to:
 * interp_v3_v3v3(v, v1, v2, -1.0f);
 */

void flip_v4_v4v4(float v[4], const float v1[4], const float v2[4])
{
	v[0] = v1[0] + (v1[0] - v2[0]);
	v[1] = v1[1] + (v1[1] - v2[1]);
	v[2] = v1[2] + (v1[2] - v2[2]);
	v[3] = v1[3] + (v1[3] - v2[3]);
}

void flip_v3_v3v3(float v[3], const float v1[3], const float v2[3])
{
	v[0] = v1[0] + (v1[0] - v2[0]);
	v[1] = v1[1] + (v1[1] - v2[1]);
	v[2] = v1[2] + (v1[2] - v2[2]);
}

void flip_v2_v2v2(float v[2], const float v1[2], const float v2[2])
{
	v[0] = v1[0] + (v1[0] - v2[0]);
	v[1] = v1[1] + (v1[1] - v2[1]);
}

/********************************** Angles ***********************************/

/* Return the angle in radians between vecs 1-2 and 2-3 in radians
 * If v1 is a shoulder, v2 is the elbow and v3 is the hand,
 * this would return the angle at the elbow.
 *
 * note that when v1/v2/v3 represent 3 points along a straight line
 * that the angle returned will be pi (180deg), rather then 0.0
 */
float angle_v3v3v3(const float v1[3], const float v2[3], const float v3[3])
{
	float vec1[3], vec2[3];

	sub_v3_v3v3(vec1, v2, v1);
	sub_v3_v3v3(vec2, v2, v3);
	normalize_v3(vec1);
	normalize_v3(vec2);

	return angle_normalized_v3v3(vec1, vec2);
}

/* Quicker than full angle computation */
float cos_v3v3v3(const float p1[3], const float p2[3], const float p3[3])
{
	float vec1[3], vec2[3];

	sub_v3_v3v3(vec1, p2, p1);
	sub_v3_v3v3(vec2, p2, p3);
	normalize_v3(vec1);
	normalize_v3(vec2);

	return dot_v3v3(vec1, vec2);
}

/* Return the shortest angle in radians between the 2 vectors */
float angle_v3v3(const float v1[3], const float v2[3])
{
	float vec1[3], vec2[3];

	normalize_v3_v3(vec1, v1);
	normalize_v3_v3(vec2, v2);

	return angle_normalized_v3v3(vec1, vec2);
}

float angle_v2v2v2(const float v1[2], const float v2[2], const float v3[2])
{
	float vec1[2], vec2[2];

	vec1[0] = v2[0] - v1[0];
	vec1[1] = v2[1] - v1[1];

	vec2[0] = v2[0] - v3[0];
	vec2[1] = v2[1] - v3[1];

	normalize_v2(vec1);
	normalize_v2(vec2);

	return angle_normalized_v2v2(vec1, vec2);
}

/* Return the shortest angle in radians between the 2 vectors */
float angle_v2v2(const float v1[2], const float v2[2])
{
	float vec1[2], vec2[2];

	vec1[0] = v1[0];
	vec1[1] = v1[1];

	vec2[0] = v2[0];
	vec2[1] = v2[1];

	normalize_v2(vec1);
	normalize_v2(vec2);

	return angle_normalized_v2v2(vec1, vec2);
}

float angle_signed_v2v2(const float v1[2], const float v2[2])
{
	const float perp_dot = (v1[1] * v2[0]) - (v1[0] * v2[1]);
	return atan2f(perp_dot, dot_v2v2(v1, v2));
}

float angle_normalized_v3v3(const float v1[3], const float v2[3])
{
	/* double check they are normalized */
	BLI_ASSERT_UNIT_V3(v1);
	BLI_ASSERT_UNIT_V3(v2);

	/* this is the same as acos(dot_v3v3(v1, v2)), but more accurate */
	if (dot_v3v3(v1, v2) >= 0.0f) {
		return 2.0f * saasin(len_v3v3(v1, v2) / 2.0f);
	}
	else {
		float v2_n[3];
		negate_v3_v3(v2_n, v2);
		return (float)M_PI - 2.0f * saasin(len_v3v3(v1, v2_n) / 2.0f);
	}
}

float angle_normalized_v2v2(const float v1[2], const float v2[2])
{
	/* double check they are normalized */
	BLI_ASSERT_UNIT_V2(v1);
	BLI_ASSERT_UNIT_V2(v2);

	/* this is the same as acos(dot_v3v3(v1, v2)), but more accurate */
	if (dot_v2v2(v1, v2) >= 0.0f) {
		return 2.0f * saasin(len_v2v2(v1, v2) / 2.0f);
	}
	else {
		float v2_n[2];
		negate_v2_v2(v2_n, v2);
		return (float)M_PI - 2.0f * saasin(len_v2v2(v1, v2_n) / 2.0f);
	}
}

/**
 * angle between 2 vectors defined by 3 coords, about an axis. */
float angle_on_axis_v3v3v3_v3(const float v1[3], const float v2[3], const float v3[3], const float axis[3])
{
	float v1_proj[3], v2_proj[3], tproj[3];

	sub_v3_v3v3(v1_proj, v1, v2);
	sub_v3_v3v3(v2_proj, v3, v2);

	/* project the vectors onto the axis */
	project_v3_v3v3(tproj, v1_proj, axis);
	sub_v3_v3(v1_proj, tproj);

	project_v3_v3v3(tproj, v2_proj, axis);
	sub_v3_v3(v2_proj, tproj);

	return angle_v3v3(v1_proj, v2_proj);
}

float angle_signed_on_axis_v3v3v3_v3(const float v1[3], const float v2[3], const float v3[3], const float axis[3])
{
	float v1_proj[3], v2_proj[3], tproj[3];
	float angle;

	sub_v3_v3v3(v1_proj, v1, v2);
	sub_v3_v3v3(v2_proj, v3, v2);

	/* project the vectors onto the axis */
	project_v3_v3v3(tproj, v1_proj, axis);
	sub_v3_v3(v1_proj, tproj);

	project_v3_v3v3(tproj, v2_proj, axis);
	sub_v3_v3(v2_proj, tproj);

	angle = angle_v3v3(v1_proj, v2_proj);

	/* calculate the sign (reuse 'tproj') */
	cross_v3_v3v3(tproj, v2_proj, v1_proj);
	if (dot_v3v3(tproj, axis) < 0.0f) {
		angle = ((float)(M_PI * 2.0)) - angle;
	}

	return angle;
}

void angle_tri_v3(float angles[3], const float v1[3], const float v2[3], const float v3[3])
{
	float ed1[3], ed2[3], ed3[3];

	sub_v3_v3v3(ed1, v3, v1);
	sub_v3_v3v3(ed2, v1, v2);
	sub_v3_v3v3(ed3, v2, v3);

	normalize_v3(ed1);
	normalize_v3(ed2);
	normalize_v3(ed3);

	angles[0] = (float)M_PI - angle_normalized_v3v3(ed1, ed2);
	angles[1] = (float)M_PI - angle_normalized_v3v3(ed2, ed3);
	// face_angles[2] = M_PI - angle_normalized_v3v3(ed3, ed1);
	angles[2] = (float)M_PI - (angles[0] + angles[1]);
}

void angle_quad_v3(float angles[4], const float v1[3], const float v2[3], const float v3[3], const float v4[3])
{
	float ed1[3], ed2[3], ed3[3], ed4[3];

	sub_v3_v3v3(ed1, v4, v1);
	sub_v3_v3v3(ed2, v1, v2);
	sub_v3_v3v3(ed3, v2, v3);
	sub_v3_v3v3(ed4, v3, v4);

	normalize_v3(ed1);
	normalize_v3(ed2);
	normalize_v3(ed3);
	normalize_v3(ed4);

	angles[0] = (float)M_PI - angle_normalized_v3v3(ed1, ed2);
	angles[1] = (float)M_PI - angle_normalized_v3v3(ed2, ed3);
	angles[2] = (float)M_PI - angle_normalized_v3v3(ed3, ed4);
	angles[3] = (float)M_PI - angle_normalized_v3v3(ed4, ed1);
}

void angle_poly_v3(float *angles, const float *verts[3], int len)
{
	int i;
	float vec[3][3];

	sub_v3_v3v3(vec[2], verts[len - 1], verts[0]);
	normalize_v3(vec[2]);
	for (i = 0; i < len; i++) {
		sub_v3_v3v3(vec[i % 3], verts[i % len], verts[(i + 1) % len]);
		normalize_v3(vec[i % 3]);
		angles[i] = (float)M_PI - angle_normalized_v3v3(vec[(i + 2) % 3], vec[i % 3]);
	}
}

/********************************* Geometry **********************************/

/* Project v1 on v2 */
void project_v2_v2v2(float c[2], const float v1[2], const float v2[2])
{
	const float mul = dot_v2v2(v1, v2) / dot_v2v2(v2, v2);

	c[0] = mul * v2[0];
	c[1] = mul * v2[1];
}

/* Project v1 on v2 */
void project_v3_v3v3(float c[3], const float v1[3], const float v2[3])
{
	const float mul = dot_v3v3(v1, v2) / dot_v3v3(v2, v2);

	c[0] = mul * v2[0];
	c[1] = mul * v2[1];
	c[2] = mul * v2[2];
}

/* project a vector on a plane defined by normal and a plane point p */
void project_v3_plane(float v[3], const float n[3], const float p[3])
{
	float vector[3];
	float mul;

	sub_v3_v3v3(vector, v, p);
	mul = dot_v3v3(vector, n) / len_squared_v3(n);

	mul_v3_v3fl(vector, n, mul);

	sub_v3_v3(v, vector);
}

/* Returns a vector bisecting the angle at v2 formed by v1, v2 and v3 */
void bisect_v3_v3v3v3(float out[3], const float v1[3], const float v2[3], const float v3[3])
{
	float d_12[3], d_23[3];
	sub_v3_v3v3(d_12, v2, v1);
	sub_v3_v3v3(d_23, v3, v2);
	normalize_v3(d_12);
	normalize_v3(d_23);
	add_v3_v3v3(out, d_12, d_23);
	normalize_v3(out);
}

/**
 * Returns a reflection vector from a vector and a normal vector
 * reflect = vec - ((2 * DotVecs(vec, mirror)) * mirror)
 */
void reflect_v3_v3v3(float out[3], const float vec[3], const float normal[3])
{
	const float dot2 = 2.0f * dot_v3v3(vec, normal);

	BLI_ASSERT_UNIT_V3(normal);

	out[0] = vec[0] - (dot2 * normal[0]);
	out[1] = vec[1] - (dot2 * normal[1]);
	out[2] = vec[2] - (dot2 * normal[2]);
}

/**
 * Takes a vector and computes 2 orthogonal directions.
 *
 * \note if \a n is n unit length, computed values will be too.
 */
void ortho_basis_v3v3_v3(float r_n1[3], float r_n2[3], const float n[3])
{
	const float eps = FLT_EPSILON;
	const float f = len_squared_v2(n);

	if (f > eps) {
		const float d = 1.0f / sqrtf(f);

		BLI_assert(finite(d));

		r_n1[0] =  n[1] * d;
		r_n1[1] = -n[0] * d;
		r_n1[2] =  0.0f;
		r_n2[0] = -n[2] * r_n1[1];
		r_n2[1] =  n[2] * r_n1[0];
		r_n2[2] =  n[0] * r_n1[1] - n[1] * r_n1[0];
	}
	else {
		/* degenerate case */
		r_n1[0] = (n[2] < 0.0f) ? -1.0f : 1.0f;
		r_n1[1] = r_n1[2] = r_n2[0] = r_n2[2] = 0.0f;
		r_n2[1] = 1.0f;
	}
}

/**
 * Calculates \a p - a perpendicular vector to \a v
 *
 * \note return vector won't maintain same length.
 */
void ortho_v3_v3(float p[3], const float v[3])
{
	const int axis = axis_dominant_v3_single(v);

	BLI_assert(p != v);

	switch (axis) {
		case 0:
			p[0] = -v[1] - v[2];
			p[1] =  v[0];
			p[2] =  v[0];
			break;
		case 1:
			p[0] =  v[1];
			p[1] = -v[0] - v[2];
			p[2] =  v[1];
			break;
		case 2:
			p[0] =  v[2];
			p[1] =  v[2];
			p[2] = -v[0] - v[1];
			break;
	}
}

/**
 * no brainer compared to v3, just have for consistency.
 */
void ortho_v2_v2(float p[2], const float v[2])
{
	BLI_assert(p != v);

	p[0] = -v[1];
	p[1] =  v[0];
}

/* Rotate a point p by angle theta around an arbitrary axis r
 * http://local.wasp.uwa.edu.au/~pbourke/geometry/
 */
void rotate_normalized_v3_v3v3fl(float r[3], const float p[3], const float axis[3], const float angle)
{
	const float costheta = cosf(angle);
	const float sintheta = sinf(angle);

	/* double check they are normalized */
	BLI_ASSERT_UNIT_V3(axis);

	r[0] = ((costheta + (1 - costheta) * axis[0] * axis[0]) * p[0]) +
	       (((1 - costheta) * axis[0] * axis[1] - axis[2] * sintheta) * p[1]) +
	       (((1 - costheta) * axis[0] * axis[2] + axis[1] * sintheta) * p[2]);

	r[1] = (((1 - costheta) * axis[0] * axis[1] + axis[2] * sintheta) * p[0]) +
	       ((costheta + (1 - costheta) * axis[1] * axis[1]) * p[1]) +
	       (((1 - costheta) * axis[1] * axis[2] - axis[0] * sintheta) * p[2]);

	r[2] = (((1 - costheta) * axis[0] * axis[2] - axis[1] * sintheta) * p[0]) +
	       (((1 - costheta) * axis[1] * axis[2] + axis[0] * sintheta) * p[1]) +
	       ((costheta + (1 - costheta) * axis[2] * axis[2]) * p[2]);
}

void rotate_v3_v3v3fl(float r[3], const float p[3], const float axis[3], const float angle)
{
	float axis_n[3];

	normalize_v3_v3(axis_n, axis);

	rotate_normalized_v3_v3v3fl(r, p, axis_n, angle);
}

/*********************************** Other ***********************************/

void print_v2(const char *str, const float v[2])
{
	printf("%s: %.8f %.8f\n", str, v[0], v[1]);
}

void print_v3(const char *str, const float v[3])
{
	printf("%s: %.8f %.8f %.8f\n", str, v[0], v[1], v[2]);
}

void print_v4(const char *str, const float v[4])
{
	printf("%s: %.8f %.8f %.8f %.8f\n", str, v[0], v[1], v[2], v[3]);
}

void print_vn(const char *str, const float v[], const int n)
{
	int i = 0;
	printf("%s[%d]:", str, n);
	while (i < n) {
		printf(" %.8f", v[i++]);
	}
	printf("\n");
}

void minmax_v3v3_v3(float min[3], float max[3], const float vec[3])
{
	if (min[0] > vec[0]) min[0] = vec[0];
	if (min[1] > vec[1]) min[1] = vec[1];
	if (min[2] > vec[2]) min[2] = vec[2];

	if (max[0] < vec[0]) max[0] = vec[0];
	if (max[1] < vec[1]) max[1] = vec[1];
	if (max[2] < vec[2]) max[2] = vec[2];
}

void minmax_v2v2_v2(float min[2], float max[2], const float vec[2])
{
	if (min[0] > vec[0]) min[0] = vec[0];
	if (min[1] > vec[1]) min[1] = vec[1];

	if (max[0] < vec[0]) max[0] = vec[0];
	if (max[1] < vec[1]) max[1] = vec[1];
}

/** ensure \a v1 is \a dist from \a v2 */
void dist_ensure_v3_v3fl(float v1[3], const float v2[3], const float dist)
{
	if (!equals_v3v3(v2, v1)) {
		float nor[3];

		sub_v3_v3v3(nor, v1, v2);
		normalize_v3(nor);
		madd_v3_v3v3fl(v1, v2, nor, dist);
	}
}

void dist_ensure_v2_v2fl(float v1[2], const float v2[2], const float dist)
{
	if (!equals_v2v2(v2, v1)) {
		float nor[2];

		sub_v2_v2v2(nor, v1, v2);
		normalize_v2(nor);
		madd_v2_v2v2fl(v1, v2, nor, dist);
	}
}

void axis_sort_v3(const float axis_values[3], int r_axis_order[3])
{
	float v[3];
	copy_v3_v3(v, axis_values);

#define SWAP_AXIS(a, b) { \
	SWAP(float, v[a],            v[b]); \
	SWAP(int,   r_axis_order[a], r_axis_order[b]); \
} (void)0

	if (v[0] < v[1]) {
		if (v[2] < v[0]) {  SWAP_AXIS(0, 2); }
	}
	else {
		if (v[1] < v[2]) { SWAP_AXIS(0, 1); }
		else             { SWAP_AXIS(0, 2); }
	}
	if (v[2] < v[1])     { SWAP_AXIS(1, 2); }

#undef SWAP_AXIS
}

/***************************** Array Functions *******************************/

MINLINE double sqr_db(double f)
{
	return f * f;
}

double dot_vn_vn(const float *array_src_a, const float *array_src_b, const int size)
{
	double d = 0.0f;
	const float *array_pt_a = array_src_a + (size - 1);
	const float *array_pt_b = array_src_b + (size - 1);
	int i = size;
	while (i--) {
		d += (double)(*(array_pt_a--) * *(array_pt_b--));
	}
	return d;
}

double len_squared_vn(const float *array, const int size)
{
	double d = 0.0f;
	const float *array_pt = array + (size - 1);
	int i = size;
	while (i--) {
		d += sqr_db((double)(*(array_pt--)));
	}
	return d;
}

float normalize_vn_vn(float *array_tar, const float *array_src, const int size)
{
	const double d = len_squared_vn(array_src, size);
	float d_sqrt;
	if (d > 1.0e-35) {
		d_sqrt = (float)sqrt(d);
		mul_vn_vn_fl(array_tar, array_src, size, 1.0f / d_sqrt);
	}
	else {
		fill_vn_fl(array_tar, size, 0.0f);
		d_sqrt = 0.0f;
	}
	return d_sqrt;
}

float normalize_vn(float *array_tar, const int size)
{
	return normalize_vn_vn(array_tar, array_tar, size);
}

void range_vn_i(int *array_tar, const int size, const int start)
{
	int *array_pt = array_tar + (size - 1);
	int j = start + (size - 1);
	int i = size;
	while (i--) {
		*(array_pt--) = j--;
	}
}

void range_vn_fl(float *array_tar, const int size, const float start, const float step)
{
	float *array_pt = array_tar + (size - 1);
	int i = size;
	while (i--) {
		*(array_pt--) = start + step * (float)(i);
	}
}

void negate_vn(float *array_tar, const int size)
{
	float *array_pt = array_tar + (size - 1);
	int i = size;
	while (i--) {
		*(array_pt--) *= -1.0f;
	}
}

void negate_vn_vn(float *array_tar, const float *array_src, const int size)
{
	float *tar = array_tar + (size - 1);
	const float *src = array_src + (size - 1);
	int i = size;
	while (i--) {
		*(tar--) = -*(src--);
	}
}

void mul_vn_fl(float *array_tar, const int size, const float f)
{
	float *array_pt = array_tar + (size - 1);
	int i = size;
	while (i--) {
		*(array_pt--) *= f;
	}
}

void mul_vn_vn_fl(float *array_tar, const float *array_src, const int size, const float f)
{
	float *tar = array_tar + (size - 1);
	const float *src = array_src + (size - 1);
	int i = size;
	while (i--) {
		*(tar--) = *(src--) * f;
	}
}

void add_vn_vn(float *array_tar, const float *array_src, const int size)
{
	float *tar = array_tar + (size - 1);
	const float *src = array_src + (size - 1);
	int i = size;
	while (i--) {
		*(tar--) += *(src--);
	}
}

void add_vn_vnvn(float *array_tar, const float *array_src_a, const float *array_src_b, const int size)
{
	float *tar = array_tar + (size - 1);
	const float *src_a = array_src_a + (size - 1);
	const float *src_b = array_src_b + (size - 1);
	int i = size;
	while (i--) {
		*(tar--) = *(src_a--) + *(src_b--);
	}
}

void madd_vn_vn(float *array_tar, const float *array_src, const float f, const int size)
{
	float *tar = array_tar + (size - 1);
	const float *src = array_src + (size - 1);
	int i = size;
	while (i--) {
		*(tar--) += *(src--) * f;
	}
}

void madd_vn_vnvn(float *array_tar, const float *array_src_a, const float *array_src_b, const float f, const int size)
{
	float *tar = array_tar + (size - 1);
	const float *src_a = array_src_a + (size - 1);
	const float *src_b = array_src_b + (size - 1);
	int i = size;
	while (i--) {
		*(tar--) = *(src_a--) + (*(src_b--) * f);
	}
}

void sub_vn_vn(float *array_tar, const float *array_src, const int size)
{
	float *tar = array_tar + (size - 1);
	const float *src = array_src + (size - 1);
	int i = size;
	while (i--) {
		*(tar--) -= *(src--);
	}
}

void sub_vn_vnvn(float *array_tar, const float *array_src_a, const float *array_src_b, const int size)
{
	float *tar = array_tar + (size - 1);
	const float *src_a = array_src_a + (size - 1);
	const float *src_b = array_src_b + (size - 1);
	int i = size;
	while (i--) {
		*(tar--) = *(src_a--) - *(src_b--);
	}
}

void msub_vn_vn(float *array_tar, const float *array_src, const float f, const int size)
{
	float *tar = array_tar + (size - 1);
	const float *src = array_src + (size - 1);
	int i = size;
	while (i--) {
		*(tar--) -= *(src--) * f;
	}
}

void msub_vn_vnvn(float *array_tar, const float *array_src_a, const float *array_src_b, const float f, const int size)
{
	float *tar = array_tar + (size - 1);
	const float *src_a = array_src_a + (size - 1);
	const float *src_b = array_src_b + (size - 1);
	int i = size;
	while (i--) {
		*(tar--) = *(src_a--) - (*(src_b--) * f);
	}
}

void interp_vn_vn(float *array_tar, const float *array_src, const float t, const int size)
{
	const float s = 1.0f - t;
	float *tar = array_tar + (size - 1);
	const float *src = array_src + (size - 1);
	int i = size;
	while (i--) {
		*(tar) = (s * *(tar)) + (t * *(src));
		tar--;
		src--;
	}
}

void fill_vn_i(int *array_tar, const int size, const int val)
{
	int *tar = array_tar + (size - 1);
	int i = size;
	while (i--) {
		*(tar--) = val;
	}
}

void fill_vn_short(short *array_tar, const int size, const short val)
{
	short *tar = array_tar + (size - 1);
	int i = size;
	while (i--) {
		*(tar--) = val;
	}
}

void fill_vn_ushort(unsigned short *array_tar, const int size, const unsigned short val)
{
	unsigned short *tar = array_tar + (size - 1);
	int i = size;
	while (i--) {
		*(tar--) = val;
	}
}

void fill_vn_fl(float *array_tar, const int size, const float val)
{
	float *tar = array_tar + (size - 1);
	int i = size;
	while (i--) {
		*(tar--) = val;
	}
}