Welcome to mirror list, hosted at ThFree Co, Russian Federation.

BLI_math_rotation_test.cc « tests « blenlib « blender « source - git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: e37b212e1df8617c29db6450797c0d05e3b9e878 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
/* SPDX-License-Identifier: Apache-2.0 */

#include "testing/testing.h"

#include "BLI_math_base.h"
#include "BLI_math_rotation.h"
#include "BLI_math_rotation.hh"
#include "BLI_math_vector.hh"

#include "BLI_vector.hh"

#include <cmath>

/* Test that quaternion converts to itself via matrix. */
static void test_quat_to_mat_to_quat(float w, float x, float y, float z)
{
  float in_quat[4] = {w, x, y, z};
  float norm_quat[4], matrix[3][3], out_quat[4];

  normalize_qt_qt(norm_quat, in_quat);
  quat_to_mat3(matrix, norm_quat);
  mat3_normalized_to_quat(out_quat, matrix);

  /* The expected result is flipped (each orientation corresponds to 2 quats) */
  if (w < 0) {
    mul_qt_fl(norm_quat, -1);
  }

  EXPECT_V4_NEAR(norm_quat, out_quat, FLT_EPSILON);
}

TEST(math_rotation, quat_to_mat_to_quat_rot180)
{
  test_quat_to_mat_to_quat(1, 0, 0, 0);
  test_quat_to_mat_to_quat(0, 1, 0, 0);
  test_quat_to_mat_to_quat(0, 0, 1, 0);
  test_quat_to_mat_to_quat(0, 0, 0, 1);
}

TEST(math_rotation, quat_to_mat_to_quat_rot180n)
{
  test_quat_to_mat_to_quat(-1.000f, 0, 0, 0);
  test_quat_to_mat_to_quat(-1e-20f, -1, 0, 0);
  test_quat_to_mat_to_quat(-1e-20f, 0, -1, 0);
  test_quat_to_mat_to_quat(-1e-20f, 0, 0, -1);
}

TEST(math_rotation, quat_to_mat_to_quat_rot90)
{
  const float s2 = 1 / sqrtf(2);
  test_quat_to_mat_to_quat(s2, s2, 0, 0);
  test_quat_to_mat_to_quat(s2, -s2, 0, 0);
  test_quat_to_mat_to_quat(s2, 0, s2, 0);
  test_quat_to_mat_to_quat(s2, 0, -s2, 0);
  test_quat_to_mat_to_quat(s2, 0, 0, s2);
  test_quat_to_mat_to_quat(s2, 0, 0, -s2);
}

TEST(math_rotation, quat_to_mat_to_quat_rot90n)
{
  const float s2 = 1 / sqrtf(2);
  test_quat_to_mat_to_quat(-s2, s2, 0, 0);
  test_quat_to_mat_to_quat(-s2, -s2, 0, 0);
  test_quat_to_mat_to_quat(-s2, 0, s2, 0);
  test_quat_to_mat_to_quat(-s2, 0, -s2, 0);
  test_quat_to_mat_to_quat(-s2, 0, 0, s2);
  test_quat_to_mat_to_quat(-s2, 0, 0, -s2);
}

TEST(math_rotation, quat_to_mat_to_quat_bad_T83196)
{
  test_quat_to_mat_to_quat(0.0032f, 0.9999f, -0.0072f, -0.0100f);
  test_quat_to_mat_to_quat(0.0058f, 0.9999f, -0.0090f, -0.0101f);
  test_quat_to_mat_to_quat(0.0110f, 0.9998f, -0.0140f, -0.0104f);
  test_quat_to_mat_to_quat(0.0142f, 0.9997f, -0.0192f, -0.0107f);
  test_quat_to_mat_to_quat(0.0149f, 0.9996f, -0.0212f, -0.0107f);
}

TEST(math_rotation, quat_to_mat_to_quat_bad_negative)
{
  /* This shouldn't produce a negative q[0]. */
  test_quat_to_mat_to_quat(0.5f - 1e-6f, 0, -sqrtf(3) / 2 - 1e-6f, 0);
}

TEST(math_rotation, quat_to_mat_to_quat_near_1000)
{
  test_quat_to_mat_to_quat(0.9999f, 0.01f, -0.001f, -0.01f);
  test_quat_to_mat_to_quat(0.9999f, 0.02f, -0.002f, -0.02f);
  test_quat_to_mat_to_quat(0.9999f, 0.03f, -0.003f, -0.03f);
  test_quat_to_mat_to_quat(0.9999f, 0.04f, -0.004f, -0.04f);
  test_quat_to_mat_to_quat(0.9999f, 0.05f, -0.005f, -0.05f);
  test_quat_to_mat_to_quat(0.999f, 0.10f, -0.010f, -0.10f);
  test_quat_to_mat_to_quat(0.99f, 0.15f, -0.015f, -0.15f);
  test_quat_to_mat_to_quat(0.98f, 0.20f, -0.020f, -0.20f);
  test_quat_to_mat_to_quat(0.97f, 0.25f, -0.025f, -0.25f);
  test_quat_to_mat_to_quat(0.95f, 0.30f, -0.030f, -0.30f);
}

TEST(math_rotation, quat_to_mat_to_quat_near_0100)
{
  test_quat_to_mat_to_quat(0.01f, 0.9999f, -0.001f, -0.01f);
  test_quat_to_mat_to_quat(0.02f, 0.9999f, -0.002f, -0.02f);
  test_quat_to_mat_to_quat(0.03f, 0.9999f, -0.003f, -0.03f);
  test_quat_to_mat_to_quat(0.04f, 0.9999f, -0.004f, -0.04f);
  test_quat_to_mat_to_quat(0.05f, 0.9999f, -0.005f, -0.05f);
  test_quat_to_mat_to_quat(0.10f, 0.999f, -0.010f, -0.10f);
  test_quat_to_mat_to_quat(0.15f, 0.99f, -0.015f, -0.15f);
  test_quat_to_mat_to_quat(0.20f, 0.98f, -0.020f, -0.20f);
  test_quat_to_mat_to_quat(0.25f, 0.97f, -0.025f, -0.25f);
  test_quat_to_mat_to_quat(0.30f, 0.95f, -0.030f, -0.30f);
}

TEST(math_rotation, quat_to_mat_to_quat_near_0010)
{
  test_quat_to_mat_to_quat(0.01f, -0.001f, 0.9999f, -0.01f);
  test_quat_to_mat_to_quat(0.02f, -0.002f, 0.9999f, -0.02f);
  test_quat_to_mat_to_quat(0.03f, -0.003f, 0.9999f, -0.03f);
  test_quat_to_mat_to_quat(0.04f, -0.004f, 0.9999f, -0.04f);
  test_quat_to_mat_to_quat(0.05f, -0.005f, 0.9999f, -0.05f);
  test_quat_to_mat_to_quat(0.10f, -0.010f, 0.999f, -0.10f);
  test_quat_to_mat_to_quat(0.15f, -0.015f, 0.99f, -0.15f);
  test_quat_to_mat_to_quat(0.20f, -0.020f, 0.98f, -0.20f);
  test_quat_to_mat_to_quat(0.25f, -0.025f, 0.97f, -0.25f);
  test_quat_to_mat_to_quat(0.30f, -0.030f, 0.95f, -0.30f);
}

TEST(math_rotation, quat_to_mat_to_quat_near_0001)
{
  test_quat_to_mat_to_quat(0.01f, -0.001f, -0.01f, 0.9999f);
  test_quat_to_mat_to_quat(0.02f, -0.002f, -0.02f, 0.9999f);
  test_quat_to_mat_to_quat(0.03f, -0.003f, -0.03f, 0.9999f);
  test_quat_to_mat_to_quat(0.04f, -0.004f, -0.04f, 0.9999f);
  test_quat_to_mat_to_quat(0.05f, -0.005f, -0.05f, 0.9999f);
  test_quat_to_mat_to_quat(0.10f, -0.010f, -0.10f, 0.999f);
  test_quat_to_mat_to_quat(0.15f, -0.015f, -0.15f, 0.99f);
  test_quat_to_mat_to_quat(0.20f, -0.020f, -0.20f, 0.98f);
  test_quat_to_mat_to_quat(0.25f, -0.025f, -0.25f, 0.97f);
  test_quat_to_mat_to_quat(0.30f, -0.030f, -0.30f, 0.95f);
}

TEST(math_rotation, quat_split_swing_and_twist_negative)
{
  const float input[4] = {-0.5f, 0, sqrtf(3) / 2, 0};
  const float expected_swing[4] = {1.0f, 0, 0, 0};
  const float expected_twist[4] = {0.5f, 0, -sqrtf(3) / 2, 0};
  float swing[4], twist[4];

  float twist_angle = quat_split_swing_and_twist(input, 1, swing, twist);

  EXPECT_NEAR(twist_angle, -M_PI * 2 / 3, FLT_EPSILON);
  EXPECT_V4_NEAR(swing, expected_swing, FLT_EPSILON);
  EXPECT_V4_NEAR(twist, expected_twist, FLT_EPSILON);
}

/* -------------------------------------------------------------------- */
/** \name Test `sin_cos_from_fraction` Accuracy & Exact Symmetry
 * \{ */

static void test_sin_cos_from_fraction_accuracy(const int range, const float expected_eps)
{
  for (int i = 0; i < range; i++) {
    float sin_cos_fl[2];
    sin_cos_from_fraction(i, range, &sin_cos_fl[0], &sin_cos_fl[1]);
    const float phi = float(2.0 * M_PI) * (float(i) / float(range));
    const float sin_cos_test_fl[2] = {sinf(phi), cosf(phi)};
    EXPECT_V2_NEAR(sin_cos_fl, sin_cos_test_fl, expected_eps);
  }
}

/** Ensure the result of #sin_cos_from_fraction match #sinf & #cosf. */
TEST(math_rotation, sin_cos_from_fraction_accuracy)
{
  for (int range = 1; range <= 64; range++) {
    test_sin_cos_from_fraction_accuracy(range, 1e-6f);
  }
}

/** Ensure values are exactly symmetrical where possible. */
static void test_sin_cos_from_fraction_symmetry(const int range)
{
  /* The expected number of unique numbers depends on the range being a multiple of 4/2/1. */
  const enum {
    MULTIPLE_OF_1 = 1,
    MULTIPLE_OF_2 = 2,
    MULTIPLE_OF_4 = 3,
  } multiple_of = (range & 1) ? MULTIPLE_OF_1 : ((range & 3) ? MULTIPLE_OF_2 : MULTIPLE_OF_4);

  blender::Vector<blender::float2> coords;
  coords.reserve(range);
  for (int i = 0; i < range; i++) {
    float sin_cos_fl[2];
    sin_cos_from_fraction(i, range, &sin_cos_fl[0], &sin_cos_fl[1]);
    switch (multiple_of) {
      case MULTIPLE_OF_1: {
        sin_cos_fl[0] = fabsf(sin_cos_fl[0]);
        break;
      }
      case MULTIPLE_OF_2: {
        sin_cos_fl[0] = fabsf(sin_cos_fl[0]);
        sin_cos_fl[1] = fabsf(sin_cos_fl[1]);
        break;
      }
      case MULTIPLE_OF_4: {
        sin_cos_fl[0] = fabsf(sin_cos_fl[0]);
        sin_cos_fl[1] = fabsf(sin_cos_fl[1]);
        if (sin_cos_fl[0] > sin_cos_fl[1]) {
          SWAP(float, sin_cos_fl[0], sin_cos_fl[1]);
        }
        break;
      }
    }
    coords.append_unchecked(sin_cos_fl);
  }
  /* Sort, then count unique items. */
  std::sort(coords.begin(), coords.end(), [](const blender::float2 &a, const blender::float2 &b) {
    float delta = b[0] - a[0];
    if (delta == 0.0f) {
      delta = b[1] - a[1];
    }
    return delta > 0.0f;
  });
  int unique_coords_count = 1;
  if (range > 1) {
    int i_prev = 0;
    for (int i = 1; i < range; i_prev = i++) {
      if (coords[i_prev] != coords[i]) {
        unique_coords_count += 1;
      }
    }
  }
  switch (multiple_of) {
    case MULTIPLE_OF_1: {
      EXPECT_EQ(unique_coords_count, (range / 2) + 1);
      break;
    }
    case MULTIPLE_OF_2: {
      EXPECT_EQ(unique_coords_count, (range / 4) + 1);
      break;
    }
    case MULTIPLE_OF_4: {
      EXPECT_EQ(unique_coords_count, (range / 8) + 1);
      break;
    }
  }
}

TEST(math_rotation, sin_cos_from_fraction_symmetry)
{
  for (int range = 1; range <= 64; range++) {
    test_sin_cos_from_fraction_symmetry(range);
  }
}

/** \} */

namespace blender::math::tests {

TEST(math_rotation, RotateDirectionAroundAxis)
{
  const float3 a = rotate_direction_around_axis({1, 0, 0}, {0, 0, 1}, M_PI_2);
  EXPECT_NEAR(a.x, 0.0f, FLT_EPSILON);
  EXPECT_NEAR(a.y, 1.0f, FLT_EPSILON);
  EXPECT_NEAR(a.z, 0.0f, FLT_EPSILON);
  const float3 b = rotate_direction_around_axis({1, 0, 0}, {0, 0, 1}, M_PI);
  EXPECT_NEAR(b.x, -1.0f, FLT_EPSILON);
  EXPECT_NEAR(b.y, 0.0f, FLT_EPSILON);
  EXPECT_NEAR(b.z, 0.0f, FLT_EPSILON);
  const float3 c = rotate_direction_around_axis({0, 0, 1}, {0, 0, 1}, 0.0f);
  EXPECT_NEAR(c.x, 0.0f, FLT_EPSILON);
  EXPECT_NEAR(c.y, 0.0f, FLT_EPSILON);
  EXPECT_NEAR(c.z, 1.0f, FLT_EPSILON);
}

}  // namespace blender::math::tests