Welcome to mirror list, hosted at ThFree Co, Russian Federation.

task.c « intern « blenlib « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 17e20f8fa186efb16801649b0abb2dffd1e1715e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
/*
 * ***** BEGIN GPL LICENSE BLOCK *****
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 *
 * ***** END GPL LICENSE BLOCK *****
 */

/** \file blender/blenlib/intern/task.c
 *  \ingroup bli
 *
 * A generic task system which can be used for any task based subsystem.
 */

#include <stdlib.h>

#include "MEM_guardedalloc.h"

#include "DNA_listBase.h"

#include "BLI_listbase.h"
#include "BLI_math.h"
#include "BLI_task.h"
#include "BLI_threads.h"

#include "atomic_ops.h"

/* Define this to enable some detailed statistic print. */
#undef DEBUG_STATS

/* Types */

/* Number of per-thread pre-allocated tasks.
 *
 * For more details see description of TaskMemPool.
 */
#define MEMPOOL_SIZE 256

/* Number of tasks which are pushed directly to local thread queue.
 *
 * This allows thread to fetch next task without locking the whole queue.
 */
#define LOCALQUEUE_SIZE 1

#ifndef NDEBUG
#  define ASSERT_THREAD_ID(scheduler, thread_id)                              \
	do {                                                                      \
		if (!BLI_thread_is_main()) {                                          \
			TaskThread *thread = pthread_getspecific(scheduler->tls_id_key);  \
			if (thread == NULL) {                                             \
				BLI_assert(thread_id == 0);                                   \
			}                                                                 \
			else {                                                            \
				BLI_assert(thread_id == thread->id);                          \
			}                                                                 \
		}                                                                     \
		else {                                                                \
			BLI_assert(thread_id == 0);                                       \
		}                                                                     \
	} while (false)
#else
#  define ASSERT_THREAD_ID(scheduler, thread_id)
#endif

typedef struct Task {
	struct Task *next, *prev;

	TaskRunFunction run;
	void *taskdata;
	bool free_taskdata;
	TaskFreeFunction freedata;
	TaskPool *pool;
} Task;

/* This is a per-thread storage of pre-allocated tasks.
 *
 * The idea behind this is simple: reduce amount of malloc() calls when pushing
 * new task to the pool. This is done by keeping memory from the tasks which
 * were finished already, so instead of freeing that memory we put it to the
 * pool for the later re-use.
 *
 * The tricky part here is to avoid any inter-thread synchronization, hence no
 * lock must exist around this pool. The pool will become an owner of the pointer
 * from freed task, and only corresponding thread will be able to use this pool
 * (no memory stealing and such).
 *
 * This leads to the following use of the pool:
 *
 * - task_push() should provide proper thread ID from which the task is being
 *   pushed from.
 *
 * - Task allocation function which check corresponding memory pool and if there
 *   is any memory in there it'll mark memory as re-used, remove it from the pool
 *   and use that memory for the new task.
 *
 *   At this moment task queue owns the memory.
 *
 * - When task is done and task_free() is called the memory will be put to the
 *  pool which corresponds to a thread which handled the task.
 */
typedef struct TaskMemPool {
	/* Number of pre-allocated tasks in the pool. */
	int num_tasks;
	/* Pre-allocated task memory pointers. */
	Task *tasks[MEMPOOL_SIZE];
} TaskMemPool;

#ifdef DEBUG_STATS
typedef struct TaskMemPoolStats {
	/* Number of allocations. */
	int num_alloc;
	/* Number of avoided allocations (pointer was re-used from the pool). */
	int num_reuse;
	/* Number of discarded memory due to pool saturation, */
	int num_discard;
} TaskMemPoolStats;
#endif

typedef struct TaskThreadLocalStorage {
	TaskMemPool task_mempool;
	int num_local_queue;
	Task *local_queue[LOCALQUEUE_SIZE];
} TaskThreadLocalStorage;

struct TaskPool {
	TaskScheduler *scheduler;

	volatile size_t num;
	ThreadMutex num_mutex;
	ThreadCondition num_cond;

	void *userdata;
	ThreadMutex user_mutex;

	volatile bool do_cancel;
	volatile bool do_work;

	volatile bool is_suspended;
	ListBase suspended_queue;
	size_t num_suspended;

	/* If set, this pool may never be work_and_wait'ed, which means TaskScheduler
	 * has to use its special background fallback thread in case we are in
	 * single-threaded situation.
	 */
	bool run_in_background;

	/* This is a task scheduler's ID of a thread at which pool was constructed.
	 * It will be used to access task TLS.
	 */
	int thread_id;

#ifdef DEBUG_STATS
	TaskMemPoolStats *mempool_stats;
#endif
};

struct TaskScheduler {
	pthread_t *threads;
	struct TaskThread *task_threads;
	int num_threads;
	bool background_thread_only;

	ListBase queue;
	ThreadMutex queue_mutex;
	ThreadCondition queue_cond;

	volatile bool do_exit;

	/* NOTE: In pthread's TLS we store the whole TaskThread structure. */
	pthread_key_t tls_id_key;
};

typedef struct TaskThread {
	TaskScheduler *scheduler;
	int id;
	TaskThreadLocalStorage tls;
} TaskThread;

/* Helper */
BLI_INLINE void task_data_free(Task *task, const int thread_id)
{
	if (task->free_taskdata) {
		if (task->freedata) {
			task->freedata(task->pool, task->taskdata, thread_id);
		}
		else {
			MEM_freeN(task->taskdata);
		}
	}
}

BLI_INLINE TaskThreadLocalStorage *get_task_tls(TaskPool *pool,
                                                const int thread_id)
{
	TaskScheduler *scheduler = pool->scheduler;
	BLI_assert(thread_id >= 0);
	BLI_assert(thread_id <= scheduler->num_threads);
	if (thread_id == 0) {
		return &scheduler->task_threads[pool->thread_id].tls;
	}
	return &scheduler->task_threads[thread_id].tls;
}

BLI_INLINE void free_task_tls(TaskThreadLocalStorage *tls)
{
	TaskMemPool *task_mempool = &tls->task_mempool;
	for (int i = 0; i < task_mempool->num_tasks; ++i) {
		MEM_freeN(task_mempool->tasks[i]);
	}
}

static Task *task_alloc(TaskPool *pool, const int thread_id)
{
	BLI_assert(thread_id <= pool->scheduler->num_threads);
	if (thread_id != -1) {
		BLI_assert(thread_id >= 0);
		BLI_assert(thread_id <= pool->scheduler->num_threads);
		TaskThreadLocalStorage *tls = get_task_tls(pool, thread_id);
		TaskMemPool *task_mempool = &tls->task_mempool;
		/* Try to re-use task memory from a thread local storage. */
		if (task_mempool->num_tasks > 0) {
			--task_mempool->num_tasks;
			/* Success! We've just avoided task allocation. */
#ifdef DEBUG_STATS
			pool->mempool_stats[thread_id].num_reuse++;
#endif
			return task_mempool->tasks[task_mempool->num_tasks];
		}
		/* We are doomed to allocate new task data. */
#ifdef DEBUG_STATS
		pool->mempool_stats[thread_id].num_alloc++;
#endif
	}
	return MEM_mallocN(sizeof(Task), "New task");
}

static void task_free(TaskPool *pool, Task *task, const int thread_id)
{
	task_data_free(task, thread_id);
	BLI_assert(thread_id >= 0);
	BLI_assert(thread_id <= pool->scheduler->num_threads);
	TaskThreadLocalStorage *tls = get_task_tls(pool, thread_id);
	TaskMemPool *task_mempool = &tls->task_mempool;
	if (task_mempool->num_tasks < MEMPOOL_SIZE - 1) {
		/* Successfully allowed the task to be re-used later. */
		task_mempool->tasks[task_mempool->num_tasks] = task;
		++task_mempool->num_tasks;
	}
	else {
		/* Local storage saturated, no other way than just discard
		 * the memory.
		 *
		 * TODO(sergey): We can perhaps store such pointer in a global
		 * scheduler pool, maybe it'll be faster than discarding and
		 * allocating again.
		 */
		MEM_freeN(task);
#ifdef DEBUG_STATS
		pool->mempool_stats[thread_id].num_discard++;
#endif
	}
}

/* Task Scheduler */

static void task_pool_num_decrease(TaskPool *pool, size_t done)
{
	BLI_mutex_lock(&pool->num_mutex);

	BLI_assert(pool->num >= done);

	pool->num -= done;

	if (pool->num == 0)
		BLI_condition_notify_all(&pool->num_cond);

	BLI_mutex_unlock(&pool->num_mutex);
}

static void task_pool_num_increase(TaskPool *pool, size_t new)
{
	BLI_mutex_lock(&pool->num_mutex);

	pool->num += new;
	BLI_condition_notify_all(&pool->num_cond);

	BLI_mutex_unlock(&pool->num_mutex);
}

static bool task_scheduler_thread_wait_pop(TaskScheduler *scheduler, Task **task)
{
	bool found_task = false;
	BLI_mutex_lock(&scheduler->queue_mutex);

	while (!scheduler->queue.first && !scheduler->do_exit)
		BLI_condition_wait(&scheduler->queue_cond, &scheduler->queue_mutex);

	do {
		Task *current_task;

		/* Assuming we can only have a void queue in 'exit' case here seems logical (we should only be here after
		 * our worker thread has been woken up from a condition_wait(), which only happens after a new task was
		 * added to the queue), but it is wrong.
		 * Waiting on condition may wake up the thread even if condition is not signaled (spurious wake-ups), and some
		 * race condition may also empty the queue **after** condition has been signaled, but **before** awoken thread
		 * reaches this point...
		 * See http://stackoverflow.com/questions/8594591
		 *
		 * So we only abort here if do_exit is set.
		 */
		if (scheduler->do_exit) {
			BLI_mutex_unlock(&scheduler->queue_mutex);
			return false;
		}

		for (current_task = scheduler->queue.first;
		     current_task != NULL;
		     current_task = current_task->next)
		{
			TaskPool *pool = current_task->pool;

			if (scheduler->background_thread_only && !pool->run_in_background) {
				continue;
			}

			*task = current_task;
			found_task = true;
			BLI_remlink(&scheduler->queue, *task);
			break;
		}
		if (!found_task)
			BLI_condition_wait(&scheduler->queue_cond, &scheduler->queue_mutex);
	} while (!found_task);

	BLI_mutex_unlock(&scheduler->queue_mutex);

	return true;
}

BLI_INLINE void handle_local_queue(TaskThreadLocalStorage *tls,
                                   const int thread_id)
{
	while (tls->num_local_queue > 0) {
		/* We pop task from queue before handling it so handler of the task can
		 * push next job to the local queue.
		 */
		tls->num_local_queue--;
		Task *local_task = tls->local_queue[tls->num_local_queue];
		/* TODO(sergey): Double-check work_and_wait() doesn't handle other's
		 * pool tasks.
		 */
		TaskPool *local_pool = local_task->pool;
		local_task->run(local_pool, local_task->taskdata, thread_id);
		task_free(local_pool, local_task, thread_id);
	}
}

static void *task_scheduler_thread_run(void *thread_p)
{
	TaskThread *thread = (TaskThread *) thread_p;
	TaskThreadLocalStorage *tls = &thread->tls;
	TaskScheduler *scheduler = thread->scheduler;
	int thread_id = thread->id;
	Task *task;

	pthread_setspecific(scheduler->tls_id_key, thread);

	/* keep popping off tasks */
	while (task_scheduler_thread_wait_pop(scheduler, &task)) {
		TaskPool *pool = task->pool;

		/* run task */
		task->run(pool, task->taskdata, thread_id);

		/* delete task */
		task_free(pool, task, thread_id);

		/* Handle all tasks from local queue. */
		handle_local_queue(tls, thread_id);

		/* notify pool task was done */
		task_pool_num_decrease(pool, 1);
	}

	return NULL;
}

TaskScheduler *BLI_task_scheduler_create(int num_threads)
{
	TaskScheduler *scheduler = MEM_callocN(sizeof(TaskScheduler), "TaskScheduler");

	/* multiple places can use this task scheduler, sharing the same
	 * threads, so we keep track of the number of users. */
	scheduler->do_exit = false;

	BLI_listbase_clear(&scheduler->queue);
	BLI_mutex_init(&scheduler->queue_mutex);
	BLI_condition_init(&scheduler->queue_cond);

	if (num_threads == 0) {
		/* automatic number of threads will be main thread + num cores */
		num_threads = BLI_system_thread_count();
	}

	/* main thread will also work, so we count it too */
	num_threads -= 1;

	/* Add background-only thread if needed. */
	if (num_threads == 0) {
		scheduler->background_thread_only = true;
		num_threads = 1;
	}

	scheduler->task_threads = MEM_callocN(sizeof(TaskThread) * (num_threads + 1),
	                                      "TaskScheduler task threads");

	pthread_key_create(&scheduler->tls_id_key, NULL);

	/* launch threads that will be waiting for work */
	if (num_threads > 0) {
		int i;

		scheduler->num_threads = num_threads;
		scheduler->threads = MEM_callocN(sizeof(pthread_t) * num_threads, "TaskScheduler threads");

		for (i = 0; i < num_threads; i++) {
			TaskThread *thread = &scheduler->task_threads[i + 1];
			thread->scheduler = scheduler;
			thread->id = i + 1;

			if (pthread_create(&scheduler->threads[i], NULL, task_scheduler_thread_run, thread) != 0) {
				fprintf(stderr, "TaskScheduler failed to launch thread %d/%d\n", i, num_threads);
			}
		}
	}

	return scheduler;
}

void BLI_task_scheduler_free(TaskScheduler *scheduler)
{
	Task *task;

	/* stop all waiting threads */
	BLI_mutex_lock(&scheduler->queue_mutex);
	scheduler->do_exit = true;
	BLI_condition_notify_all(&scheduler->queue_cond);
	BLI_mutex_unlock(&scheduler->queue_mutex);

	pthread_key_delete(scheduler->tls_id_key);

	/* delete threads */
	if (scheduler->threads) {
		int i;

		for (i = 0; i < scheduler->num_threads; i++) {
			if (pthread_join(scheduler->threads[i], NULL) != 0)
				fprintf(stderr, "TaskScheduler failed to join thread %d/%d\n", i, scheduler->num_threads);
		}

		MEM_freeN(scheduler->threads);
	}

	/* Delete task thread data */
	if (scheduler->task_threads) {
		for (int i = 0; i < scheduler->num_threads + 1; ++i) {
			TaskThreadLocalStorage *tls = &scheduler->task_threads[i].tls;
			free_task_tls(tls);
		}

		MEM_freeN(scheduler->task_threads);
	}

	/* delete leftover tasks */
	for (task = scheduler->queue.first; task; task = task->next) {
		task_data_free(task, 0);
	}
	BLI_freelistN(&scheduler->queue);

	/* delete mutex/condition */
	BLI_mutex_end(&scheduler->queue_mutex);
	BLI_condition_end(&scheduler->queue_cond);

	MEM_freeN(scheduler);
}

int BLI_task_scheduler_num_threads(TaskScheduler *scheduler)
{
	return scheduler->num_threads + 1;
}

static void task_scheduler_push(TaskScheduler *scheduler, Task *task, TaskPriority priority)
{
	task_pool_num_increase(task->pool, 1);

	/* add task to queue */
	BLI_mutex_lock(&scheduler->queue_mutex);

	if (priority == TASK_PRIORITY_HIGH)
		BLI_addhead(&scheduler->queue, task);
	else
		BLI_addtail(&scheduler->queue, task);

	BLI_condition_notify_one(&scheduler->queue_cond);
	BLI_mutex_unlock(&scheduler->queue_mutex);
}

static void task_scheduler_clear(TaskScheduler *scheduler, TaskPool *pool)
{
	Task *task, *nexttask;
	size_t done = 0;

	BLI_mutex_lock(&scheduler->queue_mutex);

	/* free all tasks from this pool from the queue */
	for (task = scheduler->queue.first; task; task = nexttask) {
		nexttask = task->next;

		if (task->pool == pool) {
			task_data_free(task, pool->thread_id);
			BLI_freelinkN(&scheduler->queue, task);

			done++;
		}
	}

	BLI_mutex_unlock(&scheduler->queue_mutex);

	/* notify done */
	task_pool_num_decrease(pool, done);
}

/* Task Pool */

static TaskPool *task_pool_create_ex(TaskScheduler *scheduler,
                                     void *userdata,
                                     const bool is_background,
                                     const bool is_suspended)
{
	TaskPool *pool = MEM_mallocN(sizeof(TaskPool), "TaskPool");

#ifndef NDEBUG
	/* Assert we do not try to create a background pool from some parent task - those only work OK from main thread. */
	if (is_background) {
		const pthread_t thread_id = pthread_self();
		int i = scheduler->num_threads;

		while (i--) {
			BLI_assert(!pthread_equal(scheduler->threads[i], thread_id));
		}
	}
#endif

	pool->scheduler = scheduler;
	pool->num = 0;
	pool->do_cancel = false;
	pool->do_work = false;
	pool->is_suspended = is_suspended;
	pool->num_suspended = 0;
	pool->suspended_queue.first = pool->suspended_queue.last = NULL;
	pool->run_in_background = is_background;

	BLI_mutex_init(&pool->num_mutex);
	BLI_condition_init(&pool->num_cond);

	pool->userdata = userdata;
	BLI_mutex_init(&pool->user_mutex);

	if (BLI_thread_is_main()) {
		pool->thread_id = 0;
	}
	else {
		TaskThread *thread = pthread_getspecific(scheduler->tls_id_key);
		/* NOTE: It is possible that pool is created from non-main thread
		 * which isn't a scheduler thread. In this case pthread's TLS will
		 * be NULL and we can safely consider thread id 0 for the main
		 * thread of this pool (the one which does wort_and_wait()).
		 */
		if (thread == NULL) {
			pool->thread_id = 0;
		}
		else {
			pool->thread_id = thread->id;
		}
	}

#ifdef DEBUG_STATS
	pool->mempool_stats =
	        MEM_callocN(sizeof(*pool->mempool_stats) * (scheduler->num_threads + 1),
	                    "per-taskpool mempool stats");
#endif

	/* Ensure malloc will go fine from threads,
	 *
	 * This is needed because we could be in main thread here
	 * and malloc could be non-threda safe at this point because
	 * no other jobs are running.
	 */
	BLI_begin_threaded_malloc();

	return pool;
}

/**
 * Create a normal task pool.
 * This means that in single-threaded context, it will not be executed at all until you call
 * \a BLI_task_pool_work_and_wait() on it.
 */
TaskPool *BLI_task_pool_create(TaskScheduler *scheduler, void *userdata)
{
	return task_pool_create_ex(scheduler, userdata, false, false);
}

/**
 * Create a background task pool.
 * In multi-threaded context, there is no differences with \a BLI_task_pool_create(), but in single-threaded case
 * it is ensured to have at least one worker thread to run on (i.e. you do not have to call
 * \a BLI_task_pool_work_and_wait() on it to be sure it will be processed).
 *
 * \note Background pools are non-recursive (that is, you should not create other background pools in tasks assigned
 *       to a background pool, they could end never being executed, since the 'fallback' background thread is already
 *       busy with parent task in single-threaded context).
 */
TaskPool *BLI_task_pool_create_background(TaskScheduler *scheduler, void *userdata)
{
	return task_pool_create_ex(scheduler, userdata, true, false);
}

/**
 * Similar to BLI_task_pool_create() but does not schedule any tasks for execution
 * for until BLI_task_pool_work_and_wait() is called. This helps reducing therading
 * overhead when pushing huge amount of small initial tasks from the main thread.
 */
TaskPool *BLI_task_pool_create_suspended(TaskScheduler *scheduler, void *userdata)
{
	return task_pool_create_ex(scheduler, userdata, false, true);
}

void BLI_task_pool_free(TaskPool *pool)
{
	BLI_task_pool_cancel(pool);

	BLI_mutex_end(&pool->num_mutex);
	BLI_condition_end(&pool->num_cond);

	BLI_mutex_end(&pool->user_mutex);

#ifdef DEBUG_STATS
	printf("Thread ID    Allocated   Reused   Discarded\n");
	for (int i = 0; i < pool->scheduler->num_threads + 1; ++i) {
		printf("%02d           %05d       %05d    %05d\n",
		       i,
		       pool->mempool_stats[i].num_alloc,
		       pool->mempool_stats[i].num_reuse,
		       pool->mempool_stats[i].num_discard);
	}
	MEM_freeN(pool->mempool_stats);
#endif

	MEM_freeN(pool);

	BLI_end_threaded_malloc();
}

static void task_pool_push(
        TaskPool *pool, TaskRunFunction run, void *taskdata,
        bool free_taskdata, TaskFreeFunction freedata, TaskPriority priority,
        int thread_id)
{
	Task *task = task_alloc(pool, thread_id);

	task->run = run;
	task->taskdata = taskdata;
	task->free_taskdata = free_taskdata;
	task->freedata = freedata;
	task->pool = pool;

	if (pool->is_suspended) {
		BLI_addhead(&pool->suspended_queue, task);
		atomic_fetch_and_add_z(&pool->num_suspended, 1);
		return;
	}

	if (thread_id != -1 &&
	    (thread_id != pool->thread_id || pool->do_work))
	{
		ASSERT_THREAD_ID(pool->scheduler, thread_id);

		TaskThreadLocalStorage *tls = get_task_tls(pool, thread_id);
		if (tls->num_local_queue < LOCALQUEUE_SIZE) {
			tls->local_queue[tls->num_local_queue] = task;
			tls->num_local_queue++;
			return;
		}
	}

	task_scheduler_push(pool->scheduler, task, priority);
}

void BLI_task_pool_push_ex(
        TaskPool *pool, TaskRunFunction run, void *taskdata,
        bool free_taskdata, TaskFreeFunction freedata, TaskPriority priority)
{
	task_pool_push(pool, run, taskdata, free_taskdata, freedata, priority, -1);
}

void BLI_task_pool_push(
        TaskPool *pool, TaskRunFunction run, void *taskdata, bool free_taskdata, TaskPriority priority)
{
	BLI_task_pool_push_ex(pool, run, taskdata, free_taskdata, NULL, priority);
}

void BLI_task_pool_push_from_thread(TaskPool *pool, TaskRunFunction run,
        void *taskdata, bool free_taskdata, TaskPriority priority, int thread_id)
{
	task_pool_push(pool, run, taskdata, free_taskdata, NULL, priority, thread_id);
}

void BLI_task_pool_work_and_wait(TaskPool *pool)
{
	TaskThreadLocalStorage *tls = get_task_tls(pool, pool->thread_id);
	TaskScheduler *scheduler = pool->scheduler;

	if (atomic_fetch_and_and_uint8((uint8_t *)&pool->is_suspended, 0)) {
		if (pool->num_suspended) {
			task_pool_num_increase(pool, pool->num_suspended);
			BLI_mutex_lock(&scheduler->queue_mutex);

			BLI_movelisttolist(&scheduler->queue, &pool->suspended_queue);

			BLI_condition_notify_all(&scheduler->queue_cond);
			BLI_mutex_unlock(&scheduler->queue_mutex);

		}
		pool->is_suspended = false;
	}

	pool->do_work = true;

	ASSERT_THREAD_ID(pool->scheduler, pool->thread_id);

	BLI_mutex_lock(&pool->num_mutex);

	while (pool->num != 0) {
		Task *task, *work_task = NULL;
		bool found_task = false;

		BLI_mutex_unlock(&pool->num_mutex);

		BLI_mutex_lock(&scheduler->queue_mutex);

		/* find task from this pool. if we get a task from another pool,
		 * we can get into deadlock */

		for (task = scheduler->queue.first; task; task = task->next) {
			if (task->pool == pool) {
				work_task = task;
				found_task = true;
				BLI_remlink(&scheduler->queue, task);
				break;
			}
		}

		BLI_mutex_unlock(&scheduler->queue_mutex);

		/* if found task, do it, otherwise wait until other tasks are done */
		if (found_task) {
			/* run task */
			work_task->run(pool, work_task->taskdata, pool->thread_id);

			/* delete task */
			task_free(pool, task, pool->thread_id);

			/* Handle all tasks from local queue. */
			handle_local_queue(tls, pool->thread_id);

			/* notify pool task was done */
			task_pool_num_decrease(pool, 1);
		}

		BLI_mutex_lock(&pool->num_mutex);
		if (pool->num == 0)
			break;

		if (!found_task)
			BLI_condition_wait(&pool->num_cond, &pool->num_mutex);
	}

	BLI_mutex_unlock(&pool->num_mutex);

	handle_local_queue(tls, pool->thread_id);
}

void BLI_task_pool_cancel(TaskPool *pool)
{
	pool->do_cancel = true;

	task_scheduler_clear(pool->scheduler, pool);

	/* wait until all entries are cleared */
	BLI_mutex_lock(&pool->num_mutex);
	while (pool->num)
		BLI_condition_wait(&pool->num_cond, &pool->num_mutex);
	BLI_mutex_unlock(&pool->num_mutex);

	pool->do_cancel = false;
}

bool BLI_task_pool_canceled(TaskPool *pool)
{
	return pool->do_cancel;
}

void *BLI_task_pool_userdata(TaskPool *pool)
{
	return pool->userdata;
}

ThreadMutex *BLI_task_pool_user_mutex(TaskPool *pool)
{
	return &pool->user_mutex;
}

/* Parallel range routines */

/**
 *
 * Main functions:
 * - #BLI_task_parallel_range
 * - #BLI_task_parallel_listbase (#ListBase - double linked list)
 *
 * TODO:
 * - #BLI_task_parallel_foreach_link (#Link - single linked list)
 * - #BLI_task_parallel_foreach_ghash/gset (#GHash/#GSet - hash & set)
 * - #BLI_task_parallel_foreach_mempool (#BLI_mempool - iterate over mempools)
 *
 */

/* Allows to avoid using malloc for userdata_chunk in tasks, when small enough. */
#define MALLOCA(_size) ((_size) <= 8192) ? alloca((_size)) : MEM_mallocN((_size), __func__)
#define MALLOCA_FREE(_mem, _size) if (((_mem) != NULL) && ((_size) > 8192)) MEM_freeN((_mem))

typedef struct ParallelRangeState {
	int start, stop;
	void *userdata;

	TaskParallelRangeFunc func;
	TaskParallelRangeFuncEx func_ex;

	int iter;
	int chunk_size;
} ParallelRangeState;

BLI_INLINE bool parallel_range_next_iter_get(
        ParallelRangeState * __restrict state,
        int * __restrict iter, int * __restrict count)
{
	uint32_t uval = atomic_fetch_and_add_uint32((uint32_t *)(&state->iter), state->chunk_size);
	int previter = *(int32_t *)&uval;

	*iter = previter;
	*count = max_ii(0, min_ii(state->chunk_size, state->stop - previter));

	return (previter < state->stop);
}

static void parallel_range_func(
        TaskPool * __restrict pool,
        void *userdata_chunk,
        int threadid)
{
	ParallelRangeState * __restrict state = BLI_task_pool_userdata(pool);
	int iter, count;

	while (parallel_range_next_iter_get(state, &iter, &count)) {
		int i;

		if (state->func_ex) {
			for (i = 0; i < count; ++i) {
				state->func_ex(state->userdata, userdata_chunk, iter + i, threadid);
			}
		}
		else {
			for (i = 0; i < count; ++i) {
				state->func(state->userdata, iter + i);
			}
		}
	}
}

/**
 * This function allows to parallelized for loops in a similar way to OpenMP's 'parallel for' statement.
 *
 * See public API doc for description of parameters.
 */
static void task_parallel_range_ex(
        int start, int stop,
        void *userdata,
        void *userdata_chunk,
        const size_t userdata_chunk_size,
        TaskParallelRangeFunc func,
        TaskParallelRangeFuncEx func_ex,
        TaskParallelRangeFuncFinalize func_finalize,
        const bool use_threading,
        const bool use_dynamic_scheduling)
{
	TaskScheduler *task_scheduler;
	TaskPool *task_pool;
	ParallelRangeState state;
	int i, num_threads, num_tasks;

	void *userdata_chunk_local = NULL;
	void *userdata_chunk_array = NULL;
	const bool use_userdata_chunk = (func_ex != NULL) && (userdata_chunk_size != 0) && (userdata_chunk != NULL);

	if (start == stop) {
		return;
	}

	BLI_assert(start < stop);
	if (userdata_chunk_size != 0) {
		BLI_assert(func_ex != NULL && func == NULL);
		BLI_assert(userdata_chunk != NULL);
	}

	/* If it's not enough data to be crunched, don't bother with tasks at all,
	 * do everything from the main thread.
	 */
	if (!use_threading) {
		if (func_ex) {
			if (use_userdata_chunk) {
				userdata_chunk_local = MALLOCA(userdata_chunk_size);
				memcpy(userdata_chunk_local, userdata_chunk, userdata_chunk_size);
			}

			for (i = start; i < stop; ++i) {
				func_ex(userdata, userdata_chunk_local, i, 0);
			}

			if (func_finalize) {
				func_finalize(userdata, userdata_chunk_local);
			}

			MALLOCA_FREE(userdata_chunk_local, userdata_chunk_size);
		}
		else {
			for (i = start; i < stop; ++i) {
				func(userdata, i);
			}
		}

		return;
	}

	task_scheduler = BLI_task_scheduler_get();
	task_pool = BLI_task_pool_create(task_scheduler, &state);
	num_threads = BLI_task_scheduler_num_threads(task_scheduler);

	/* The idea here is to prevent creating task for each of the loop iterations
	 * and instead have tasks which are evenly distributed across CPU cores and
	 * pull next iter to be crunched using the queue.
	 */
	num_tasks = num_threads * 2;

	state.start = start;
	state.stop = stop;
	state.userdata = userdata;
	state.func = func;
	state.func_ex = func_ex;
	state.iter = start;
	if (use_dynamic_scheduling) {
		state.chunk_size = 32;
	}
	else {
		state.chunk_size = max_ii(1, (stop - start) / (num_tasks));
	}

	num_tasks = min_ii(num_tasks, (stop - start) / state.chunk_size);
	atomic_fetch_and_add_uint32((uint32_t *)(&state.iter), 0);

	if (use_userdata_chunk) {
        userdata_chunk_array = MALLOCA(userdata_chunk_size * num_tasks);
	}

	for (i = 0; i < num_tasks; i++) {
		if (use_userdata_chunk) {
			userdata_chunk_local = (char *)userdata_chunk_array + (userdata_chunk_size * i);
			memcpy(userdata_chunk_local, userdata_chunk, userdata_chunk_size);
		}
		/* Use this pool's pre-allocated tasks. */
		BLI_task_pool_push_from_thread(task_pool,
		                               parallel_range_func,
		                               userdata_chunk_local, false,
		                               TASK_PRIORITY_HIGH,
		                               task_pool->thread_id);
	}

	BLI_task_pool_work_and_wait(task_pool);
	BLI_task_pool_free(task_pool);

	if (use_userdata_chunk) {
		if (func_finalize) {
			for (i = 0; i < num_tasks; i++) {
				userdata_chunk_local = (char *)userdata_chunk_array + (userdata_chunk_size * i);
				func_finalize(userdata, userdata_chunk_local);
			}
		}
		MALLOCA_FREE(userdata_chunk_array, userdata_chunk_size * num_tasks);
	}
}

/**
 * This function allows to parallelize for loops in a similar way to OpenMP's 'parallel for' statement.
 *
 * \param start First index to process.
 * \param stop Index to stop looping (excluded).
 * \param userdata Common userdata passed to all instances of \a func.
 * \param userdata_chunk Optional, each instance of looping chunks will get a copy of this data
 *                       (similar to OpenMP's firstprivate).
 * \param userdata_chunk_size Memory size of \a userdata_chunk.
 * \param func_ex Callback function (advanced version).
 * \param use_threading If \a true, actually split-execute loop in threads, else just do a sequential forloop
 *                      (allows caller to use any kind of test to switch on parallelization or not).
 * \param use_dynamic_scheduling If \a true, the whole range is divided in a lot of small chunks (of size 32 currently),
 *                               otherwise whole range is split in a few big chunks (num_threads * 2 chunks currently).
 */
void BLI_task_parallel_range_ex(
        int start, int stop,
        void *userdata,
        void *userdata_chunk,
        const size_t userdata_chunk_size,
        TaskParallelRangeFuncEx func_ex,
        const bool use_threading,
        const bool use_dynamic_scheduling)
{
	task_parallel_range_ex(
	            start, stop, userdata, userdata_chunk, userdata_chunk_size, NULL, func_ex, NULL,
	            use_threading, use_dynamic_scheduling);
}

/**
 * A simpler version of \a BLI_task_parallel_range_ex, which does not use \a use_dynamic_scheduling,
 * and does not handle 'firstprivate'-like \a userdata_chunk.
 *
 * \param start First index to process.
 * \param stop Index to stop looping (excluded).
 * \param userdata Common userdata passed to all instances of \a func.
 * \param func Callback function (simple version).
 * \param use_threading If \a true, actually split-execute loop in threads, else just do a sequential forloop
 *                      (allows caller to use any kind of test to switch on parallelization or not).
 */
void BLI_task_parallel_range(
        int start, int stop,
        void *userdata,
        TaskParallelRangeFunc func,
        const bool use_threading)
{
	task_parallel_range_ex(start, stop, userdata, NULL, 0, func, NULL, NULL, use_threading, false);
}

/**
 * This function allows to parallelize for loops in a similar way to OpenMP's 'parallel for' statement,
 * with an additional 'finalize' func called from calling thread once whole range have been processed.
 *
 * \param start First index to process.
 * \param stop Index to stop looping (excluded).
 * \param userdata Common userdata passed to all instances of \a func.
 * \param userdata_chunk Optional, each instance of looping chunks will get a copy of this data
 *                       (similar to OpenMP's firstprivate).
 * \param userdata_chunk_size Memory size of \a userdata_chunk.
 * \param func_ex Callback function (advanced version).
 * \param func_finalize Callback function, called after all workers have finished,
 * useful to finalize accumulative tasks.
 * \param use_threading If \a true, actually split-execute loop in threads, else just do a sequential forloop
 *                      (allows caller to use any kind of test to switch on parallelization or not).
 * \param use_dynamic_scheduling If \a true, the whole range is divided in a lot of small chunks (of size 32 currently),
 *                               otherwise whole range is split in a few big chunks (num_threads * 2 chunks currently).
 */
void BLI_task_parallel_range_finalize(
        int start, int stop,
        void *userdata,
        void *userdata_chunk,
        const size_t userdata_chunk_size,
        TaskParallelRangeFuncEx func_ex,
        TaskParallelRangeFuncFinalize func_finalize,
        const bool use_threading,
        const bool use_dynamic_scheduling)
{
	task_parallel_range_ex(
	            start, stop, userdata, userdata_chunk, userdata_chunk_size, NULL, func_ex, func_finalize,
	            use_threading, use_dynamic_scheduling);
}

#undef MALLOCA
#undef MALLOCA_FREE

typedef struct ParallelListbaseState {
	void *userdata;
	TaskParallelListbaseFunc func;

	int chunk_size;
	int index;
	Link *link;
	SpinLock lock;
} ParallelListState;

BLI_INLINE Link *parallel_listbase_next_iter_get(
        ParallelListState * __restrict state,
        int * __restrict index,
        int * __restrict count)
{
	int task_count = 0;
	BLI_spin_lock(&state->lock);
	Link *result = state->link;
	if (LIKELY(result != NULL)) {
		*index = state->index;
		while (state->link != NULL && task_count < state->chunk_size) {
			++task_count;
			state->link = state->link->next;
		}
		state->index += task_count;
	}
	BLI_spin_unlock(&state->lock);
	*count = task_count;
	return result;
}

static void parallel_listbase_func(
        TaskPool * __restrict pool,
        void *UNUSED(taskdata),
        int UNUSED(threadid))
{
	ParallelListState * __restrict state = BLI_task_pool_userdata(pool);
	Link *link;
	int index, count;

	while ((link = parallel_listbase_next_iter_get(state, &index, &count)) != NULL) {
		for (int i = 0; i < count; ++i) {
			state->func(state->userdata, link, index + i);
			link = link->next;
		}
	}
}

/**
 * This function allows to parallelize for loops over ListBase items.
 *
 * \param listbase The double linked list to loop over.
 * \param userdata Common userdata passed to all instances of \a func.
 * \param func Callback function.
 * \param use_threading If \a true, actually split-execute loop in threads, else just do a sequential forloop
 *                      (allows caller to use any kind of test to switch on parallelization or not).
 *
 * \note There is no static scheduling here, since it would need another full loop over items to count them...
 */
void BLI_task_parallel_listbase(
        struct ListBase *listbase,
        void *userdata,
        TaskParallelListbaseFunc func,
        const bool use_threading)
{
	TaskScheduler *task_scheduler;
	TaskPool *task_pool;
	ParallelListState state;
	int i, num_threads, num_tasks;

	if (BLI_listbase_is_empty(listbase)) {
		return;
	}

	if (!use_threading) {
		i = 0;
		for (Link *link = listbase->first; link != NULL; link = link->next, ++i) {
			func(userdata, link, i);
		}
		return;
	}

	task_scheduler = BLI_task_scheduler_get();
	task_pool = BLI_task_pool_create(task_scheduler, &state);
	num_threads = BLI_task_scheduler_num_threads(task_scheduler);

	/* The idea here is to prevent creating task for each of the loop iterations
	 * and instead have tasks which are evenly distributed across CPU cores and
	 * pull next iter to be crunched using the queue.
	 */
	num_tasks = num_threads * 2;

	state.index = 0;
	state.link = listbase->first;
	state.userdata = userdata;
	state.func = func;
	state.chunk_size = 32;
	BLI_spin_init(&state.lock);

	for (i = 0; i < num_tasks; i++) {
		/* Use this pool's pre-allocated tasks. */
		BLI_task_pool_push_from_thread(task_pool,
		                               parallel_listbase_func,
		                               NULL, false,
		                               TASK_PRIORITY_HIGH,
		                               task_pool->thread_id);
	}

	BLI_task_pool_work_and_wait(task_pool);
	BLI_task_pool_free(task_pool);

	BLI_spin_end(&state.lock);
}